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Abstract The present paper studies the problem of uniform dichotomy for evolution
families in general. We obtain a result identical with the one for differential systems
in infinite dimensional spaces (Massera and Schäffer in Linear Diferential Equations
and Function Spaces, Academic Press, New York, 1966, Preda in An Univ Timisoara
Ser Stiint Mat 17:65–71, 1979), as well as the existence of a family of projectors
compatible with the evolution family. This family of projectors has similar properties
as the one obtained by vanMinh et al. (Integr EquOper Theory 32:332–353, 1998) and
by van Minh and Thieu Huy (J Math Anal Appl 261:28–44, 2001), but for evolution
families with uniform exponential growth.
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1 Introduction

The present paper belongs to the field of evolution equations theory (differential equa-
tions and asymptotic properties of their solutions) which started to develop in the
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Admissibility and uniform dichotomy 225

1930s. As a starting point for a vast literature concerning this subject, we mention the
pioneering work of Perron [12], who in 1930 was the first to establish the connection
between the asymptotic behavior of the solution of the differential equation

ẋ(t) = A(t)x(t) (A)

and the associated non-homogeneous equation

ẋ(t) = A(t)x(t) + f (t) (A, f )

in finite dimensional spaces, where A is a n×n dimensional, continuous and bounded
matrix and f is a continuous and bounded function on R+.

In a paper from 1958 ([8]), Massera and Schäffer study the same problem as Perron
for differential systems in infinite dimensional spaces. This time they used the pair of
spaces (L p, L∞), 1 < p < ∞, where

L p = { f : [0,∞) → X :
∫ ∞

0
|| f (t)||pdt < ∞},

L∞ = { f : [0,∞) → X : ess sup
t≥0

|| f (t)|| < ∞}.

In the monograph [9], the same authors prove that the differential system (A) has
uniform dichotomy if and only if the pair of spaces (L1, L∞) is admissible to it.

The case of differential systems in finite dimensional spaces was later studied by
Coppel in the monographs [2,3] and by Hartman [6].

Further developments for differential systems in infinite dimensional spaces can be
found in the monographs of Daleckij and Krein [4] and Massera and Schäffer [9]. The
case of dynamical systems described by evolution processes was studied by Chicone
and Latushkin [1], by Engel and Nagel [5] and by Levitan and Zhikov [7].

Another important result is the one presented by vanMinh et al. in [10]. In this paper
the authors give a characterization for uniform exponential dichotomy of evolution
families with uniform exponential growth, i.e. ||�(t, t0)|| ≤ Meω(t−t0) for all t ≥
t0 ≥ 0, using the pair of spaces (C00, C), where

C = { f : [0,∞) → X : f is continuous and bounded},
C00 = { f ∈ C : lim

t→∞ f (t) = f (0) = 0}.

The admissibility of the above mentioned pair of spaces also implies the existence of
a family of projectors compatible with the evolution families used. In order to prove
our main result, we use similar techniques as the ones in this paper.

The next important step in studying asymptotic properties of evolution familieswith
uniform exponential growth is the paper [11] of vanMinh and Thieu Huy. The authors
use the pair of spaces (L p, L p ∩ C) and the input-output technique. The admissibility
of this pair of spaces implies uniform dichotomy for the evolution families, as well as
the existence of a family of projectors compatible with them. Inspired by this paper,

123



226 P. Preda et al.

we also use this technique, i.e. we choose carefully selected input functions that allow
us to prove our main result.

In the present paper, we study uniform dichotomy of evolution families without any
exponential growth, by using the input-output technique. We generalize the results
found in the papers [8–11,13].

2 Preliminaries

Let X be a Banach space andB(X) the space of all linear and bounded operators acting
on X . The norms on X and on B(X) will be denoted by || · ||.
Definition 2.1 A family of linear operators � : � = {(t, t0) ∈ R

2+ : t ≥ t0 ≥ 0} →
B(X) on a Banach space X is an evolution family if:

(i) �(t, t) = I , for all t ∈ R+, where I is the identity on X ;
(ii) �(t, t0) = �(t, s)�(s, t0), for all t ≥ s ≥ t0 ≥ 0;
(iii) themap�(·, t0)x is continuous on [t0,∞) for all x ∈ X and�(t, ·)x is continuous

on [0, t] for all x ∈ X .

