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Abstract Generalized Cayley graphs of semigroups were first defined by Zhu (Semi-
group Forum 84:131–143, 2012) and further studied by Zhu (Semigroup Forum
84:144–156, 2012) as well as by Wang (Semigroup Forum 86:221–223, 2013). In
the present paper, we study the vertex-transitivity of generalized Cayley graphs of a
semigroup so that two main theorems of Kelarev and Praeger (Eur J Comb 24:59–72,
2003) for the classical and well known Cayley graphs of semigroups are extended to
those for generalized Cayley graphs of a semigroup.

Keywords Cayley graph of semigroups · Generalized Cayley graph of semigroups ·
Vertex-transitivity · Colour-preserving automorphisms · Right simple action · Left
simple action

1 Introduction

As an analogue of the notion of Cayley graphs of a group (see for example, [4,16]),
the Cayley graph Cay(G, S) of a semigroup G relative to its subset S is defined as
the graph with vertex set G and edge set E(S) consisting of those ordered pairs (a, b)
such that xa = b for some x ∈ S (see, for example [6,7,9–13]). Cayley graphs
are the most important class of graphs associated to semigroups because of their
practical applications and relations to automata theory (cf. [7,8,11]). This concept
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248 Y. Zhu

was extended to generalized Cayley graphs of a semigroup by the author in [17],
where some fundamental properties of generalized Cayley graphs of semigroups were
studied.Recall that if S is an ideal of a semigroup T , thenwe call T an ideal extension of
S. Notice that, in the whole paper, T 1 always stands for the semigroup T with identity
adjoined if necessary. The definition of the generalized Cayley graphs of semigroups
is as follows.

Definition 1.1 (Definition 1.1 of [17]) Let T be an ideal extension of a semigroup
S and ρ ⊆ T 1 × T 1. The generalized Cayley graph Cay(S, ρ) of S relative to ρ is
defined as the graph with vertex set S and edge set E(Cay(S, ρ)) consisting of those
ordered pairs (a, b) such that xay = b for some (x, y) ∈ ρ.

For example, if G is a semigroup with S a nonempty subset of G, then the gener-
alized Cayley graph Cay(G, S × {1}) is actually the classical and well known Cayley
graph Cay(G, S).

In [18], some combinatorial issues related to generalized Cayley graphs were
addressed. In [18, Remark 3.8], the author proposed characterizing semigroups S
such that Cay(S, Sl) = Cay(S, Sr ), where Sl = S1 × {1} and Sr = {1} × S1

are the left and right universal relations on S1, respectively. This problem was par-
tially solved by Wang in [15], where it was proved that for any regular semigroup S,
Cay(S, Sl) = Cay(S, Sr ) if and only if S is a Clifford semigroup, i.e., a semilattice
of groups. This result was further extended by the author in [19]. Generalized Cayley
graphs of rectangular groups were characterized in [20].

The aim of this paper is to study certain transitivity properties, whichwe shall define
below, of generalized Cayley graphs of semigroups so that the main results of Kelarev
and Praeger in [10] for the classical and well known Cayley graphs of semigroups are
generalized to those for generalized Cayley graphs.

Let us begin with some basic concepts.
Let D(V, E) be a graph with vertex set V and edge set E ⊆ V ×V . IfU ⊆ V , then

the induced subgraph ofU in D is defined as the graph with vertex setU and edge set
{(u1, u2)|u1, u2 ∈ U and (u1, u2) ∈ E}. Sometimes we equate the induced subgraph
ofU with the vertex setU . A mapping φ : V −→ V is called an endomorphism of the
graph D if (uφ, vφ) ∈ E for all (u, v) ∈ E . If φ is not only an endomorphism of the
graph D but also a bijection from V onto V itself and if φ−1 is also an endomorphism
of the graph D, then we call φ an automorphism of the graph D.

A graph D(V, E) is said to be vertex-transitive if, for any two vertices x, y ∈ V ,
there exists an automorphism φ ∈ Aut(D) such that xφ = y (see [1] or [10]). More
generally, a subset A of End(D) is said to be vertex-transitive on D, and D is said to
be A-vertex-transitive if, for any two vertices x, y ∈ V , there exists an endomorphism
φ ∈ A such that xφ = y (see [2, Section 11.1] or [10]).

Now let G be a semigroup and let S ⊆ G. As in [10], denote the automorphism
group (endomorphism monoid) of Cay(G, S) by AutS(G) (respectively, EndS(G)).
Thus

AutS(G) = Aut(Cay(G, S)) and EndS(G) = End(Cay(G, S)).
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On transitive generalized Cayley graphs of semigroups 249

More generally, let T be an ideal extension of a semigroup S and let ρ ⊆ T 1 × T 1.
Denote the automorphism group (endomorphism monoid) of the generalized Cayley
graph Cay(S, ρ) by Autρ(S) (respectively, Endρ(S)). That is,

Autρ(S) = Aut(Cay(S, ρ)) and Endρ(S) = End(Cay(S, ρ)).

It is clear that

Autρ(S) ⊆ Endρ(S).

As in [10], an element φ ∈ EndS(G) is called a colour-preserving endomorphism
if sx = y implies s(xφ) = yφ , for every x, y ∈ G and s ∈ S. If we regard an edge
(x, sx), for s ∈ S, as having ‘colour’ s, so that the elements of S are thought of as
colours associated with the edges of the Cayley graph, then every colour-preserving
endomorphismmaps each edge to an edge of the same colour. Denote by ColEndS(G)

(andColAutS(G)) the sets of all colour-preserving endomorphisms (respectively, auto-
morphisms) of Cay(G, S). Similarly, when T is an ideal extension of a semigroup S
and ρ ⊆ T 1 × T 1, an element φ ∈ Endρ(S) will be called a colour-preserving endo-
morphism if xα = y implies (xφ)α = yφ , for every x, y ∈ S and α ∈ ρ. Denote
by ColEndρ(S) (and ColAutρ(S)) the sets of all colour-preserving endomorphisms
(respectively, automorphisms) of Cay(S, ρ). Evidently,

ColAutρ(S)) ⊆ ColEndρ(S).

Vertex-transitivity of Cayley graphs of groups has received much attention in
the literature and many interesting results have been obtained, see for example
[1,2,14]. Also, there have been many research articles on vertex-transitivity of Cay-
ley graphs of semigroups, see [3,10,12,13]. In particular, [10, Theorems 2.1 and 2.2]
describe all semigroups G and all subsets S of G, satisfying a certain finiteness con-
dition, such that the Cayley graph Cay(G, S) is ColAutS(G)-vertex-transitive and
AutS(G)-vertex-transitive respectively. In the present paper, we find the equivalent
conditions for the generalized Cayley graph Cay(S, ρ) to be ColAutρ(S)-vertex-
transitive and Autρ(S)-vertex-transitive, respectively. Our main results are Theo-
rems 6.1 and 6.2, which generalize Theorems 2.1 and 2.2 of [10] respectively.
The latter are presented as two corollaries in this paper, see Corollaries 7.1 and
7.2.

