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Abstract In an atomic, cancellative, commutative monoid S, the elasticity of an ele-
ment provides a coarse measure of its non-unique factorizations by comparing the
largest and smallest values in its set of factorization lengths (called its length set). In
this paper, we show that the set of length sets L(S) for any arithmetical numerical
monoid S can be completely recovered from its set of elasticities R(S); therefore,
R(S) is as strong a factorization invariant as L(S) in this setting. For general numer-
ical monoids, we describe the set of elasticities as a specific collection of monotone
increasing sequences with a common limit point of max R(S).

Keywords Factorization · Numerical monoid · Elasticity · Length set · Arithmetic
sequence

1 Introduction

In studying the non-unique factorization theory of atomicmonoids, the development of
several invariants—such as delta sets [2] andω-primality [7]—has provided significant
insight. Of particular interest is the set of length sets L(S) for an atomic monoid S,
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which has as its elements the sets of factorization lengths of elements in S [1,5,8].
The following longstanding conjecture states that, with one exception, the set of length
sets is a perfect invariant for the important class of block monoids B(G) of zero-sum
sequences over a finite Abelian group G [6, Sect. 7.3].

Conjecture 1.1 Given two finite Abelian groups G and G ′ with |G|, |G ′| > 3, we
have L(B(G)) = L(B(G ′)) implies B(G) ∼= B(G ′).

In contrast to the above conjecture, the authors of [1] show that two distinct numer-
ical monoids (co-finite, additive submonoids of N) can have the same length sets. In
this paper, we investigate the elasticity ρ(n) of elements n in a numerical monoid
S. This invariant, computed as the quotient of the largest factorization length by the
smallest, provides a coarse measure of an element’s non-unique factorizations. We
now state our main result concerning the set R(S) = {ρ(n) : n ∈ S} of elasticities
of S.

Theorem 1.2 For distinct arithmetical numericalmonoids S = 〈a, a+d, . . . , a+kd〉
and S′ = 〈a′, a′ + d ′, . . . , a′ + k′d ′〉, the following are equivalent:

1. R(S) = R(S′).
2. L(S) = L(S′).

Therefore, for the class of arithmetical numerical monoids (numerical monoids
generated by an arithmetic sequence), the set of elasticities is as strong an invariant
as the set of length sets. In contrast, we also provide Example 3.11, which gives two
non-arithmetical numerical monoids with identical sets of elasticities, but distinct sets
of length sets.

After developing our main result in Sect. 3, we provide a full characterization
of the set of elasticities for any numerical monoid, thereby completing a coarser
description provided by Chapman et al. [4]. This characterization (Corollary 4.5)
demonstrates the stark contrast between the set of length sets, which is often very
large and hard to compute, with the set of elasticities, which we describe as a union
of monotonically increasing sequences with a common limit point of max R(S). For
arithmetical numerical monoids, this characterization of R(S) takes the form of a
complete parametrization (Theorem 3.4).

2 Background

In this section, we provide definitions and previous results related to the elasticity of
elements in a numerical monoid. In what follows, let N denote the set of non-negative
integers. Unless otherwise stated, we will assume that S has minimal generating set
{g1, . . . , gk} with g1 < · · · < gk and gcd(g1, . . . , gk) = 1.

Definition 2.1 Let S = 〈g1, . . . , gk〉 be a numerical monoid with minimal generating
set {g1, . . . , gk}, and fix n ∈ S. An element �a = (a1, . . . , ak) ∈ N

k is a factorization
of n if n = a1g1 + · · · + akgk , and its factorization set is given by

Z(n) =
{
(a1, . . . , ak) ∈ N

k : a1g1 + · · · + akgk = n
}

.
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The length of the factorization �a, denoted |�a|, is given by a1 + · · · + ak . For each n,
the length set of n is the set L(n) = {|a| : �a ∈ Z(n)}, and the set of length sets of the
monoid S is given by L(S) = {L(n) : n ∈ S} .

