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Abstract We express the complex-valued solutions of Kannappan’s functional equa-
tion on semigroups with involution in terms of solutions of d’Alembert’s functional
equation.
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1 Setup, notation and terminology

Throughout the paper we work in the following framework and with the following
notation and terminology. We use it without explicit mentioning.

S is a semigroup, x �→ x∗ is an involution of S, and z0 ∈ Z(S) denotes a fixed
element in the center Z(S) of S.

We say that a function f on S is abelian if and only if f (x1x2 . . . xn) =
f (xπ(1)xπ(2) . . . xπ(n)) for all x1, x2, . . . , xn ∈ S, all permutations π of n elements
and all n = 2, 3, . . . All functions are abelian on commutative semigroups.

A function χ : S → C is multiplicative, if χ(xy) = χ(x)χ(y) for all x, y ∈ S. By
a character of a group G we mean a non-zero multiplicative function on G.

Let G be a group. The group inversion x �→ x−1 is an example of an involution on
G. For any function F on G we let F̌(x) := F(x−1), x ∈ G.
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18 H. Stetkær

2 Introduction

Trigonometric functional equations have their roots in formulas for trigonometric and
hyperbolic functions. To take an example the trigonometric function g(x) = cos x and
the hyperbolic function and g(x) = cosh x satisfy d’Alembert’s functional equation

g(x + y) + g(x − y) = 2g(x)g(y), x, y ∈ R, (1)

in which g : R → C is the unknown function to be determined. Of interest for us is
that d’Alembert’s functional equation has been studied in the context of a semigroup
S with an involution x �→ x∗, where it takes the form

g(xy) + g(xy∗) = 2g(x)g(y), x, y ∈ S, (2)

in which g : S → C is the unknown function to be determined. The literature contains
many results about the special extension g(xy) + g(xy−1) = 2g(x)g(y), x, y ∈
G of (1) from the additive group (R,+) to any group G. The abelian solutions of
(2) are known (see Theorem 8). Davison [5] found all solutions of (2) when S is
a not necessarily commutative monoid. His formulas involve harmonic analysis on
S, because he expresses the solutions in terms of multiplicative functions and 2-
dimensional, irreducible representations of S ([16] has a detailed exposition). Thus
d’Alembert’s functional equation is solved in large generality, and it makes sense to
solve other functional equations by expressing their solutions in terms of solutions of
(2). This is what we shall do for Kannappan’s functional equation (defined below).

d’Alembert’s classic functional equation (1) has solutions g : R → C that are
periodic, for instance g(x) = cos x , and solutions that are not, for instance g(x) =
cosh x . To exclude the non-periodic solutions Kannappan [11] modified (1) to the
functional equation

f (x + y + z0) + f (x − y + z0) = 2 f (x) f (y), x, y ∈ R, (3)

where z0 �= 0 is a real constant (we have replaced Kannappan’s notation 2A by z0).
Kannappan proved that any solution f : R → C of (3) has the form f (x) = g(x−z0),
where g : R → C is a periodic solution of (1) with period 2z0. This enabled him to
find all Lebesgue measurable solutions. His results are reproduced in Example 12. His
solution formulas reveal that f = cg, where c = ±1, so that f is proportional to a
periodic solution of (1). We call the attention to this unnoticed fact, because it persists
to the more general situation of the present paper (Corollary 10).

Like (1) also (3) can be extended to and formulated on semigroups with an involu-
tion: In the notation of Sect. 1 we consider the solutions f : S → C of the functional
equation

f (xyz0) + f (xy∗z0) = 2 f (x) f (y), x, y ∈ S, (4)

which is our generalization of (3). Perkins and Sahoo [13] named (4) Kannappan’s
functional equation, and we follow their usage here. (4) has always at least one non-
zero solution, viz. f = 1. Deleting z0 from (4) we arrive at d’Alembert’s functional
equation (2).
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Kannappan’s functional equation on semigroups... 19

The purpose of the present paper is to show howKannappan’s work on the relations
between (1) and (3) extends to the much wider framework of (2) and (4), so that the
natural setting for (4) is semigroups with an involution. We show that any solution of
(4) is proportional to a solution of (2) and so can be expressed in terms ofmultiplicative
functions and 2-dimensional, irreducible representations of S, at least on a monoid.