In the next section we list the background theory on semigroups needed for our
arguments. Then we prove some general results about generalized Cayley graphs of
semigroups in Sects. 3 and 4. For establishing our main theorems, some new notions
are needed, which we shall introduce in Sect. 5. In Sect. 6, we present and prove two
main theorems of this paper. As two important applications of our main theorems, we
present and reprove the main results of [9] in Sect. 7. At last, as one more application
of our main theorems, an example is given in Sect. 8.
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2 Preliminaries on semigroups

In the whole paper, we always use standard notions and notation of semigroup theory
following [2,5]. But in this section, we only introduce a few related notions, notation
and known facts required for the arguments of the subsequent sections.

Recall that if S is a semigroup and A ⊆ S, then the subsemigroup generated by
A in S is denoted by 〈S〉. An element a of a semigroup G is said to be periodic if
there exist positive integers m, n such that am+n = am . A subset S of G is periodic if
every element of S is periodic. In particular, if all principal left ideals of a semigroup
are finite, then the semigroup is periodic. An element x of a semigroup is called an
idempotent if x2 = x . A band is a semigroup entirely consisting of idempotents. A
band is called a left zero (right zero, rectangular) band if it satisfies the identity xy = x
(respectively, xy = y, xyx = x). Among all elements of a band there is a natural
(partial) order defined by e ≤ f if and only if e f = f e = e. A semigroup is said to
be (left, right) simple if it has no proper (left, right) ideals. A semigroup is left (right)
cancellative if xy = xz (respectively, yx = zx) implies y = z, for all x, y, z ∈ S.
A semigroup is called a right (left) group if it is right (left) simple and left (right)
cancellative.

Lemma 2.1 (Corollary 3.1.2 of [5]) Let S be a semigroup. Then following statements
hold:

(i) S is simple if and only if SaS = S for all a ∈ S;
(ii) S is left simple if and only if Sa = S for all a ∈ S;
(iii) S is right simple if and only if aS = S for all a ∈ S.

Lemma 2.2 (Theorem 1.27 of [2]) For any periodic semigroup S, the following state-
ments are equivalent:

(i) S is right (left) simple;
(ii) S is a right (left) group;
(iii) S is isomorphic to the direct product of a right (left) zero band and a group.

Let S be a semigroup. An idempotent of S is said to be primitive if it is minimal
with respect to the natural order within the set of all idempotents of S. If S contains a
primitive idempotent and if it is simple, then we say that S is completely simple. The
following lemma is a simplified version of the Rees Theorem, due in effect to A. K.
Suschkewitsch:

Lemma 2.3 (Theorem 3.3.1 of [5]) Let G be a group, let I , Λ be nonempty sets and
let P = (pλ,i ) be a Λ × I matrix with entries in G. Let S = (I ×G × Λ), and define
a multiplication on S by

(i, a, λ)( j, b, μ) = (i, apλ j b, μ).

Then S is a completely simple semigroup.
Conversely, every completely simple semigroup is isomorphic to a semigroup con-

structed in this way.
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On transitive generalized Cayley graphs of semigroups 251

We denote the semigroup I ×G×Λwith the given multiplication byM [G; I,Λ; P].
Lemma 2.4 (Theorem 3.2.11 of [5]) A periodic semigroup is simple if and only if it
is completely simple.

3 General properties of generalized Cayley graphs

Let D = (V, E) be a graph. The underlying undirected graph of D has the same
vertex set V and it has an undirected edge {u, v} for each directed edge (u, v) of D.
The graph D is said to be connected if its underlying undirected graph is connected.
If, for each pair of vertices u, v of D, there exists a directed path from u to v, then D
is said to be strongly connected.

If S is a semigroup with respect to the multiplication ·, then the anti-semigroup of
S, denoted by S∗, is defined as the semigroup (S, ∗), where the multiplication ∗ is
defined by a ∗ b = b · a for any a, b ∈ S. Let T be an ideal extension of a semigroup
S and ρ ⊆ T 1 × T 1. Then by [ρ〉 we denote the subsemigroup generated by ρ in the
direct product (T 1)∗ ×T 1; dually, by 〈ρ] we denote the subsemigroup generated by ρ

in the direct product T 1 × (T 1)∗, where T 1 stands for the semigroup T with identity
adjoined if necessary, and where (T 1)∗ is the anti-semigroup of T 1. Let a ∈ S. Then
by Ca we denote the set of all vertices b of the generalized Cayley graph Cay(S, ρ)

such that there exists a directed path from a to b. Set

a[ρ〉 = {xay|(x, y) ∈ [ρ〉} ⊆ S.

The following lemma generalizes [10, Lemma 5.1].

Lemma 3.1 If T is an ideal extension of a semigroup S and ρ ⊆ T 1 × T 1, then for
any a ∈ S,

Ca = a[ρ〉.

Proof Take any b ∈ Ca . There exists a directed path a = v1, v2, . . . , vn = b, where
n > 1. By the definition of the generalized Cayley graph Cay(S, ρ)we get vi+1 = v

αi
i ,

for i = 1, . . . , n − 1 and some αi ∈ ρ. Hence b = aα1...αn−1 , and so b ∈ a[ρ〉. This
shows that Ca ⊆ a[ρ〉.

Conversely, pick any b ∈ a[ρ〉. Since [ρ〉 is generated by ρ, there exist
α1, . . . , αn−1 ∈ ρ such that b = aα1...αn−1 , where n > 1. Setting v1 = a and
vi+1 = v

αi
i for i = 1, . . . , n − 1, we see that vn = b and

(a, aα1), (aα1 , aα1α2), . . . , (aα1...αn−2 , b)

are the edges of Cay(S, ρ). Therefore a = v1, v2, . . . , vn = b is a directed path from
a to b in Cay(S, ρ). This shows that a[ρ〉 ⊆ Ca . Therefore, Ca = a[ρ〉, as required. 	


The next lemma may be regarded as a generalization of [10, Lemma 5.2]. But both
have a very big difference for under present circumstances the concept of (completely)
simple semigroups does not come in handy.
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Lemma 3.2 Let T be an ideal extension of a semigroup S and ρ ⊆ T 1 × T 1 with the
property:

uα ∈ uαβ[ρ〉 for all α, β ∈ [ρ〉 and all u ∈ S.