Remark 2.2 While the length set of an element in a numerical monoid is a helpful
measure of its non-unique factorizations, some information is lost when passing from
Z(n) to L(n). For example, in S = 〈3, 5, 7〉, the element 10 ∈ S has as its two
distinct factorizations (1, 0, 1) and (0, 2, 0), both of which have length 2. Thus, even
though L(10) = {2} is singleton, the element 10 has multiple factorizations. This
phenomenon is common in numerical monoids, especially those minimally generated
by arithmetic sequences of length 3 or greater. See [3] for a more detailed analysis on
this phenomenon.

In a numerical monoid, length sets of elements are finite. Thus, analyzing the rela-
tionship between an element’s maximal and minimal lengths provides a meaningful,
albeit coarse, gauge of the non-uniqueness of its factorizations. This concept, known
as the elasticity of an element, is defined below.

Definition 2.3 For an element n ∈ S of a numerical monoid, we denote by

MS(n) = max L(n) and mS(n) = min L(n)

the maximal and minimal length of n, respectively. The ratio

ρS(n) = MS(n)/mS(n)

is called the elasticity of n. When there is no ambiguity, we omit the subscripts and
simply write M(n), m(n), and ρ(n). The set of elasticities of S is given by

R(S) = {ρ(n) : n ∈ S} ,

and the elasticity of S is given by the supremum of this set: ρ(S) = sup R(S).

Definition 2.4 A numerical monoid S is arithmetical if it is minimally generated by
an arithmetic sequence of positive integers, that is,

S = 〈a, a + d, . . . , a + kd〉

for positive integers a, d, and k. Unless otherwise stated, when the generating set of
a numerical monoid is expressed in the form a, a + d, . . . , a + kd, it is assumed that
gcd(a, d) = 1 and 1 ≤ k < a.

We conclude this section by recalling some relevant results from the literature.
Theorem 2.5 provides some coarse properties of the set of elasticites of a numerical
monoid. Proposition 2.6 is a consequence of [1, Theorem 2.2], and characterizes the
functions MS and mS for any arithmetical numerical monoid S.

Lastly, Theorem 2.7 appeared as [1, Theorem 3.2] and is vital to the proof of
Theorem 1.2.
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Theorem 2.5 [4, Theorem 2.1, Corollary 2.3] If S is a numerical monoid minimally
generated by g1 < · · · < gk, then ρ(S) = gk/g1 is the unique accumulation point of
R(S), and there exists an n ∈ S such that ρ(n) = ρ(S).

Proposition 2.6 Fix an arithmetical numerical monoid S = 〈a, a + d, . . . , a + kd〉
with gcd(a, d) = 1 and k < a. For n ∈ S, we have the following.

(a) If n = x(a + kd) − yd for 0 ≤ y < a + kd, then m(n) = x.
(b) If n = x ′a + y′d for 0 ≤ y′ < a, then M(n) = x ′.

Theorem 2.7 [1, Theorem 3.2] Fix two distinct numerical monoids S = 〈a, a +
d, . . . , a+ kd〉 and S′ = 〈a′, a′ + d ′, . . . , a′ + k′d ′〉 for gcd(a, d) = gcd(a′, d ′) = 1,
1 ≤ k < a and 1 ≤ k < a′. The following statements are equivalent:

(a) L(S) = L(S′), and
(b) d = d ′, a

k = a′
k′ , gcd(a, k) ≥ 2 and gcd(a′, k′) ≥ 2.

3 Elasticity sets for arithmetical numerical monoids

Remark 2.2 demonstrates that information is lost when passing from Z(n) to L(n).
Since only the ratio of max L(n) and min L(n) is retained when passing from L(n)

to ρ(n), one might expect that further information is lost when passing from the set
of length sets L(S) to the set of elasticities R(S). While this is true in general (see
Example 3.11), when S is an arithmetical numerical monoid, L(S) can be recovered
from R(S). This is the content of Theorem 1.2, the main result of this section.

For an arithmetical numerical monoid S = 〈a, a + d, . . . , a + kd〉, Theorem 2.7
states that the values d and a/k can both be recovered from L(S), and that if
gcd(a, k) = 1, then L(S) cannot coincide with L(S′) for any arithmetical numeri-
cal monoid S′ 
= S. In order to prove Theorem 1.2 we show that each of these results
also holds true for the set of elasticities R(S).