The case of the involution being the identity is given a separate exposition in Sect. 6.
Wehave already commented onKannappan’s original paper [11] about the solutions

of (3) on R, but (3) is also solved in Kannappan’s monograph [12, Theorem 3.14].
In the very special case of z0 being the neutral element of a monoid S (4) becomes

(2) which has been solved by Davison [5].
Perkins and Sahoo [13] studied the extension (4) of (3) when S is a group with an

involution. In Theorem 2 of [13] they associate to any solution f of (4) a solution
g : S → C of (2) such that f (x) = f (z0)g(xz

−1
0 ). They use this relation between f

and g to find the formof any abelian solution f of (4) on a group (see [13, Corollary 3]).
Our results encompass not just Kannappan’s in [11,12], but also those of Perkins

and Sahoo [13] about Kannappan’s functional equation, and we do not confine our
study to abelian solutions of (4).

Let us for the sake of completeness mention two related functional equations from
the literature. Gajda [7] studied a functional equation on a locally compact, abelian
group G that in a special case reduces to

f (x + y + z0) + f (x − y − z0) = 2 f (x) f (y), x, y ∈ G, (5)

This is connected to (4), because f is an even solution of (5) if and only if f satisfies
(3) (in which R is replaced by G). Recent developments in the theory of Gajda’s
equation can be found in Fechner and Székelyhidi [6].

Van Vleck’s functional equation

f (xyz0) − f (xy∗z0) = 2 f (x) f (y), x, y ∈ S, (6)

looks similar to (4), but differs by having a minus instead of a plus between the terms
of the left hand side. Its solutions are generalized sine functions, while those of (4)
are generalized cosine functions. (6) has been studied by Van Vleck [19,20], Perkins
and Sahoo [13, Sect. 3] and Stetkær [17].

We are of course not the first ones to consider trigonometric functional equations
on semigroups. However, in the literature the semigroups or the solutions are often
assumed abelian. For example inChung andSahoo [4],Ger andKominek [8], Sinopou-
los [15] and Szélyhidi [21].

Our main contributions to the knowledge about Kannappan’s functional equation
(4) are the following:

1. We extend the setting from groups to semigroups with an involution.
2. We relate the solutions of (4) to those of (2) (Theorem 5).
3. We derive formulas for the solutions of (4) (Corollary 6 and Proposition 9).
4. We apply the theory to varied examples (Sect. 5).

Like our predecessors the methods of the present paper are elementary.
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20 H. Stetkær

3 The detailed theory

3.1 Overview

In Theorem 5 we derive a 1-1 correspondence between the non-zero solutions of (4)
and a subset of the solutions of (2),which transfers the study ofKannappan’s functional
equation to d’Alembert’s functional equation. This is our final step, because (2) has
been solved, at least on monoids. By help of the correspondence we prove that any
solution f �= 0 of (4) has the form f (x) = g(xz∗0) = g(z0)g, where g is a solution of
(2), which is periodic in the sense that g(xz0) = g(xz∗0) for all x ∈ S (Corollary 6).
In particular any solution of (4) is a constant times a solution of (2).

In Sect. 5we apply our theory to selected examples, includingKannappan’s original
equation (3), for various semigroups.

The particular solution f (x) = − cos x of Kannappan’s functional equation (3)
with z0 = π , i.e.,

f (x + y + π) + f (x − y + π) = 2 f (x) f (y), x, y ∈ R,

illuminates many af the results in this and the next section. For instance we get from
general principles that f is even, f (z0) = 1 and f is 2z0-periodic.

3.2 Basic results

Lemma 1, respectively Lemmas 2 and 3, contain useful results about the solutions of
Kannappan’s functional equation (4), respectively of d’Alembert’s functional equation
(2). Theorem 5 and Corollary 6 relate these two solution sets.