Suppose that Sρ = S. Then every connected component of Cay(S, ρ) is strongly
connected and, for each v ∈ S, the connected component containing v is equal to
Cv = v[ρ〉 = vα[ρ〉 for any α ∈ [ρ〉.
Proof Let (u, v) be any edge of Cay(S, ρ). Then v = uα for some α ∈ ρ. Since
Sρ = S, we can find elements β ∈ ρ, u1 ∈ S such that uβ

1 = u. Hence v = uβα
1 . Since

uβ
1 ∈ uβα[ρ〉

1 , there exists γ ∈ [ρ〉 such that uβ
1 = uβαγ

1 . Hence u = uβ
1 = uβαγ

1 =
(uβα

1 )γ = vγ ∈ v[ρ〉 = Cv . By the definition of Cv , there exists a directed path from
v to u. Since (u, v) was chosen arbitrarily, it follows that every connected component
of Cay(S, ρ) is strongly connected.

Let C be the set of vertices of a connected component of Cay(S, ρ), and let v ∈ C .
Since C is strongly connected, it follows from Lemma 3.1 that C = Cv = v[ρ〉. Given
that Sρ = S, there exist u ∈ S, β ∈ ρ such that uβ = v. Since uβ ∈ uβα[ρ〉, v ∈ vα[ρ〉.
It follows that v[ρ〉 = vα[ρ〉. Therefore C = Cv = v[ρ〉 = vα[ρ〉, which completes the
proof. 	


The following two lemmas are generalizations of [10, Lemmas 5.4 and 5.5] respec-
tively.

Lemma 3.3 Let T be an ideal extension of a semigroup S and α ∈ T 1 × T 1 be a
periodic element such that Sα = S, and let I be a subset of S such that Iα ⊆ I , then
(S \ I )α ⊆ (S \ I ).

Proof Since α is periodic, there exist positive integersm and n such that αm+n = αm .
Take any element u ∈ (S \ I ) and suppose to the contrary that uα ∈ I . Then uαn ∈ I
by the assumption that I α ⊆ I . Since Sα = S, we have Sαm = S, which means that
there exists v ∈ S such that vαm = u. Since I α ⊆ I , we have I αm ⊆ I . It follows that
v ∈ S \ I . Since αm+n = αm , we get uαn = (vαm

)α
n = vαm+n = vαm = u. Then the

assumption that u ∈ (S\ I ) contradicts that uαn ∈ I . This shows that (S\ I )α ⊆ (S\ I ).
	


Lemma 3.4 Let T be an ideal extension of a semigroup S, let ρ ⊆ T 1 × T 1 be a
periodic subset such that Sα = S for every α ∈ ρ, and let I be a subset of S such that
I ρ ⊆ I . Then I is a union of connected components of Cay(S, ρ). In particular, for
every a ∈ S, Ca is a connected component of Cay(S, ρ).

Proof Take any edge (u, v) of Cay(S, ρ). Then v = uα , for some α ∈ ρ. Since I ρ ⊆ I
and by Lemma 3.3, we get that u ∈ I ⇐⇒ v ∈ I , which means that all vertices of
I are adjacent to vertices of I only. Hence I is a union of connected components of
Cay(S, ρ). Let a ∈ S. Then in light of Lemma 3.1, Ca = a[ρ〉 for each a ∈ S. It
follows that (Ca)

ρ ⊆ Ca . Thus Ca is a union of connected components of Cay(S, ρ).
It is evident that Ca itself is connected. So the final assertion of the lemma follows. 	
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On transitive generalized Cayley graphs of semigroups 253

4 Transitivity properties of generalized Cayley graphs

In this sectionwe prove several preparatory lemmas for the proof of themain theorems,
involving transitivity of generalized Cayley graphs of semigroups.

The following three lemmas extend [10, Lemmas 6.1, 6.2 and 6.3], respectively.

Lemma 4.1 Let T be an ideal extension of a semigroup S and ρ ⊆ T 1 × T 1.

(i) If Endρ(S) is vertex-transitive on Cay(S, ρ), then Sρ = S.
(ii) If ColEndρ(S) is vertex-transitive on Cay(S, ρ), then Sα = S for each α ∈ ρ.

Proof Pick any u ∈ S and α ∈ ρ. Then φ(uα) = u for some φ ∈ Endρ(S). Since
(u, uα) is an edge of Cay(S, ρ), so is (φ(u), φ(uα)). Hence (φ(u))β = φ(uα) for
some β ∈ ρ. Thus u = φ(uα) = (φ(u))β ∈ Sρ , and so Sρ = S, i.e. (i) holds.

Furthermore, if ColEndρ(S) is vertex-transitive on Cay(S, ρ), then we may assume
thatφ ∈ ColEndρ(S), whence onemay chooseβ such thatβ = α, and so u = φ(uα) =
(φ(u))α ∈ Sα . Therefore, Sα = S, i.e. (ii) holds. 	

Lemma 4.2 Let T be an ideal extension of a semigroup S and ρ a periodic subset of
T 1 × T 1 such that ColEndρ(S) is vertex-transitive on Cay(S, ρ). Then u[ρ〉 = u[ρ〉α
for each u ∈ S and each α ∈ [ρ〉.
Proof For each α ∈ ρ, Sα = S by Lemma 4.1. Then for each u ∈ S and β ∈ [ρ〉, there
exists v ∈ S such that vα = uβ . By transitivity, v = φ(u) for some φ ∈ ColEndρ(S).
Hence (φ(u))α = vα = uβ ∈ u[ρ〉, and it follows from Lemma 3.3 (with I = u[ρ〉)
that φ(u) ∈ u[ρ〉. This means that uβ ∈ u[ρ〉α . Hence u[ρ〉 ⊆ u[ρ〉α . Notice that the
converse inclusion is evidently true. Thus u[ρ〉 = u[ρ〉α for all α ∈ ρ. By induction we
deduce that u[ρ〉 = u[ρ〉α for all α ∈ [ρ〉, which completes the proof. 	