Let X1(0) = {x ∈ X : �(·, 0)x ∈ L∞} be a complemented space in X and X2(0)
one of its complements, i.e. X = X1(0) ⊕ X2(0).

We use the spaces

L1(X) = { f : R+ → X : f is Bochner measurable and
∫ ∞

0
|| f (τ )||dτ < ∞},

L∞(X) = { f : R+ → X : f is Bochner measurable and ess sup
t≥0

|| f (t)|| < ∞}.

The norms on these spaces are

|| f ||1 =
∫ ∞

0
|| f (τ )||dτ,

|| f ||∞ = ess sup
t≥0

|| f (t)||.

The spaces (L1(X), || · ||1) and (L∞(X), || · ||∞) are Banach spaces.

Definition 2.2 Let {�(t, t0)}t≥t0≥0 be an evolution family. The pair of spaces
(L1(X), L∞(X)) is admissible to {�(t, t0)}t≥t0≥0 if and only if for every f in L1(X)

there exists an element x in X such that the function x f : R+ → X ,

x f (t) = �(t, 0)x +
∫ t

0
�(t, τ ) f (τ )dτ is in L∞(X).

Remark 2.1 If the pair (L1(X), L∞(X)) is admissible to the evolution family
{�(t, t0)}t≥t0≥0, then for every f in L1(X) there exists an unique element x in X2(0)
such that the function
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Admissibility and uniform dichotomy 227

x f (t) = �(t, 0)x +
∫ t

0
�(t, τ ) f (τ )dτ is in L∞(X).

Indeed, if f is in L1(X), then there exists x in X such that the function

x f : R+ → X, x f (t) = �(t, 0)x +
∫ t

0
�(t, τ ) f (τ )dτ, is in L∞(X).

Since X = X1(0) ⊕ X2(0), then there exist two unique elements x1 ∈ X1(0) and
x2 ∈ X2(0) such that x = x1 + x2.

Then the function x f − �(·, 0)x1 is in L∞(X), which means that

t 	→ �(t, 0)x2 +
∫ t

0
�(t, τ ) f (τ )dτ : R+ → X is in L∞(X).

So we have found an element x2 ∈ X2(0) such that the above function is in L∞(X).
We show that this element is unique.

We assume that there exist z1, z2 ∈ X2(0) such that the functions

x1f , x
2
f : R+ → X,

x1f (t) = �(t, 0)z1 +
∫ t

0
�(t, τ ) f (τ )dτ,

x2f (t) = �(t, 0)z2 +
∫ t

0
�(t, τ ) f (τ )dτ,

are in L∞(X). Then x1f − x2f is in L∞(X) and

x1f (t) − x2f (t) = �(t, 0)(z1 − z2),

for all t ≥ 0, so z1 − z2 ∈ X1(0). Since z1 − z2 ∈ X2(0), the conclusion is that
z1 = z2. Throughout the following we denote by

x f (t) = �(t, 0)x +
∫ t

0
�(t, τ ) f (τ )dτ

the function for which x f (0) = x ∈ X2(0).

Definition 2.3 A family of operators P : R+ → B(X) is called a family of projectors
if and only if

P2(t) = P(t), for all t ≥ 0.

We denote Q(t) = I − P(t), for all t ≥ 0. Therefore the subspaces X1(t) = P(t)X
and X2(t) = Q(t)X , for all t ≥ 0, are closed and complemented, i.e. X = X1(t) ⊕
X2(t), for all t ≥ 0.
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Definition 2.4 Let {�(t, t0)}t≥t0≥0 be an evolution family. The family of projectors
P : R+ → B(X) is called compatible to the evolution family if and only if

(i) P(t)�(t, t0) = �(t, t0)P(t0), for all t ≥ t0 ≥ 0;
(ii) �(t1, t0) : X2(t0) → X2(t1) is invertible, for all t1 ≥ t0 ≥ 0;
(iii) the function t 	→ P(t)x : R+ → X is continuous and bounded, for all t ≥

0, x ∈ X .

Definition 2.5 The evolution family {�(t, t0)}t≥t0≥0 is uniform dichotomic if and
only if there exist a family of projectors P : R+ → B(X), compatible to
{�(t, t0)}t≥t0≥0, and N > 0 such that

(i) ||�(t, t0)P(t0)x || ≤ N ||P(t0)x ||, for all x ∈ X and t ≥ t0 ≥ 0;
(ii) N ||�(t, t0)Q(t0)x || ≥ ||Q(t0)x ||, for all x ∈ X and t ≥ t0 ≥ 0.