In proofs we use without explicit mentioning the assumption z0 ∈ Z(S) and its
consequence z∗0 ∈ Z(S).

Lemma 1 Let f be a solution of (4). Then

(a) f is even with respect to the involution, meaning that f (x∗) = f (x) for all x ∈ S.
(b) The following two formulas hold for all x ∈ S.

f (xz∗0z0) = f (z0) f (x), and (7)

f (xz20) = f (z0) f (x). (8)

(c) f �= 0 ⇐⇒ f (z0) �= 0.

Proof (a) This is because the left and hence also the right hand side of (4) are
unchanged under interchange of y and y∗.

(b) Taking x = z∗0 in (4) and using (a) show that (7) holds. Putting y = z0 in (4) and
using (7) give us (8).

(c) It suffices to prove that f (z0) = 0 ⇒ f (x) = 0 for all x ∈ S, so we assume that
f (z0) = 0. Replacing x by xz0 and y by yz0 in (4) results in

f
(
xz0yz

2
0

) + f
(
xz0z

∗
0 y

∗z0
) = 2 f (xz0) f (yz0) for all x, y ∈ S. (9)
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Kannappan’s functional equation on semigroups... 21

The first term f (xz0yz20) vanishes by (8), because f (z0) = 0. By the same rea-
son also the second term f (xz0z∗0 y∗z0) = f (xz∗0 y∗z20) vanishes. It follows that
2 f (xz0) f (yz0) = 0, so that f (xz0) = 0 for all x ∈ S. Thus the left hand side
of (4) is zero, so that f (x) = 0 for all x ∈ S. 	


Let g : S → C. It turns out that the condition g(xz0) = g(xz∗0) for all x ∈ S
plays an important role for our study. We may view it as a periodicity condition on
g, because when S is a group it can be reformulated to g(xz0(z∗0)−1) = g(x), which
means that g is periodic with period p = z0(z∗0)−1. If the involution is the inversion of
the group, then the period simplifies to p = z20. Lemma 2b formulates the periodicity
condition in various equivalent ways when g is a solution of d’Alembert’s functional
equation (2).

Lemma 2 We have for any solution g of (2) that:

(a) g(x∗) = g(x) for all x ∈ S.
(b) The following three statements are equivalent

(i) g(xz0) = g(xz∗0) for all x ∈ S,
(ii) g(xz0) = g(z0)g(x) for all x ∈ S,
(iii) g(z20) = g(z0)2.

Proof (a) The proof is the same as the one of Lemma 1a.
(b) Assuming g(xz0) = g(xz∗0) we get from (2) that

g(xz0) = g(xz0) + g(xz∗0)
2

= 2g(x)g(z0)

2
= g(z0)g(x).

Conversely, from 2g(xz0) = 2g(x)g(z0) = g(xz0)+g(xz∗0)we get g(xz0) = g(xz∗0).
Thus (bi) and (bii) are equivalent.

Define gx (y) := g(xy) − g(x)g(y) for x, y ∈ S. Any solution g of d’Alembert’s
functional equation is a solution of the pre-d’Alembert functional equation (see for
instance [16, Proposition 9.17]). For such solutions it is known (see for instance [16,
p. 133]) that gx (z0)2 = gx (x)gz0(z0), when z0 ∈ Z(S). From this identity we infer
that (bii) ⇐⇒ (biii). 	

Lemma 3 Let g1 and g2 be two non-zero solutions of (2) and let α1, α2 ∈ C \ {0}. If
α1g1 = α2g2 then α1 = α2 and g1 = g2.

Proof Using that g1 = (α2/α1)g2 satisfies (2) we find that

g2 (xy) + g2
(
xy∗) = α2

α1
2g2(x)g2(y).

But g2 �= 0 satisfies (2), so we infer that α2/α1 = 1. 	


3.3 Principal results

Our main result is Corollary 6 below.

123



22 H. Stetkær

Definition 4 We introduce two sets A (refers to d’Alembert) and K (refers to Kan-
nappan) of functions on S. The point z0 ∈ S is inherent in the definitions ofA and K,
but since it is fixed, we leave it out of the notation.