The proof of Theorem 1.2 comes in two steps. First, Proposition 3.6 proves that d
can be recovered from R(S). This also implies the value of a/k can be recovered; see
Remark 3.7. Second, Theorem 3.10 ensures that if gcd(a, k) = 1, then R(S) does not
coincide with R(S′) for any arithmetical numerical monoid S′.

Example 3.1 Figure 1 plots the elasticities of elements of S = 〈7, 12, 17, 22〉. Notice
that the graph appears to be a collection of “wedges”, each consisting of several “rows”
of points with the same elasticity value. Theorem 3.4 uses Proposition 2.6 to eliminate
much of the redundancy in R(S) by reparametrizing in terms of these wedges and
rows (Definition 3.2), thereby simplifying many computations in results throughout
this section. See Remark 3.3 for a description of these values.

Definition 3.2 Fix an arithmetical numerical monoid S = 〈a, a + d, . . . , a + kd〉
with gcd(a, d) = 1 and k < a. An element (c, s, x) ∈ Z

3 is an S-elasticity tuple if
c ≥ 0, 0 ≤ s < k, and

⌈ sa
k

⌉
≤ x ≤

⌊
sa + 2(a − 1)

k

⌋
+ d.
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On the set of elasticities in numerical monoids 41

Fig. 1 Plot of elasticities of S = 〈7, 12, 17, 22〉

The value ck + s is the wedge of (c, s, x), and x is called the row of (c, s, x). An S-

elasticity tuple (c, s, x) is minimal if x = ⌈ sa
k

⌉
and maximal if x =

⌊
sa+2(a−1)

k

⌋
+ d.

Write E(S) for the set of S-elasticity tuples, and define ρS : E(S) → Q as

ρS(c, s, x) = c(a + kd) + x + sd

ca + x
.

Remark 3.3 Let S = 〈7, 12, 17, 22〉 as in Example 3.1. Each row in the 2nd wedge
is boxed in the elasticity plot in Fig. 1, and each box corresponds to an S-elasticity
tuples (0, 2, x) for some 5 ≤ x ≤ 13. Each such S-elasticity tuple corresponds to the
elasticity ρS(0, 2, x) = (x + 10)/x in the plot, yielding the rational values

ρS(0, 2, 5) = 3, ρS(0, 2, 6) = 8/3, ρS(0, 2, 7) = 17/7,
ρS(0, 2, 8) = 9/4, ρS(0, 2, 9) = 19/9, ρS(0, 2, 10) = 2,
ρS(0, 2, 11) = 21/11, ρS(0, 2, 12) = 11/6, ρS(0, 2, 13) = 23/13,

appearing from top to bottom in the wedge.
For a general arithmetical S = 〈a, a + d, . . . , a + kd〉, each S-elasticity tuple

(c, s, x) corresponds to the elasticity ρS(c, s, x) occuring in the (ck + s)th wedge
(where every elasticity in the 0th wedge is 1). Within a given wedge, different values
of x corresponds to a different elasticity occuring in that wedge. Minimal S-elasticity
tuples (thosewith aminimal x value for theirwedge) correspond to the largest elasticity
in the wedge, and each successive value of x corresponds to the next row down in the
wedge. Maximal S-elasticity tuples play a key role in Lemma 3.9 and Theorem 3.10;
see Example 3.8.

Since the tuple (c, s, x) corresponds to the (ck + s)th wedge, it is tempting to
use the ordered pair (ck + s, x) in place of (c, s, x) in Definition 3.2. However, the
individual values of c and s are used in nearly every proof in this section. In particular,
the wedges whose S-elasticity tuples have s = 0 are precisely those whose highest
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elasticity value is sup R(S). Indeed, the arithmetical numerical monoid S depicted in
Fig. 1 has k = 3, and every third wedge has ρ(S) as its highest value.

We now state Theorem 3.4, which ensures that the parametrization given in Defin-
ition 3.2 produces the correct elasticity set.

Theorem 3.4 If S = 〈a, a + d, . . . , a + kd〉 is arithmetical, then R(S) = ρS(E(S)).