Lemma 4.3 Let T be an ideal extension of a semigroup S and ρ a subset of T 1 × T 1

such that all principal right ideals of [ρ〉 are finite, and suppose that the generalized
Cayley graph Cay(S, ρ) is Autρ(S)-vertex-transitive. Then the following statements
hold:

(i) for any u ∈ S, the connected component containing u is Cu = u[ρ〉, which is
strongly connected;

(ii) uα ∈ uαβ[ρ〉 for any u ∈ S and any α, β ∈ [ρ〉;
(iii) Cu = u[ρ〉 = uα[ρ〉 = u[ρ〉α[ρ〉 for any u ∈ S and any α ∈ [ρ〉;
(iv) S = S[ρ〉 = Sα[ρ〉 = S[ρ〉α[ρ〉 for any α ∈ [ρ〉.
Proof Clearly, the condition that all the principal right ideals of [ρ〉 are finite implies
that [ρ〉 is periodic. Take any elementu ∈ S. ByLemma3.1,Cu = u[ρ〉. ByLemma4.1,
Sρ = S, and so there exists a ∈ S, α ∈ ρ, such that aα = u. Since the principal right
ideal α[ρ〉1 is finite, so is α[ρ〉. Thus, Cu = u[ρ〉 = aα[ρ〉 is finite. Since Cay(S, ρ)

is AutS(G)-vertex-transitive, we get |Cu | = |Cv| for all v ∈ S. If v ∈ Cu , then
evidently Cv ⊆ Cu . It follows that Cv = Cu , so v ∈ Cv . Also u ∈ Cu . Therefore Cu is
strongly connected. Moreover, if Cu and Cv have a common vertex w for some v ∈ S,
then Cu = Cw = Cv . Hence Cu ∪ Cv = Cu , which implies that Cu is a connected
component of Cay(S, ρ). Thus (i) is proved.
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254 Y. Zhu

Pick any α, β ∈ [ρ〉 and any u ∈ S. Since uβα ∈ uβ[ρ〉 = Cuβ , Cuβα = Cuβ by the
last paragraph. It follows that uβα[ρ〉 = uβ[ρ〉. Since uβ ∈ Cuβ , uβ ∈ Cuβα , we get
uβ ∈ uβα[ρ〉. Hence uβ ⊆ u[ρ〉α[ρ〉, and so u[ρ〉 ⊆ u[ρ〉α[ρ〉. Noticing that the converse
inclusion is obviously true, we get actually that u[ρ〉 = u[ρ〉α[ρ〉. Since uα ∈ u[ρ〉,
Cu = Cuα , that is, u[ρ〉 = uα[ρ〉. Therefore, (ii) and (iii) are true.

Since Sρ = S, by induction we deduce that S[ρ〉 = S. Pick any α ∈ [ρ〉 and any
u ∈ S. By (iii), we have that Cu = u[ρ〉 = uα[ρ〉 = u[ρ〉α[ρ〉. Consequently, taking
into account that S[ρ〉 = ⋃

u∈S u[ρ〉 = ⋃
u∈S Cu , we get S = S[ρ〉 = Sα[ρ〉 = S[ρ〉α[ρ〉.

That is, (iv) follows and the proof is complete. 	


5 The view of actions

Dealing with the generalized Cayley graphs of semigroups is much more difficult than
with the classical and well known Cayley graphs of semigroups. One of reasons is that
the notion of (left, right) simple semigroups fails to apply. In order to overcome this
difficulty, we adopt the view of actions, which will be defined below, so that we can
generalize the concept of simplicity.

An action of a semigroup S on a set X is defined as a homomorphism λ : S −→
F(X), s �−→ λ(s), where F(X) is the semigroup of all mappings from X into X itself
with respect to the composition of mappings. For simplicity, the image of any x ∈ X
under a mapping λ(s) with s ∈ S is denoted by xs . Then we have xst = (xs)t for all
x ∈ X and for all s, t ∈ S.

For example, let T be an ideal extension of a semigroup S and ρ a subset of T 1×T 1.
For any α = (x, y) ∈ [ρ〉 and for any u ∈ S, define uα = xuy. Then [ρ〉 has an action
on S in a natural manner. In the whole paper, any action of [ρ〉 on S always means this
natural action. Now we can introduce the following new notions, which generalize
those of (left, right) simple semigroups.

Definition 5.1 Let T be an ideal extension of a semigroup S and ρ a nonempty subset
of T 1 × T 1. We say that the action of [ρ〉 on S is right simple if u[ρ〉 = uα[ρ〉 for each
u ∈ S and each α ∈ [ρ〉; left simple if u[ρ〉 = u[ρ〉α for each u ∈ S and each α ∈ [ρ〉;
and simple if u[ρ〉 = u[ρ〉α[ρ〉 for each u ∈ S and each α ∈ [ρ〉.

For example, if [ρ〉 is a (right, left) simple semigroup then the action of [ρ〉 on S
is (right, left) simple by Lemma 2.1. It is clear that if an action of [ρ〉 on S is right
simple or left simple, then it is also simple. The next lemma gives some equivalent
characterizations of a right simple action [ρ〉 on S under certain conditions.

Lemma 5.2 Let T be an ideal extension of a semigroup S and ρ a subset of T 1 × T 1

such that S = Sρ . Then the following conditions are equivalent:

(i) every connected component of Cay(S, ρ) is strongly connected;
(ii) for every u ∈ S, u ∈ Cu = u[ρ〉;
(iii) the the action of [ρ〉 on S is right simple;
(iv) for each α ∈ [ρ〉, there exists β ∈ [ρ〉 such that uα = uαβ .
(v) uα ∈ uαβ[ρ〉 for any u ∈ S and any α, β ∈ [ρ〉;
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On transitive generalized Cayley graphs of semigroups 255

Proof Assume that (i) is true and let u ∈ S, v ∈ Cu . By definition of Cu , there exists a
directed path from u to v. It follows that u, v are in a same connected component of the
generalized Cayley graph Cay(S, ρ). Since every connected component of Cay(S, ρ)

is strongly connected by assumption, there exists a directed path from v to u, hence
also there exists a directed path from u to u itself, that is, u ∈ Cu . On the other hand,
by Lemma 3.1, Cu = u[ρ〉. Therefore, (ii) holds.

For showing that (ii) implies (iv), let u ∈ S and α ∈ [ρ〉. By (ii), uα ∈ Cuα . By
Lemma 3.1 again,Cuα = (uα)[ρ〉. So, uα ∈ (uα)[ρ〉 = uα[ρ〉. Thus there exists β ∈ [ρ〉
such that uα = uαβ , which means that (iv) holds.

Obviously, (iii) implies (vi) and (iv) implies (v).
Suppose that (v) holds. Then uα ∈ uαβ[ρ〉 for any u ∈ S and any α, β ∈ [ρ〉. Since

S = Sρ and by Lemma 3.2, every connected component of Cay(S, ρ) is strongly
connected. So, (v) implies (i).

For showing that (v) implies (iii), let u ∈ S and α ∈ [ρ〉. Put v = uα . Then
v ∈ Cu . It follows that Cv ⊆ Cu Since Sρ = S, we can find elements β ∈ ρ, u1 ∈ S
such that uβ

1 = u. Hence v = uβα
1 . By (v), uβ

1 ∈ uβα[ρ〉
1 . Thus there exists γ ∈ [ρ〉

such that uβ
1 = uβαγ

1 . Hence u = uβ
1 = uβαγ

1 = (uβα
1 )γ = vγ ∈ v[ρ〉 = Cv . It

follows that Cu ⊆ Cv , which means that Cu = Cv . Hence u[ρ〉 = v[ρ〉, which implies
that u[ρ〉 = uα[ρ〉. Thus the action of [ρ〉 on S is right simple and (iii) follows. This
competes the proof. 	