(a) A consists of the solutions g : S → C of d’Alembert’s functional equation (2)
with g(z0) �= 0 and satisfying the conditions of Lemma 2(b).

(b) To any g ∈ A we associate the function Tg := g(z0)g : S → C.
(c) K consists of the non-zero solutions f : S → C of Kannappan’s functional

equation (4).

A and K are not empty, because g = 1 ∈ A and f = 1 ∈ K. In general A is a proper
subset of the non-zero solutions of (2). See Examples 12 and 13.

Theorem 5 and Corollary 6 are our main results. Theorem 5 derives a 1–1 corre-
spondence between the setsA andK. Note that f (z0) �= 0 for all f ∈ K by Lemma 1c,
so that formula (10) makes sense.

Theorem 5 T is a bijection of A onto K. In particular K = T (A). The inverse
T−1 : K → A is given by the formula

(
T−1 f

)
(x) = f (xz0)

f (z0)
, x ∈ S, (10)

which holds for any f ∈ K.

Proof We prove first that f := Tg = g(z0)g ∈ K for any g ∈ A. Applying the
definition of A a number of times we get

f
(
xyz0

) + f
(
xy∗z0

) = g(z0)
[
g
(
xyz0

) + g
(
xy∗z0

)]

= g
(
z0

)2[
g
(
xy

) + g
(
xy∗)] = g

(
z0

)22g(x)g(y)

= 2g(z0)g(x)g(z0)g(y) = 2 f (x) f (y),

which shows that f is a solution of Kannappan’s functional equation (4). Furthermore
f (z0) = g(z0)2 �= 0, since g ∈ A. Thus f ∈ K.
The map T is injective by Lemma 3.
We continue by showing that T is surjective, so let f ∈ K. We shall find g ∈ A,

such that Tg = f . Since f (z0) �= 0 (by Lemma 1c), we may define g : S → C by

g(x) := f (xz0)

f (z0)
, x ∈ S. (11)

Now, by (8) and (7) we find

f
(
z0

)2[
g
(
xy

) + g
(
xy∗)] = f

(
z0

)
f
(
xyz0

) + f
(
z0

)
f
(
xy∗z0

)

= f
(
xyz30

) + f
(
xy∗z∗0z20

)

= f
(
(xz0)(yz0)z0

) + f
(
xz0(yz0)

∗z0
)

123



Kannappan’s functional equation on semigroups... 23

= 2 f (xz0) f (yz0) = 2 f (z0)
2 f (xz0)

f (z0)

f (yz0)

f (z0)

= 2 f (z0)
2g(x)g(y),

which implies that g satisfies d’Alembert’s functional equation (2).
Next, from (7) and (8) we get

g
(
z0

)2 = 1

2

[
g
(
z20

) + g
(
z0z

∗
0

)] = 1

2

[
f
(
z20z0

)

f
(
z0

) + f
(
z0z∗0z0

)

f
(
z0

)

]

= 1

2

[
f (z0) f (z0)

f (z0)
+ f (z0) f (z0)

f (z0)

]
= f (z0), and

g
(
z20

) = f
(
z20z0

)

f (z0)
= f (z0) f (z0)

f (z0)
= f (z0),

so g(z20) = g(z0)2, which means that the conditions of Lemma 2b hold. Combining
that f (z0) �= 0 (by Lemma 1c) with g(z0)2 = f (z0) we get g(z0) �= 0, so g ∈ A.

Finally, for any x ∈ S we compute that

(Tg)(x) = g(z0)g(x) = g(xz0) = f (xz20)

f (z0)
= f (z0) f (x)

f (z0)
= f (x),

which means that Tg = f .
The formula (11) tells us that (10) holds. 	


Corollary 6 The non-zero solutions f : S → C of Kannappan’s functional equation
(4) are the functions of the form f = g(z0)g, where g ∈ A. Furthermore f (x) =
g(xz0) = g(xz∗0) = g(z0)g(x) for all x ∈ S.

In particular, any solution f �= 0 is periodic in the sense that f (xz0) = f (xz∗0)
for all x ∈ S. So is the corresponding g ∈ A.