Proof We begin by showing that for each n ∈ S, the elasticity ρ(n) = ρ(c, s, x)
for some (c, s, x) ∈ E(S). First, write n = x ′a + y′d = x ′′(a + kd) − y′′d for
x ′, x ′′, y′, y′′ ≥ 0, y′ < a, and y′′ < a + kd. By Proposition 2.6, M(n) = x ′ and
m(n) = x ′′, and since x ′, x ′′ ∈ L(n), we have d | x ′−x ′′ by [2, Theorem3.9]. Fix c ≥ 0
and 0 ≤ s < k such that x ′−x ′′ = (ck+s)d, and let x = x ′′−ca = x ′−c(a+kd)−sd.
Notice that

x(a + kd) − y′′d = (
x ′′ − ca

)
(a + kd) − y′′d = n − ca(a + kd)

= (
x ′ − c(a + kd)

)
a + y′d = (x + sd)a + y′d

which implies that xk = sa + y′ + y′′. Since y′ + y′′ ≤ 2a + kd − 2, this means
sa ≤ xk ≤ sa + 2a + kd − 2, which yields

⌈ sa
k

⌉
≤ x ≤

⌊
sa + 2a + kd − 2

k

⌋
=

⌊
sa + 2(a − 1)

k

⌋
+ d.

This means (c, s, x) ∈ E(S) and

ρS(c, s, x) = c(a + kd) + sd + x

ca + x
= x ′

x ′′ = ρS(n),

which proves R(S) ⊂ ρS(E(S)).
Conversely, fix (c, s, x) ∈ E(S). The assumptions on x ensure that

sa ≤ xk ≤ sa + 2(a − 1) + kd

meaning 0 ≤ xk−sa ≤ a+(a+kd)−2. Fix y′, y′′ ≥ 0 such that y′ < a, y′′ < a+kd,
and y′ + y′′ = xk − sa. Choosing

n = (c(a + kd) + x + sd)a + y′d = (ca + x)(a + kd) − y′′d ∈ S

yields ρS(n) = ρS(c, s, x), meaning ρS(E(S)) ⊂ R(S). �
In the terminology of Remark 3.3, Lemma 3.5(a) states that increasing the wedge of

an S-elasticity tuple (c, s, x) (that is, increasing the value of ck + s) produces a larger
elasticity. Additionally, Lemma 3.5(b) states that increasing the row of (c, s, x) (i.e. the
value of x) yields a smaller elasticity, confirming thatminimal andmaximal S-elasticity
tuples yield the smallest and largest elasticity within their wedge, respectively.
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On the set of elasticities in numerical monoids 43

Lemma 3.5 Fix an arithmetical numerical monoid S = 〈a, a + d, . . . , a + kd〉.
(a) Any (c, s, x), (c′, s′, x) ∈ E(S) with ck + s ≤ c′k + s′ satisfy ρS(c, s, x) ≤

ρS(c′, s′, x).
(b) Any (c, s, x), (c, s, x ′) ∈ E(S) with x ≤ x ′ satisfy ρS(c, s, x ′) ≤ ρS(c, s, x).

Proof The claim follows directly upon comparing fractions and observing that

1 ≤ ρS(c, s, x) = c(a + kd) + x + sd

ca + x
≤ a + kd

a

for every (c, s, x) ∈ E(S). �
We now use the parametrization of R(S) provided by Theorem 3.4 to prove Theo-

rem 1.2. We begin with Proposition 3.6, which demonstrates how the value of d can
be recovered from R(〈a, a + d, . . . , a + kd〉).
Proposition 3.6 Fix an arithmetical numerical monoid S = 〈a, a + d, . . . , a + kd〉
with gcd(a, d) = 1 and 1 ≤ k < a. We have

d = (g − 1)( f − 1)

g − f

where 1 < f < g are the three minimal values in R(S).