As a direct consequence of Lemma 4.3, we have the following

Corollary 5.3 Let T be an ideal extension of a semigroup S and ρ a subset of T 1×T 1

such that all principal right ideals of [ρ〉 are finite, and suppose that the generalized
Cayley graph Cay(S, ρ) is Autρ(S)-vertex-transitive. Then the the action of [ρ〉 on S
is right simple.

Also, we rewrite Lemma 4.2 in the following corollary.

Corollary 5.4 Let T be an ideal extension of a semigroup S and ρ a periodic subset of
T 1 × T 1 such that ColEndρ(S) is vertex-transitive on Cay(S, ρ). Then the the action
of [ρ〉 on S is left simple.

6 Main theorems

Now we present our main results in two theorems which describe the equivalent con-
ditions for a generalized Cayley graph Cay(S, ρ) to be ColAutρ(S)-vertex-transitive
and Autρ(S)-vertex-transitive respectively. These two theorems generalize the main
results of [10]. Speaking specifically, Theorem 6.1 and Theorem 6.2 generalize [10,
Theorem 2.1] and [10, Theorem 2.2], respectively.

Theorem 6.1 Let T be an ideal extension of a semigroup S and ρ a nonempty subset
of T 1 × T 1 such that all principal right ideals of [ρ〉 are finite. Then, the generalized
Cayley graph Cay(S, ρ) is ColAutρ(S)-vertex-transitive if and only if the following
conditions hold:
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(i) for any α ∈ ρ, Sα = S;
(ii) the action of [ρ〉 on S is right simple;
(iii) the action of [ρ〉 on S is left simple;
(iv) for any u, v ∈ S and α, β ∈ [ρ〉, uα = uβ ⇐⇒ vα = vβ .

Proof The ‘only if’ part. Suppose that Cay(S, ρ) is ColAutρ(S)-vertex-transitive.
Since ColAutρ(S) ⊆ ColEndρ(S), Lemma 4.1 applies, whence (i) follows. Since
ColAutρ(S) ⊆ Autρ(S), Lemma 4.3 applies, whence (ii) follows. By Corollary 5.4,
the action of [ρ〉 on S is left simple, whence (iii) follows. To show (iv), assume that
uα = uβ for any u ∈ S and α, β ∈ [ρ〉. Let v ∈ S. By the assumption that Cay(S, ρ) is
ColAutρ(S)-vertex-transitive, there existsφ ∈ ColAutρ(S) such thatφ(u) = v. By the
definition of colure automorphisms, φ(uγ ) = (φ(u))γ for all γ ∈ ρ. This equation is
easily extended to that for whole [ρ〉 by the definition of [ρ〉, that is, φ(uγ ) = (φ(u))γ

for all γ ∈ [ρ〉. Consequently, vα = (φ(u))α = φ(uα) = φ(uβ) = (φ(u))β = vβ .
Therefore, (iv) follows.

The ‘if’ part. Suppose that conditions (i), (ii), (iii) and (iv) of Theorem 6.1 hold.
Let a, b ∈ S. We want to find a mapping φ ∈ ColAutρ(S) such that φ(a) = b.

According to Lemma 5.2, conditions (i) and (ii) of Theorem 6.1 imply that every
connected component of Cay(S, ρ) is strongly connected and that for every u ∈ S,
u ∈ Cu = u[ρ〉. It follows that connected components of Cay(S, ρ) are precisely Cu’s
for u ∈ S. Since Cu = u[ρ〉 = uα[ρ〉 and α[ρ〉 with α ∈ [ρ〉 is a finite set by the
assumption of the theorem, we deduce that Cu is also finite.

For any u, v ∈ S, we first define mappings ψu,v and ψv,u as follows:

ψu,v : Cu −→ Cv, uα �−→ vα;
ψv,u : Cv −→ Cu, vα �−→ uα.

Condition (iv) of Theorem 6.1 ensures that both of ψu,v and ψv,u are well defined
and mutually invertible mappings. Thus |Cu | = |Cv| for all u, v ∈ S and hence there
exists a positive integer n such that |Cu | = n for all u ∈ S.

Given α0 ∈ [ρ〉, Ca = a[ρ〉 = aα0[ρ〉. Thus we may assume that

Ca = {aα0β1 = a, aα0β2 , . . . , aα0βn }
for some β1, . . . , βn ∈ [ρ〉. Since |Cb| = n, condition (iv) of Theorem 6.1 implies
that Cb = {bα0β1 , bα0β2 , . . . , bα0βn }. Since b ∈ Cb, b = bα0βm for some m ≤ n. By
the condition (iii) of Theorem 6.1, b[ρ〉 = b[ρ〉β1 . Whence bα0βm = bα1β1 for some
α1 ∈ [ρ〉. Hence condition (iv) of Theorem 6.1 implies that

Cb = {bα1β1 = b, bα1β2 , . . . , bα1βn }.
Now we can define mappings φa,b and φb,a as follows:

φa,b = ψaα0 ,bα1 and φb,a = ψbα1 ,aα0 .

Then both of φa,b and φb,a are well defined and mutually invertible mappings such
that φa,b(a) = b and φb,a(b) = a. Consider two cases.
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Case 1. Ca = Cb. For x ∈ S, we define

φ(x) =
{

φa,b(x) if x ∈ Ca;
x otherwise.

Then φ is well defined and is a bijection on S such that φ(a) = b.
Let (u, v) be any edge of Cay(S, ρ). Then v = uα for some α ∈ ρ. It follows that

Cu = Cv . Suppose that u ∈ Ca . ThenCu = Cv = Ca . We may assume that u = aα0βs

and v = aα0βt for some s, t ≤ n. Thus aα0βt = v = uα = (aα0βs )α = aα0βsα , which
means that bα1βt = bα1βsα . Hence φ(v) = φ(aα0βt ) = bα1βt = bα1βsα = (bα1βs )

α =
(φ(aα0βs ))α = (φ(u))α . If u ∈ S \Ca , then so is v. Hence φ(v) = v = uα = (φ(u))α .
Summing up, we have proved that φ(uα) = (φ(u))α . That is, (φ(u), φ(v)) is also an
edge of Cay(S, ρ). Hence φ ∈ ColAutρ(S), as desired.