Proof The only statements which are not obvious, are the periodicity statements. The
one for g is contained in Lemma 2b, because g ∈ A. This implies the statement about
f , because f is proportional to g. 	


Corollary 7 Let f �= 0 be a solution of Kannappan’s functional equation (4). Let
g := T−1 f be the corresponding solution of (2).

(a) f is abelian if and only if g is abelian.
(b) Assume that S is equipped with a topology. Then f is continuous if and only if g

is continuous.

Proof The statements are immediate from the explicit formula f = g(z0)g relating
f and g. Note that g(z0) �= 0, because g ∈ A. 	
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24 H. Stetkær

4 Various kinds of solutions

4.1 Non-abelian solutions

Kannappan’s paper [11, Corollary] shows that there exist non-trivial, abelian solutions
of (3) on R, even continuous ones. It is a natural question to ask whether there are
examples of non-abelian solutions of (3). After all Van Vleck’s similarly looking
functional equation (6) has only abelian solutions (see [17, Theorem 4]). The answer
is yes.

Kannappan’s functional equation (4) becomes d’Alembert’s functional equation
(2) when S has a neutral element e and z0 = e. Examples of continuous, non-abelian
solutions of (2) are known (see [16, Example 9.11] for an example on S = SL(2,C)).
More interesting is Example 11, because it exhibits a non-abelian solution of (4) in a
case where z0 �= e.

4.2 Abelian solutions

The solution formulas simplify if the solution is abelian. This subsection tells how.
We shall need the following basic result about the form of the abelian solutions

of d’Alembert’s functional equation (2). Kannappan’s seminal paper [10] from 1968
derived it for S a group and the group inversion as the involution.

Theorem 8 Let S be a semigroupwith an involution. The abelian solutions g : S → C

of (2) are the functions of the form g = (χ(x) + χ(x∗))/2, x ∈ S, where χ ranges
over the multiplicative function on S.

Proof We refer to [16, Theorem 9.21] for a proof. 	

The formulas for g in Theorem 8 reflect Euler’s formulas

cos x = eix + e−i x

2
and cosh x = ex + e−x

2
, x ∈ R,

in which x∗ = −x , while χ(x) = eix for the cosine and χ(x) = ex for the hyperbolic
cosine.

Proposition 9 The abelian solutions f �= 0 of Kannappan’s functional equation (4)
are the functions of the form

f (x) = χ(z0)
χ(x) + χ(x∗)

2
, x ∈ S, (12)

where χ : S → C ranges over the multiplicative functions with the two properties
χ(z0) = χ(z∗0) and χ(z0) �= 0.

The solution g of d’Alembert’s functional equation (2) corresponding to the f above
is

g(x) = χ(x) + χ(x∗)
2

, x ∈ S.
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Kannappan’s functional equation on semigroups... 25

χ is unique for given f , except that x �→ χ(x) can be interchanged with x �→
χ(x∗).

If S is a topological semigroup and the involution is continuous, then f is continuous
if and only if χ is continuous.

Proof Let f �= 0 be an abelian solution of (4). By Corollary 6 we may write f =
g(z0)g for some g ∈ A. Since f is abelian, so is g, and hence g has by Theorem 8
the form g = (χ(x) + χ(x∗))/2, where χ : S → C is a multiplicative function. A
computation produces for any x ∈ S the formula g(x2)−g(x)2 = [χ(x)−χ(x∗)]2/4.
Take x = z0 to get χ(z0) = χ(z∗0), because g ∈ A. Hence f has the form (12). The
proof of the converse implication is a simple calculation that we omit.

The expression for g follows from Lemma 3.
The uniqueness and continuity statements can be deduced from [16, Theo-

rems 3.18b, d] respectively. 	

The condition χ(z0) = χ(z∗0) in Proposition 9 cuts down the number of continuous

solutions of (4) comparedwith the case of z0 = e. Sometimes even drastically, because
the set of continuous solutions can consist of just f = 0 and f = 1 (see Example 13).