Proof First, suppose k = 1. The maximal S-elasticity tuple (1, 0, 2a + d − 2) gives
f = ρS(1, 0, 2a + d − 2) by Lemma 3.5. We claim g = ρS(1, 0, 2a + d − 1). Fix
an S-elasticity tuple (c, 0, x) with ρS(c, 0, x) > f . If c = 1, then by Lemma 3.5,
ρS(c, 0, x) ≥ ρS(c, 0, 2a + d − 1). If c ≥ 2, then by Lemma 3.5, ρS(c, 0, x) is
minimal when c = 2 and when (c, 0, x) is maximal, that is, when x = 2a + d − 2.
Notice that

(4a + 3d − 2)(3a + d − 1) = (4a + d − 2)(3a + d − 1) + d(6a + 2d) − 2d

≥ (4a + d − 2)(3a + d − 1) + d(4a + d) − 2d

= (3a + 2d − 1)(4a + d − 2),

which means

ρS(2, 0, 2a + d − 2) = 4a + 3d − 2

4a + d − 2
≥ 3a + 2d − 1

3a + d − 1
= ρS(1, 0, 2a + d − 1).

Substituting these values for f and g gives

(g − 1)( f − 1)

g − f
= d2

(3a + d − 1)(3a + d − 2)
· (3a+d−1)(3a+d−2)

d(3a+d−1) − d(3a+d−2)
= d,

as desired.
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Now, suppose k ≥ 2, and let B = �(3a − 2)/k� + d. We will show that f =
(B + d)/B and g = (B − 1 + d)/(B − 1), from which the claim follows directly.
Indeed, solving the first equality for B yields B = d/( f − 1), and substituting into
the second yields

g = (B − 1 + d)/(B − 1)

= (d f − ( f − 1))/(d − ( f − 1)).

Clearing the denominator on the right hand side yields

gd − f d = (g − 1)( f − 1),

and dividing by g − f yields the desired equality.
By Theorem 3.4, f = ρS(c, s, x) for some S-elasticity tuple (c, s, x). By

Lemma 3.5, (c, s, x) is maximal, and since f > 1, we have c = 0 and s = 1.
This gives the desired form for f . It remains to prove that g = (B − 1+ d)/(B − 1).

Fix a S-elasticity tuple (c, s, x) and let g′ = ρS(c, s, x). By Lemma 3.5, it suffices
to assume (c, s, x) is maximal. If c = s = 0, then g′ = 1, and if c = 0 and s = 1,
then g′ = g. First, suppose k = 2. By Lemma 3.5, we can assume c = 1 and s = 0,
meaning x = �(2a − 2)/2� + d = a + d − 1. Notice that

2B = 2�3a/2� + 2d − 2 ≥ 3a + 2d − 2 ≥ 2a + 2d + 1 ≥ 2a + d + 1.

Manipulating the above inequality yields

(2a + 3d − 1)(B − 1) ≥ (2a + d − 1)(B + d − 1),

which gives

g′ = c(a + kd) + x + sd

ca + x
= 2a + 3d − 1

2a + d − 1
≥ B + d − 1

B − 1
= g.

Now, suppose k > 2. By Lemma 3.5, it suffices to assume c = 0 and s = 2, and
maximality of x gives x = �(4a − 2)/k� + d. Notice that

2B − d − 2 = 2�(3a − 2)/k� + d − 2 ≥ 2�(3a − 2)/k� − 1 ≥ �(6a − 4)/k� − 2
≥ �(4a − 2)/k� + 2�(a − 1)/k� − 2 ≥ �(4a − 2)/k� = x − d.

Manipulating the inequality above yields

(x + 2d)(B − 1) ≥ x(B − 1 + d)

which gives

x + 2d

x
≥ B − 1 + d

B − 1
= g.

This completes the proof. �
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Fig. 2 Plot of elasticities of S = 〈14, 17, 20, 23, 26, 29, 32〉 (left) and S′ = 〈7, 10, 13, 16〉 (right)

Remark 3.7 Fix an arithmetical numerical monoid S = 〈a, a+d, . . . , a+ kd〉. Since
sup R(S) = (a + kd)/a = 1 + d(k/a) by Theorem 2.5, Proposition 3.6 also implies
that we can recover a/k from R(S).