Case 2. Ca �= Cb. Then Ca ∩ Cb = ∅. For x ∈ S, we define

φ(x) =
⎧
⎨

⎩

φa,b(x) if x ∈ Ca;
φb,a(x) if x ∈ Cb;
x otherwise.

Also,φ iswell defined and is a bijection on S such thatφ(a) = b. Let (u, v) be any edge
ofCay(S, ρ). Then v = uα for someα ∈ ρ. It is readily verified thatφ(uα) = (φ(u))α .
That is, (φ(u), φ(v)) is also an edge of Cay(S, ρ). Therefore, φ ∈ ColAutρ(S), which
completes the proof. 	


Let T be an ideal extension of a semigroup S and ρ a nonempty subset of T 1 × T 1.
If A is a subset of S such that Aρ ⊆ A, then the induced subgraph A of the generalized
Cayley graph Cay(S, ρ) is also denoted by Cay(A, ρ). The automorphism group of
Cay(A, ρ) is also denoted by Autρ(A).

Theorem 6.2 Let T be an ideal extension of a semigroup S and ρ a nonempty subset
of T 1 × T 1 such that all principal right ideals of [ρ〉 are finite. Then, the general-
ized Cayley graph Cay(S, ρ) is Autρ(S)-vertex-transitive if and only if the following
conditions hold:

(i) Sρ = S;
(ii) the action of [ρ〉 on S is right simple;
(iii) Cay(a[ρ〉, ρ) is Autρ(a[ρ〉)-vertex-transitive for some a ∈ S;
(iv) for all u, v ∈ S, Cay(u[ρ〉, ρ) ∼= Cay(v[ρ〉, ρ).

Proof The ‘only if’ part. Suppose that Cay(S, ρ) is Autρ(S)-vertex-transitive. Since
Autρ(S) ⊆ Endρ(S), Lemma 4.1 applies, whence (i) follows.

Since all principal right ideals of [ρ〉 are finite and the generalized Cayley graph
Cay(S, ρ) is Autρ(S)-vertex-transitive, Corollary 5.3 applies, whence (ii) follows and
furthermore, Cu = u[ρ〉 = uα[ρ〉 for each u ∈ S and each α ∈ [ρ〉. According to
Lemma 5.2, every connected component of Cay(S, ρ) is strongly connected and for
every u ∈ S, u ∈ Cu = u[ρ〉. It follows that connected components of Cay(S, ρ) are
precisely Cu’s for u ∈ S. Then the transitivity of Cay(S, ρ) implies the transitivity of
Cay(a[ρ〉, ρ), i.e. (iii) of Theorem 6.2 follows.
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For any u ∈ S and v ∈ S \u[ρ〉,Cu andCv are two different connected components.
Then by the the transitivity of Cay(S, ρ), there exists φ ∈ Autρ(S) such that φ(u) = v.
Then the restriction of φ on the subgraph Cu is an isomorphism from Cu onto Cv .
Hence Cay(u[ρ〉, ρ) ∼= Cay(v[ρ〉, ρ) and (iv) of Theorem 6.2 follows.

The ‘if’ part. Suppose that conditions (i), (ii), (iii) and (iv) of Theorem 6.2 hold.
Let a, b ∈ S. We want to find a mapping φ ∈ ColAutρ(S) such that φ(a) = b.
According to Lemma 5.2, the conditions (i) and (ii) of Theorem 6.2 imply that every
connected component of Cay(S, ρ) is strongly connected and that for every u ∈ S,
u ∈ Cu = u[ρ〉. It follows that connected components of Cay(S, ρ) are precisely
Cu = u[ρ〉 = uα[ρ〉, where u ∈ S and α ∈ [ρ〉. Since α[ρ〉 is a finite set, then so is Cu .

Consider two cases.
Case 1. b ∈ v[ρ〉. Then Ca = Cb. Condition (iii) tells us that Cay(Ca, ρ) is

Autρ(Ca)-vertex-transitive for some a ∈ S. Hence there exist φa ∈ Autρ(Ca) such
that φa(a) = b. For x ∈ S, we define

φ(x) =
{

φa(x) if x ∈ Ca;
x otherwise.

Then φ is well defined and φ ∈ Autρ(S) with φ(a) = b.
Case 2. b ∈ S \ a[ρ〉. Ca and Cb are vertex sets of two distinguished con-

nected components of Cay(S, ρ). Let ψa,b be an isomorphism from Cay(Ca, ρ)

onto Cay(Cb, ρ). Put ψb,a = ψ−1
a,b. Then ψb,a is an isomorphism from Cay(Cb, ρ)

onto Cay(Ca, ρ). Put c = ψb,a(b). Then c ∈ Ca ; hence Ca = Cc. Condition
(iii) of Theorem 6.2 tells us that Cay(Ca, ρ) is Autρ(Ca)-vertex-transitive. Thus
ψ(a) = c for some ψ ∈ Autρ(Ca). It is clear that the composition (ψa,b ◦ ψ) of
ψ and ψa,b is also an isomorphism from Cay(Ca, ρ) onto Cay(Cb, ρ). In addition,
(ψa,b ◦ ψ)(a) = ψa,b(ψ(a)) = ψa,b(c) = b.

For x ∈ S, we define

φ(x) =
⎧
⎨

⎩

(ψa,b ◦ ψ)(x) if x ∈ Ca;
ψb,a(x) if x ∈ Cb;
x otherwise.

Then φ is also well defined and φ ∈ Autρ(S) with φ(a) = b, which completes the
proof. 	


7 Important corollaries

In this section, the main theorems of [10] are displayed and reproved as two corollaries
of our main theorems.

Corollary 7.1 (Theorem 2.1 of [10]) Let G be a semigroup, and let S be a subset of
G which generates a subsemigroup 〈S〉 such that all principal left ideals of 〈S〉 are
finite. Then, the Cayley graph Cay(G, S) is ColAutS(G)-vertex-transitive if and only
if the following conditions hold:

(i) sG = G, for all s ∈ S;
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(ii) 〈S〉 is isomorphic to a direct product of a right zero band and a group;
(iii) |〈S〉g| is independent of the choice of g ∈ G.

Proof Notice that G can be regarded as an ideal extension of G itself. Let ρ =
S × {1} ⊆ G × G. Then the condition that all principal left ideals of 〈S〉 are finite is
equivalent to that all principal right ideals of [ρ〉 are finite, since every principal left
ideal of 〈S〉 is precisely a principal right ideals of [ρ〉. In the current circumstance, we
have Cay(G, ρ) = Cay(G, S) and ColAutρ(G) = ColAutS(G). Hence the condition
that the Cayley graph Cay(G, S) is ColAutS(G)-vertex-transitive is equivalent to that
the generalized Cayley graph Cay(S, ρ) is ColAutρ(S)-vertex-transitive.