Formula (12) was for groups derived in [13, Corollary 3].

4.3 Solutions in the case of the group inversion

In this subsection we describe how relations simplify when S is a group and the
involution is the group inversion, in which case Kannappan’s functional equation (4)
and d’Alembert’s functional equation (2) become

f
(
xyz0

) + f
(
xy−1z0

) = 2 f (x) f (y), x, y ∈ S, and (13)

g
(
xy

) + g
(
xy−1) = 2g(x)g(y), x, y ∈ S. (14)

We get from (7) that f (z0) = 1 for any solution f �= 0 of (13). This was derived in
[13, Remark 4]. Furthermore the relation (10) between f and g := T−1 f reduces to
g(x) = f (xz0), which is Kannappan’s formula in [11]. Finally f = ±g. Indeed, since
f = g(z0)g it suffices to note that g(z0) = ±1. And 1 = f (z0) = (g(z0)g)(z0) =
g(z0)2. In Example 12 the even-numbered solutions carry the plus sign and the odd-
numbered ones the minus sign.

Corollary 10 gives the form of the abelian solutions of (13).

Corollary 10 Let S be a group.

(a) The abelian solutions f �= 0 of Kannappan’s functional equation (13) are the
functions of the form f = χ(z0)(χ + χ̌ )/2, where χ : S → C ranges over the
characters of S for which χ(z0)2 = 1.

(b) The solution g of d’Alembert’s functional equation (14) corresponding to the f
from (a) is g = (χ + χ̌ )/2.

(c) χ is unique for given f , except that χ can be interchanged with χ̌ .
(d) If S is a topological group, then f is continuous if and only if χ is continuous.

123



26 H. Stetkær

5 Examples

In this section we go through selected examples.

Example 11 This example exhibits a non-abelian solution of Kannappan’s functional
equation with z0 �= e, where e is a neutral element. We take S = SL(2,R) and the
group inversion as the involution. The neutral element of S is the identity matrix I .
The center is Z(S) = {±I }, so we must choose z0 = I of z0 = −I . In Sect. 4.1 we
considered z0 = I , so we shall in this example restrict our attention to z0 = −I . A
non-abelian solution of d’Alembert’s classic functional equation is

g(x) = 1

2
tr(x), x ∈ S.

The condition g(xz0) = g(xz∗0) of Lemma 2b is clearly satisfied here, because z∗0 =
z−1
0 = z0. The solution of Kannappan’s functional equation (4) corresponding to g is
f = g(z0)g = −g.

Example 12 In this example we derive Kannappan’s solutions of (3) on S = R (as
found in [11] or in his monograph [12, Corollary 3.14a]) from our results about abelian
solutions (Corollary 10). Our formulation (15) of the result is simpler than Kannap-
pan’s.

According to [2, Remark 2.4] the only continuous involutions of (R,+) are I and
−I , where I : R → R denotes the identity map. Results about I can be found in
Sect. 6. In the present example the involution is the group inversion −I .

Like Kannappan we restrict our attention to z0 ∈ R \ {0}, because z0 = 0 reduces
(3) to d’Alembert’s classic functional equation (1), the continuous solutions of which
can be found in the literature (see for instance [1, Sect. 2.4.1] or [16, Proposition 9.4]).

The continuous characters on R are known to be χ(x) = exp(λx), x ∈ R, where
λ ranges over C (see for instance [16, Example 3.7a]). The condition χ(z0)2 = 1 of
Corollary 10 becomes exp(2iλz0) = 1, which reduces to λ = mπ/z0, where m ∈ Z.
The relevant characters are thus

χm(x) := exp(imπ
x

z0
), x ∈ R, and m ∈ Z,

and so the corresponding continuous solutions of (4) are

fm(x) = χm(z0)
χm(x) + χm(−x)

2
= (−1)m cos

(
mπ

x

z0

)
, x ∈ R.