Example 3.8 The majority of the proof of Theorem 3.10 considers two arithmetical
numerical monoids S = 〈a, a + d, . . . , a + kd〉 and S′ = 〈a′, a′ + d ′, . . . , a′ + k′d ′〉
satisfying d = d ′, a

k = a′
k′ , gcd(a′, k′) = 1, and gcd(a, k) ≥ 2. In this case, the

sets R(S′) and R(S) are nearly identical, as are the elasticities achieved within their
respective wedges. Figure 2 plots the elasticities of S = 〈14, 17, . . . , 32〉 and S′ =
〈7, 10, 13, 16〉, and the red points mark the (sparse) elasticities in R(S) \ R(S′). In
general, every elasticity that lies in R(S)\ R(S′) is achieved by a maximal S-elasticity
tuple. Lemma 3.9 produces an (c, s, x) ∈ E(S) such that ρS(c, s, x) /∈ R(S′), and the
proof of Theorem 3.10 verifies that this is the case.

Lemma 3.9 Fix an arithmetical numerical monoid S = 〈a, a + d, . . . , a + kd〉 with
gcd(a, d) = 1 and 1 ≤ k < a, and suppose gcd(a, k) ≥ 2. Write g = gcd(a, k),
k′ = k/g, and a′ = a/g. There exists a maximal S-elasticity tuple (c, s, x) such that

(a) a′(s + 2) ≡ 1mod k′, and
(b) gcd(ca + x, ck + s) = 1.

Proof Let s denote the integer satisfying 0 ≤ s < k′ and a′(s + 2) ≡ 1mod k′, and
let

x =
⌊

(s + 2)a − 2

k

⌋
+ d =

⌊
(s + 2)a′ − (2/g)

k′

⌋
+ d = (s + 2)a′ − 1

k′ + d

denote the value such that (0, s, x) is a maximal S-elasticity tuple. Since gcd(a′, k′) =
1, there exist integers p and q such that pa′ + qk′ = 1. Notice that

xk′ = (s + 2)a′ − 1 + k′d > sa′,

so fix b ∈ Z such that b(sa′−xk′) > px+qs. Form = 1−(p+bk′)x−(q−ba′)s > 0,
we have

(
p + bk′) (

ma′ + x
) + (

q − ba′) (
bk′ + s

) = m + (
p + bk′) x + (

q − ba′) s = 1,
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meaning gcd(ma′ + x,mk′ + s) = 1. Write m = cg + r for 0 ≤ r < g. We see that
the S-elasticity tuple (c, s + rk′, x + ra′) is maximal since

x + ra′ = (s + 2)a′ − 1

k′ + d + ra′ =
(
s + rk′ + 2

)
a′ − 1

k′ + d,

and gcd(ca + (x + ra′), ck + (s + rk′)) = gcd(ma′ + x,mk′ + s) = 1, as desired. �
Theorem 3.10 If S = 〈a, a + d, . . . , a + kd〉 and S′ = 〈a′, a′ + d ′, . . . , a′ + k′d ′〉
are distinct arithmetical numerical monoids, then R(S) = R(S′) if and only if d = d ′,
a
k = a′

k′ , gcd(a, k) ≥ 2 and gcd(a′, k′) ≥ 2.

Proof If the given conditions are satisfied, then Theorem 2.7 implies L(S) = L(S′)
and thus R(S) = R(S′). Conversely, if R(S) = R(S′), then d = d ′ by Proposition 3.6
and a

k = a′
k′ by Remark 3.7. To complete the proof, it suffices to show that if d = d ′,

a
k = a′

k′ , gcd(a′, k′) = 1 and gcd(a, k) ≥ 2, then R(S) � R(S′).
Since a

k = a′
k′ , we have a = ga′ and k = gk′ for g = gcd(a, k). Define a map

φ : E(S′) → E(S) given by (c′, s′, x ′) �→ (q, s′ + rk′, x ′ + ra′), where c′ = qg + r
for 0 ≤ r < g. Notice that (q, s′ + rk′, x ′ + ra′) ∈ E(S) since 0 ≤ s′ + rk′ <

k′ + (g − 1)k′ = k,

⌈(
s′ + rk′) a

k

⌉
=

⌈
s′a′

k′

⌉
+ ra′ ≤ x ′ + ra′, (3.1)

and

x ′ + ra′ ≤
⌊(

s′ + 2
)
a′ − 2)

k′

⌋
+ d + ra′ =

⌊
(s′ + rk′ + 2)a − 2g)

k

⌋
+ d

≤
⌊(

s′ + rk′ + 2
)
a − 2

k

⌋
+ d. (3.2)