Throughout the following we assume that only X1(0) is complemented in X and
that X2(0) is one of its complements.

Remark 2.2 If x ∈ X2(0) \ {0}, then �(t, 0)x 
= 0, for all t ≥ 0.

Indeed, if we assume that there exists t0 > 0 such that

�(t0, 0)x = 0,

where x ∈ X2(0) \ {0}, then

�(t, 0)x = 0,

for all t ≥ t0 ≥ 0.
Therefore �(·, 0)x is in L∞(X), since it is continuous on the compact interval

[0, t0], so x ∈ X1(0), which is absurd, because X1(0) ∩ X1(0) = {0}.

3 Main results

Lemma 3.1 Let {�(t, t0)}t≥t0≥0 be an evolution family. If lim
n→∞ fn = f in L1(X),

then

lim
n→∞

∫ t

0
�(t, τ ) fn(τ )dτ =

∫ t

0
�(t, τ ) f (τ )dτ, for all t ≥ 0.

Proof Since �(t, ·)x is continuous on [0, t], for all x ∈ X , then there exists Mt,x > 0
such that

||�(t, τ )x || ≤ Mt,x , for all τ ∈ [0, t] and x ∈ X.

By the uniform boundedness principle there exists Mt > 0 such that

||�(t, τ )x || ≤ Mt ||x ||, for all τ ∈ [0, t] and x ∈ X.
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Admissibility and uniform dichotomy 229

This implies ||�(t, τ )|| ≤ Mt for all τ ∈ [0, t].
We have that

||
∫ t

0
�(t, τ ) fn(τ )dτ −

∫ t

0
�(t, τ ) f (τ )dτ ||

≤ Mt

∫ t

0
|| fn(τ ) − f (τ )||dτ ≤ Mt || fn − f ||1 −−−→

n→∞ 0, for all t ≥ 0.

��
The following theorem is one of the most important tools in proving our main result.

Theorem 3.1 If the pair (L1(X), L∞(X)) is admissible to the evolution family
{�(t, t0)}t≥t0≥0, then there exists k > 0 such that

||x f (t)|| ≤ k|| f ||1, a.e. t ≥ 0,

for all f ∈ L1(X).

Proof Let U : L1(X) → X2(0) ⊕ L∞(X) = {(x, g)|x ∈ X2(0), g ∈
L∞(X)}, U f = (x f (0), x f ). The norm on X2(0) ⊕ L∞(X) is ||(x, g)|| = ||x || +
||g||∞. We will show that it is a closed linear operator.

Let

fn
L1(X)−−−→
n→∞ f and U fn

X2(0)⊕L∞(X)−−−−−−−−→
n→∞ (y, g).

We prove that U f = (y, g).
By Lemma 3.1

lim
n→∞ x fn (t) = �(t, 0)y +

∫ t

0
�(t, τ ) f (τ )dτ

for all t ≥ 0, but we also have that

lim
n→∞ x fn (t) = g(t) a.e. t ≥ 0.

This proves that U f = (y, g) in X2(0) ⊕ L∞(X), which means that U is closed. By
the closed graph principle we have that there exists k > 0 such that

||U f || ≤ k|| f ||1, for all f ∈ L1(X).

This shows that

||x f (t)|| ≤ k|| f ||1 a.e. t ≥ 0,

for all f ∈ L1(X). ��
The following theorem is our main result.
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Theorem 3.2 Let X1(0) be a closed and complemented subspace in X and X2(0) one
of its complemets.

The pair (L1(X), L∞(X)) is admissible to the evolution family {�(t, t0)}t≥t0≥0 if
and only if {�(t, t0)}t≥t0≥0 is uniform dichotomic.

Proof Necessity. Let t0 ≥ 0, X1(t0) = {x ∈ X : �(·, t0)x ∈ L∞(X)}, for all
t0 ≥ 0, x ∈ X1(t0) such that �(t, t0)x 
= 0, for all t ≥ t0 ≥ 0, � > 0 and
f : R+ → X ,

f (t) = ϕ[t0,t0+�](t)
�(t, t0)x

||�(t, t0)x || ,

where ϕ[t0,t0+�] is the characteristic function of the interval [t0, t0 + �].
Then || f ||1 = � and let y : R+ → X ,

y(t) =
{
0, 0 ≤ t ≤ t0∫ t
t0

ϕ[t0,t0+�](τ ) dτ
||�(τ,t0)x ||�(t, t0)x, t ≥ t0

.