This formula shows that fm = f−m . Hence m ∈ {0, 1, 2, . . . } suffices as domain for
the parametrization by m. We conclude that the non-zero continuous solutions of (3)
are the functions

fm(x) = (−1)m cos

(
mπ

x

z0

)
, x ∈ R, m = 0, 1, 2, . . . (15)
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Kannappan’s functional equation on semigroups... 27

The solution gm of d’Alembert’s functional equation corresponding to fm is
gm(x) = cos(mπx/z0), x ∈ R, for m = 0, 1, 2, . . .

In fairness it should be mentioned that Kannappan considered Lebesgue measur-
able and not just continuous solutions. However, that makes no difference, because
Lebesgue-measurable solutions of d’Alembert’s functional equation on R are contin-
uous ([9, Corollary 22.5] or [16, Corollary 9.22d]).

Example 13 We shall in this example find the continuous solutions of Kannappan’s
functional equation on the circle group

S = T := {
eiθ | θ ∈ R

}

with the involution being the group inversion, and with z0 ∈ T \ {1}. We may write
z0 = exp iθ0, where θ0 > 0. Kannappan’s functional equation is here

f
(
xyeiθ0

) + f
(
xy−1eiθ0

) = 2 f (x) f (y) for x, y ∈ T. (16)

According to Corollary 10 the continuous solutions f �= 0 of (16) are the functions
of the form

f = χ(z0)
χ + χ̌

2
,

where χ : T → C ranges over the continuous characters of T for which χ(z0)2 = 1.
It is well known that the continuous characters of T are the functions

χn(e
iθ ) = einθ for eiθ ∈ T, where n ∈ Z

(see for instance [16, Example 3.10]). The condition χ(z0)2 = 1 becomes

χn(z0)
2 = e2iθ0n = 1. (17)

Case 1 θ0 is an irrational multiple of π .
Assume there is a continuous solution f �= 0 of (16) such that f �= 1. Then

f = χn(z0)(χn + χ̌n)/2 for some n ∈ Z, where n �= 0, since f �= 1. The condition
(17) for χn says that 2θ0n = 2πm for some m ∈ Z. Thus θ0 is a rational multiple of
π , contradicting the headline of this case. Hence the only continuous solutions of (16)
are in this case the trivial ones f = 0 and f = 1 that always exist.

Case 2 θ0 is a rational multiple of π . We write

θ0 = p

q
π, where p, q ∈ {1, 2, . . . } and gcd(p, q) = 1.

If χn satisfies (17) then p
q n ∈ Z, so q|n. So non-zero, continuous solutions exist

only if n = mq for somem ∈ Z. On the other hand, for any such index n = mq we find
that χmq satisfies (17), so fm := χmq(z0)(χmq + ˇχmq)/2 is according to Corollary 10
a solution of (16). Written out,

χmq
(
eiθ

) = eiθmq and χmq
(
eiθ0

) = eiθ0mq = eimp = (−1)mp, so
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fm
(
eiθ

) = (−1)mp eiθmq + e−iθmq

2
= (−1)mp cos

(
mqθ

)
. (18)

We conclude that the functions fm range over all non-zero continuous solutions of
(16) with θ0 = p

q π , when m ranges over Z. Actually, m ∈ {0, 1, 2, . . . } suffices,
because fm is even with respect to the index m, as is apparent from the formula (18).

For each m = 0, 1, 2, . . . the solution gm of d’Alembert’s functional equation
corresponding to fm is gm(eiθ ) = cos(mqθ).

Example 14 In this example we solve Kannappan’s functional equation on a semi-
group S, which is not a group. It is not even a monoid.

Let I := ]0, 1[be equippedwithmultiplication as composition rule. Then S := I×I
is a commutative semigroup and τ : S → S, given by τ(s, t) := (t, s), an involution.
For s0, t0 ∈ I consider the functional equation

f
(
prs0, qst0

) + f
(
pss0, qrt0

) = 2 f (p, q) f (r, s), p, q, r, s ∈ I. (19)

Deleting s0 and t0 from (19) we arrive at the functional equation

g(pr, qs) + g(ps, qr) = 2g(p, q)g(r, s), p, q, r, s ∈ I, (20)

which was studied by Chung et al. [3] (except for the innocuous normalizing factor 2
on the right hand side). Formore about the background of (20) consult themonographs
[12, Sect. 10.2j] by Kannappan and [14, Theorem 17.2] by Kannappan and Sahoo.