The ‘only if’ part. Suppose that the Cayley graph Cay(G, S) is ColAutS(G)-
vertex-transitive. Then the generalized Cayley graph Cay(S, ρ) is ColAutρ(S)-vertex-
transitive. According to Theorem 6.1, the results corresponding to conditions (i), (ii),
(iii) and (iv) of Theorem 6.1 are valid.

Take any s ∈ S and let α = (s, 1). Then by (i) of Theorem 6.1, Gα = G, which
means that sG = G. Thus (i) of Corollary 7.1 holds.

By (ii) of Theorem 6.1, the the action of [ρ〉 = 〈S〉 × {1} on G is right simple.
Thus, for any t ∈ 〈S〉, tα[ρ〉 = t [ρ〉, that is, 〈S〉st = 〈S〉t . By Lemma 5.2, t ∈ Ct =
t [ρ〉 = 〈S〉t = 〈S〉st ⊆ 〈S〉s〈S〉. Since t was chosen arbitrarily, we have proved that
〈S〉 ⊆ 〈S〉s〈S〉. Thus, 〈S〉 = 〈S〉s〈S〉, which shows that 〈S〉 is a simple semigroup. By
(iii) of Theorem 6.1, the the action of [ρ〉 on G is left simple. Thus, for any t ∈ 〈S〉,
t [ρ〉α = t [ρ〉. It follows that 〈S〉t = s〈S〉t , which yields that 〈S〉t〈S〉 = s〈S〉t〈S〉. So,
〈S〉 = s〈S〉. Thus by Lemma 2.1, 〈S〉 is right simple. From the assumption that all
principal left ideals of 〈S〉 are finite, it follows that 〈S〉 is a periodic semigroup. In
view of Lemma 2.2, 〈S〉 is a right group and (ii) of Corollary 7.1 follows.

For any u, v ∈ G, as in the proof of Theorem 6.1, we define mappings ψu,v and
ψv,u as follows:

ψu,v : Cu −→ Cv, uα �−→ vα;
ψv,u : Cv −→ Cu, vα �−→ uα.

In light of (iv) of Theorem 6.1, we get that both of ψu,v and ψv,u are well defined
and mutually invertible mappings. Thus |Cu | = |Cv| for all u, v ∈ G. Consequently,
|〈S〉g| is independent of the choice of g ∈ G, since Cg = g[ρ〉 = 〈S〉g. This proves
(iii) of Corollary 7.1.

The ‘if’ part. Suppose that conditions (i), (ii), and (iii) of Corollary 7.1 hold. Take
any α ∈ ρ. Then there exists s ∈ G such that α = (s, 1). Then (i) of Corollary 7.1
yields Gα = G, that is, condition (i) of Theorem 6.1 holds.

By Lemma 2.2 and condition (ii) of Corollary 7.1, 〈S〉 is a right group. It is a
routine matter to check that s〈S〉 = 〈S〉 for all s ∈ 〈S〉 and that 〈S〉st = 〈S〉t for all
s, t ∈ 〈S〉. Now for any α ∈ [ρ〉, there exists s ∈ 〈S〉 such that α = (s, 1). For any
g ∈ G, there exist t ∈ 〈S〉 and h ∈ G such that g = th by (i) of Corollary 7.1. Then
gα[ρ〉 = 〈S〉sg = 〈S〉sth = 〈S〉th = 〈S〉g = g[ρ〉, which shows that the action of
[ρ〉 on G is right simple; meanwhile, g[ρ〉α = s〈S〉g = 〈S〉g = g[ρ〉, which shows
that the action of [ρ〉 on G is also left simple. Therefore, conditions (ii) and (iii) of
Theorem 6.1 are satisfied.
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For any α ∈ [ρ〉, there exists s ∈ 〈S〉 such that α = (s, 1). For any g ∈ G,
gα[ρ〉 = 〈S〉th = 〈S〉g is a finite set. Since α[ρ〉 = (s, 1)(〈S〉, 1) = (〈S〉s, 1),
|α[ρ〉| = |(〈S〉s, 1)| = |〈S〉s|. Condition (iii) of Corollary 7.1 tells us that |〈S〉g| =
|〈S〉s|. So, |gα[ρ〉| = |α[ρ〉|, which is a finite number. Immediately, α[ρ〉 −→ gα[ρ〉,
β �−→ gβ is a bijection. Thus for any β1, β2 ∈ α[ρ〉, if gβ1 = gβ2 then β1 = β2.
Suppose that u, v ∈ G and uγ1 = uγ2 with γ1, γ2 ∈ [ρ〉. Then u = gα and v =
hα for some g, h ∈ G since Gα = G. Thus gαγ1 = uγ1 = uγ2 = gαγ2 . Hence
αγ1 = αγ2, which yields that vγ1 = hαγ1 = hαγ2 = vγ2 . We have proved that
uγ1 = uγ2 implies vγ1 = vγ2 for any u, v ∈ G and any γ1, γ2 ∈ [ρ〉. Therefore, (iv) of
Theorem 6.1 follows. Applying Theorem 6.1, we obtain that the generalized Cayley
graph Cay(G, ρ) is ColAutρ(G)-vertex-transitive. In other words, the Cayley graph
Cay(G, S) is ColAutS(G)-vertex-transitive. This completes the proof. 	

Corollary 7.2 (Theorem 2.2 of [10]) Let G be a semigroup, and let S be a subset of
G which generates a subsemigroup 〈S〉 such that all principal left ideals of 〈S〉 are
finite. Then, the Cayley graph Cay(G, S) is AutS(G)-vertex-transitive if and only if
the following conditions hold:

(i) SG = G;
(ii) 〈S〉 is a completely simple semigroup;
(iii) the Cayley graph Cay(〈S〉, S) is AutS(〈S〉)-vertex-transitive;
(iv) |〈S〉g| is independent of the choice of g ∈ G.

Proof Notice that G may be regarded as an ideal extension of G itself. Let ρ =
S × {1} ⊆ G × G. Then the condition that all principal left ideals of 〈S〉 are finite is
equivalent to that all principal right ideals of [ρ〉 are finite, since every principal left
ideal of 〈S〉 is precisely a principal right ideals of [ρ〉. In the current circumstance,
we have Cay(G, S) = Cay(G, ρ) and AutS(G) = Autρ(G). Hence the condition
that the Cayley graph Cay(G, S) is AutS(G)-vertex-transitive is equivalent to that the
generalized Cayley graph Cay(S, ρ) is Autρ(S)-vertex-transitive.