We also have ρS′(c′, s′, x ′) = ρS(q, s′+rk′, x ′+ra′), soφ preserves elasticity values.
Now, by Lemma 3.9, there exists a maximal S-elasticity tuple (c, s, x) satisfying

a′(s + 2) ≡ 1mod k′ and gcd(ca + x, ck + s) = 1. If (c, s, x) ∈ Im(φ), then it is the
image of (cg + r, s′, x − ra′) ∈ E(S′). In particular, since

x − ra′ =
⌊

(s+2)a−2
k

⌋
+ d − ra′ =

⌊
(s+2)a′−(2/g)

k′
⌋

+ d − ra′

= 1 +
⌊

(s+2)a′−2
k′

⌋
+ d − ra′ = 1 +

⌊
(s′+2)a′−2

k′
⌋

+ d,

wemust have (c, s, x) /∈ Im(φ).Moreover, for (c0, s0, x0) ∈ E(S), if c0k+s0 > ck+s,
then ρS(c, s, x) < ρS(c0, s0, x0) by Lemma 3.5, and if c0k + s0 < ck + s, then

c0a + x0 
= (ca + x)(c0k + s0)

ck + s
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as the right hand side is not an integer. This means

ρS(c, s, x) = ca + x + d(ck + s)

ca + x

= c0a + x0 + d(c0k + s0)

c0a + x0
= ρS(c0, s0, x0).

We conclude that the elasticity ρS(c, s, x) ∈ R(S) is only achieved by (c, s, x),
which implies ρS(c, s, x) /∈ R(S′) and completes the proof. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 Apply Theorems 2.7 and 3.10. �
We conclude this section with Example 3.11, which shows the “arithmetical”

hypothesis in Theorem 1.2 cannot be omitted.

Example 3.11 Theorem 1.2 shows that for an arithmetical numerical monoid S, com-
putation of the elasticity set R(S) (which is given in Theorem 3.4) is just as useful
as computing the entire set of length sets L(S). This need not be true in general. Let
S = 〈6, 10, 13, 14〉 and S′ = 〈6, 11, 13, 14〉. A simple computation shows that

{4, 6} ∈ L(S) \ L(S′) and ρS(S ∩ [1, 266]) = ρS′(S′ ∩ [1, 266]),
after which Theorems 4.2 and 4.3 guarantee that R(S) = R(S′).
Remark 3.12 It remains an interesting question to characterize which numerical
monoids S and S′ satisfy R(S) = R(S) and L(S) 
= L(S′). Investigating this phe-
nomenon for general numerical monoids—or even for specific classes such as those
with three minimal generators—would be of much interest.

4 The set of elasticities for general numerical monoids

While Theorem 2.5 provides a concise description of themaximal elasticity attained in
a numerical monoid S and a coarse topological property of the set of elasticities of S, it
does not give a full description of R(S). In this section, we provide such a description
by showing that the functions M(n) and m(n) enjoy a powerful linearity property.

We begin with a combinatorial lemma.

Lemma 4.1 Let k ≥ 0, and fix c1, c2, . . . , cr ∈ Z with r ≥ k. There exists T �

{1, . . . , r} satisfying ∑
i∈T ci ≡ ∑r

i=1 ci mod k.

Proof Let s j = ∑ j
n=1 cn for j ∈ {0, . . . , r}. The sequence s0, s1, · · · , sr has length

r + 1 > k, so by the pigeonhole principle, si ≡ s j mod k for some i < j . This means
s j − si ≡ 0mod k, so choosing T = {1, . . . , r} \ {i + 1, . . . , j} completes the proof.