The functional equation (19) fits into our framework: Take S and τ to be as above
and put z0 := (s0, t0) ∈ S. Then (19) becomes (4), and (20) becomes d’Alembert’s
functional equation (2). This connection between (20) and (2) was pointed out in [18].

We apply the results of [18] about (20). It follows from [18, Corollary 4.1] that the
solutions g of (20) are the functions of the form

g(s, t) = μ1(s)μ2(t) + μ1(t)μ2(s)

2
,

where μ1, μ2 : I → C are multiplicative functions on I . That g ∈ A means that
g((s0, t0)2) = g(s0, t0)2 and that g(s0, t0) �= 0. By a simple computation

g
(
(s0, t0)

2) − g(s0, t0)
2 = 1

4

[
μ1(s0)μ2(t0) − μ1(t0)μ2(s0)

]2
,

so the conditions mean that μ1(s0)μ2(t0) = μ1(t0)μ2(s0) �= 0. From Corollary 6 we
read that the non-zero solutions f of (19) are

f (s, t) = μ1(s0)μ2(t0)
μ1(s)μ2(t) + μ1(t)μ2(s)

2
, s, t ∈ I,

where μ1, μ2 : I → C are multiplicative and μ1(s0)μ2(t0) = μ1(t0)μ2(s0) �= 0.
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6 The case of the identity map

In this section we solve Kannappan’s functional equation in the form

f (xys0) = f (x) f (y) for all x, y ∈ S, (21)

where S is a semigroup, and s0 ∈ S is arbitrary, but fixed (Proposition 16). The Eq.
(21) is our earlier Eq. (4) with x∗ = x . However, on a non-commutative semigroup
the identity is not an involution. So the theory developed in the previous sections does
not apply, and we must provide a separate exposition. We change notation from z0 to
s0, because we do not require that s0 ∈ Z(S), which we did for z0.

Lemma 15 Let f : S → C be a solution of (21). Then

(a) f (xs20 ) = f (s0) f (x) for all x ∈ S.
(b) f �= 0 ⇐⇒ f (s0) �= 0.
(c) f (xs0y) = f (xys0) for all x, y ∈ S.

Proof (a) and (b) are proved like the corresponding statements in Lemma 1. (c) We
may here assume f �= 0, so that f (s0) �= 0 by (b). Putting x = s0 in (21) we see that
f (s0ys0) = f (s0) f (y). Using that we find

f (s0) f (xs0y) = f
(
xs0ys

2
0

) = f
(
x(s0ys0)s0

) = f (x) f (s0ys0)

= f (x) f (s0) f (y) = f (s0) f (x) f (y) = f (s0) f (xys0).

	

If S has an identity element e ∈ S and s0 = e, then (21) reduces to the relation that

defines multiplicative functions. Proposition 16 generalizes in a neat way this from
s0 = e to any s0 ∈ S.

Proposition 16 The solutions of (21) are the functions of the form f = χ(s0)χ ,
where χ : S → C is a multiplicative function.

Proof The case of f = 0 is trivial, so we may during the rest of the proof assume that
f �= 0.
Let f �= 0 be a solution of (21). Since f (s0) �= 0 by Lemma 15b we may define

the function χ(x) := f (xs0)/ f (s0), x ∈ S. Using Lemma 15a and c we get

f (s0)
2χ(x)χ(y) = f (xs0) f (ys0) = f

(
(xs0)(ys0)s0

) = f
(
xs0ys

2
0

)

= f (s0) f (xs0y) = f (s0) f (xys0) = f (s0)
2 f (xys0)

f (s0)

= f (s0)
2 χ(xy),

which implies that χ is multiplicative. By Lemma 15(a) we find that

f (x) = f
(
xs20

)

f (s0)
= f (xs0s0)

f (s0)
= χ(xs0) = χ(x)χ(s0).

The converse statement is trivial to verify, so we omit it. 	
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