The ‘only if’ part. Suppose that the Cayley graph Cay(G, S) is AutS(G)-vertex-
transitive. Then the generalized Cayley graph Cay(S, ρ) is Autρ(S)-vertex-transitive.
According to Theorem 6.2, the results corresponding to (i), (ii), (iii) and (iv) of The-
orem 6.2 are valid.

Since ρ = S×{1} and by (i) of Theorem 6.2, Gρ = G, which means that SG = G.
Thus (i) of Corollary 7.2 holds.

By (ii) of Theorem 6.2, the the action of [ρ〉 = 〈S〉×{1} on G is right simple. As in
the proof of Corollary 7.1, by Lemma 5.2, we deduce that 〈S〉 is a simple semigroup.
The assumption that all principal left ideals of 〈S〉 are finite implies that S is a periodic
semigroup. Then by Lemma 2.4, 〈S〉 is a completely simple semigroup. Thus (ii) of
Corollary 7.2 follows.

According to Lemma 5.2, the conditions (i) and (ii) of Theorem 6.2 imply that
every connected component of Cay(S, ρ) is strongly connected and that for every
u ∈ S, u ∈ Cu = u[ρ〉. It follows that connected components of Cay(S, ρ) are
precisely Cu = u[ρ〉 = uα[ρ〉, where u ∈ S and α ∈ [ρ〉. Conditions (iii) and (iv) of
Theorem 6.2 imply that Cay(g[ρ〉, ρ) ∼= Cay(h[ρ〉, ρ) for all g, h ∈ G. Thus |〈S〉g| =
|g[ρ〉| = |h[ρ〉| = |〈S〉h| and (iv) of Corollary 7.2 follows. Furthermore, Noticing that
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〈S〉〈S〉 ⊆ [ρ〉, 〈S〉 is a disjoint union of some connected components, we deduce that
the Cayley graph Cay(〈S〉, S) is AutS(〈S〉)-vertex-transitive. Thus statement (iii) of
Corollary 7.2 holds.

The ‘if’ part. Suppose that conditions (i), (ii), (iii) and (iv) of Corollary 7.2 hold.
Clearly, (i) of Corollary 7.2 yieldsGρ = G, that is, condition (i) of Theorem 6.2 holds.

By condition (ii) of Corollary 7.2, 〈S〉 is completely simple. So by Lemma 2.3, 〈S〉
is isomorphic to a Rees matrix semigroup M [H ; I,Λ; P] over a group H . We may
assume that 〈S〉 = M [H ; I,Λ; P] without loss of generality. It is a routine matter to
check that 〈S〉st = 〈S〉t for all s, t ∈ 〈S〉. Now for any α ∈ [ρ〉, there exists s ∈ 〈S〉
such that α = (s, 1). For any g ∈ G, there exist t ∈ 〈S〉 and h ∈ G such that g = th
by (i) of Corollary 7.2. Then gα[ρ〉 = 〈S〉sg = 〈S〉sth = 〈S〉th = 〈S〉g = g[ρ〉,
which shows that the action of [ρ〉 on G is right simple. Therefore, conditions (ii) of
Theorem 6.2 is satisfied.

For some a ∈ S, a[ρ〉 ⊆ 〈S〉. Since the Cayley graph Cay(〈S〉, S) is AutS(〈S〉)-
vertex-transitive by (iii) of Corollary 7.2, Cay(a[ρ〉, ρ) is Autρ(a[ρ〉)-vertex-transitive.
Thus (iii) of Theorem 6.2 holds.

For any α ∈ [ρ〉, there exists s ∈ 〈S〉 such that α = (s, 1). For any g ∈ G,
gα[ρ〉 = 〈S〉th = 〈S〉g is a finite set. Since α[ρ〉 = (s, 1)(〈S〉, 1) = (〈S〉s, 1),
|α[ρ〉| = |(〈S〉s, 1)| = |〈S〉s|. Condition (iv) of Corollary 7.2 tells us that |〈S〉g| =
|〈S〉s|. So, |gα[ρ〉| = |α[ρ〉|, which is a finite number. Immediately, α[ρ〉 −→ gα[ρ〉,
β �−→ gβ is a bijection. Thus for any β1, β2 ∈ α[ρ〉, if gβ1 = gβ2 then β1 = β2.

For any u, v ∈ G, as in the proof of Theorem 6.1, we define mappings ψu,v and
ψv,u as follows:

ψu,v : Cu −→ Cv, uαβ �−→ vαβ;
ψv,u : Cv −→ Cu, vαβ �−→ uαβ.

Then both of ψu,v and ψv,u are well defined and mutually invertible mappings.
Moreover, ψu,v is an isomorphism from Cay(u[ρ〉, ρ) onto Cay(v[ρ〉, ρ). Thus
Cay(u[ρ〉, ρ) ∼= Cay(v[ρ〉, ρ), that is, condition (iv) of Theorem 6.2 is satisfied.

Applying Theorem 6.2, we obtain that the generalized Cayley graph Cay(G, ρ) is
Autρ(G)-vertex-transitive. In other words, the Cayley graph Cay(G, S) is AutS(G)-
vertex-transitive. This completes the proof. 	


8 An example

Let us conclude this paper with the following example, which shows more extensive
applications of our main theorems.

Example 8.1 Let A, B be two subgroups of a finite group S with (|A|, |B|) = 1, and
let ρ = A× B. Then [ρ〉 = A∗ × B. Take any u ∈ G. We have u[ρ〉 = A∗uB. Because
(|A|, |B|) = 1, we have

|u[ρ〉| = |A∗uB| = |u−1A∗uB| = |(A∗)u B| = |(A∗)u ||B|
|(A∗)u ∩ B| = |(A∗)u ||B| = |A||B|,
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where (A∗)u = u−1A∗u; On the other hand, since [ρ〉 is also a group, we have

|[ρ〉| = |A∗||B| = |A||B|.

So,

|u[ρ〉| = |[ρ〉|.

The finiteness condition ensures that the map φ: [ρ〉 −→ u[ρ〉, α −→ uα is a bijection.
It follows that for any u, v ∈ S and α, β ∈ [ρ〉, uα = uβ ⇐⇒ vα = vβ . This shows
that condition (iv) of Theorem 6.1 is satisfied. It is easy to check that conditions
(i), (ii) and (iii) of Theorem 6.1 are also satisfied. According to Theorem 6.1, the
generalized Cayley graph Cay(S, ρ) is ColAutρ(S)-vertex-transitive. Since trivially,
ColAutρ(S)) ⊆ Autρ(S), the generalized Cayley graph Cay(S, ρ) is also Autρ(S)-
vertex-transitive. So the four conditions of Theorem 6.2 are all satisfied.

Acknowledgments The author thanks the referee for valuable suggestions.
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