�
Theorem 4.2 Given a numerical monoid S = 〈g1, . . . , gk〉 minimally generated by
g1 < · · · < gk, the maximal factorization length function M : S → N satisfies

M(n) = M(n − g1) + 1

for all n > (g1 − 1)gk.
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Proof Fix a factorization �a for n, and suppose that a2 + · · · + ak ≥ g1. Since a1g1 +
a2g2 + · · · + akgk = n, we have a2g2 + · · · + akgk ≡ nmod g1. Viewing this sum as
a2+· · ·+ak integers selected from {g2, . . . , gk}, Lemma 4.1 guarantees the existence
of b2, . . . , bk ≥ 0 such that (i) bi ≤ ai for each i > 1, (ii)

∑k
i=2 ai >

∑k
i=2 bi , and

(iii) b2g2+· · ·+bkgk ≡ nmod g1. This implies b2g2+· · ·+bkgk < a2g2+· · ·+akgk ,
so there exists b1 ≥ 0 so that �b = (b1, b2, . . . , bk) ∈ Z(n). This gives

(b1 − a1)g1 =
k∑

i=2

(ai − bi )gi >

k∑
i=2

(ai − bi )g1,

from which canceling g1 yields |�b| > |�a|.
Now, suppose that �a ∈ Z(n) is maximal. The above argument implies that a2 +

· · · + ak < g1. In particular, if n > (g1 − 1)gk , we must have a1 > 0. This means
�a− �e1 ∈ Z(n− g1), so we have M(n− g1) ≥ |�a|−1, and since �a has maximal length,
we have M(n − g1) = |�a| − 1. This completes the proof. �

The proof of the following analogous result is almost identical to the proof of
Theorem 4.2 and hence omitted.

Theorem 4.3 Given a numerical monoid S = 〈g1, . . . , gk〉 minimally generated by
g1 < · · · < gk, the minimal factorization length function m : S → N satisfies

m(n) = m(n − gk) + 1

for all n > (gk − 1)gk−1.

Example 4.4 If a numerical monoid S has g1 as its smallest minimal generator then
Theorems 4.2 and 4.3 state that M : S → N as a function will eventually manifest
graphically as a collection of g1 discrete lines with a common slope of 1/g1. Similarly,
if gk is the largest minimal generator, then the graph of m : S → N will eventually
appear as a collection of gk discrete lines with common slope 1/gk . Figure 3, which
shows the functions M(n) and m(n) for S = 〈5, 16, 17, 18, 19〉, demonstrates this
concept.

Fig. 3 Plots of M(n) (left) and m(n) (right) for the numerical monoid 〈5, 16, 17, 18, 19〉
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Fig. 4 Plots of the elasticities of elements from the monoids 〈7, 41〉 (left) and 〈20, 21, 45〉 (right)

Since the elasticity of an element n in a numerical monoid is given by the quotient
ofM(n) andm(n), we use Theorems 4.2 and 4.3 to provide a characterization of R(S).

Corollary 4.5 Fix a numerical monoid S minimally generated by g1 < · · · < gk.

(a) For n ≥ gk−1gk, we have

ρ(n + g1gk) = M(n) + gk
m(n) + g1

.

(b) The set R(S) is the union of a finite set and a collection of g1gk monotone increas-
ing sequences, each converging to gk/g1.

Proof Part (a) follows directly from Theorems 4.2 and 4.3. From this, it follows that
for gk−1gk ≤ n < gk−1gk + g1gk , the sequence

ρ(n), ρ(n + g1gk), ρ(n + 2g1gk), . . .

is monotone increasing and converges to gk/g1. This completes the proof. �
Remark 4.6 Theorem 2.5 states that the only accumulation point of the elasticity
set R(S) is its maximum. Corollary 4.5, on the other hand, gives a characterization
of the entire set R(S), from which several other results from [4] can be recovered.
In particular, the characterization of the set of elasticities provided in Corollary 4.5
describes R(S) as a union of a finite set and g1gk monotone increasing sequences, each
converging to gk/g1, which clearly implies that the only accumulation point is gk/g1.

Example 4.7 The elasticity graphs for numerical monoids 〈7, 41〉 and 〈20, 21, 45〉 are
given in Fig. 4. The latter of numerical monoids is not arithmetical and demonstrates
that the uniformity of the “wedges” enjoyed by arithmetical numerical monoids is
not present, especially for smaller values. Regardless, for any numerical monoid S =
〈g1, . . . , gk〉, the characterization of R(S) provided in Corollary 4.5 shows that ρ can
be eventually described as g1gk monotone increasing sequences that limit to gk/g1,
where each sequence contains precisely one point in each “wedge.”
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