We have that

y(t) =
∫ t

0
�(t, τ ) f (τ )dτ, for all t ≥ 0.

Obviously y ∈ L∞(X) and since y(0) = 0 is an element of X2(0), then y = x f .
The function y is continuous and by Theorem 3.1 and we have that

||y(t)|| ≤ k�, for all t ≥ 0.

Therefore, if t ≥ t0 + �,

1

�

∫ t0+�

t0

dτ

||�(τ, t0)x || ||�(t, t0)x || ≤ k.

If � → 0, then the above inequality becomes

||�(t, t0)x || ≤ k||x ||, for all t ≥ t0 ≥ 0.

Let x ∈ X1(t0) such that there exists t ′ > t0 with �(t ′, t0)x = 0. Then �(t, t0)x = 0,
for all t ≥ t ′.

We denote σ = inf
t≥t0

{t : �(t, t0)x = 0}, so �(σ, t0)x = 0 and �(t, t0)x 
= 0, for

all t ∈ [t0, σ ).

We have shown that ||�(t, t0)x || ≤ k||x ||, for all t ∈ [t0, σ ), so

||�(t, t0)x || ≤ k||x ||, for all t ≥ t0 ≥ 0, x ∈ X1(t0). (1)

Next we show that X1(t0) is a closed subspace, for all t0 ≥ 0.
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Admissibility and uniform dichotomy 231

Let t0 ≥ 0 and x ∈ X1(t0). Then there exists (xn)n in X1(t0) such that lim
n→∞ xn = x .

Since xn ∈ X1(t0), then

||�(t, t0)xn|| ≤ k||xn||, for all n ∈ N, t ≥ t0 ≥ 0.

Therefore if n → ∞, ||�(t, t0)x || ≤ k||x ||, for all t ≥ t0 ≥ 0.
So�(·, t0)x ∈ L∞(X) and x ∈ X1(t0). This shows that X1(t0) is a closed subspace.
Let � > 0, t0 ≥ 0, x ∈ X2(0) \ {0} and g : R+ → X ,

g(t) = ϕ[t0,t0+�](t)
�(t, 0)x

||�(t, 0)x || .

Then g ∈ L1(X) and ||g||1 = �. Let z : R+ → X ,

z(t) = −
∫ ∞

t
ϕ[t0,t0+�](τ )

dτ

||�(τ, 0)x ||�(t, 0)x

= �(t, 0)

(
−

∫ ∞

0
ϕ[t0,t0+�](τ )

dτ

||�(τ, 0)x || x
)

+
∫ t

0
�(t, τ )g(τ )dτ.

Obviously z(t) = 0 for all t ≥ t0 + �, so z ∈ L∞(X). Since z(0) ∈ X2(0), then
z = xg. The function z is continuous and by Theorem 3.1 we have that

||z(t)|| ≤ k�, for all t ≥ 0.

If t ≤ t0, the above inequality becomes

1

�

∫ t0+�

t0

dτ

||�(τ, 0)x || ||�(t, 0)x || ≤ k.

If � → 0, then

||�(t, 0)x || ≤ k||�(t0, 0)x ||, for all t0 ≥ t ≥ 0, x ∈ X2(0).

Therefore

||�(t, 0)x || ≥ 1

k
||�(t0, 0)x ||, for all t ≥ t0 ≥ 0, x ∈ X2(0).

We denote X2(t0) = �(t0, 0)X2(0), so

||�(t, t0)x
′|| ≥ 1

k
||x ′||, for all t ≥ t0 ≥ 0, x ′ ∈ X2(t0). (2)

Next we show that X2(t0) is a closed subspace, for all t0 ≥ 0.
Let x ∈ X2(t0), then there exists (xn)n in X2(t0) such that lim

n→∞ xn = x .
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Since xn ∈ X2(t0), then there exists un ∈ X2(0) such that xn = �(t0, 0)un , for all
n ∈ N.

We have that

||xn − xm || = ||�(t0, 0)(un − um)|| ≥ 1

k
||un − um ||, for all n,m ∈ N,

so (un)n is a fundamental sequence in X2(0). Therefore there exists u ∈ X2(0) such
that lim

n→∞ un = u.

We have that lim
n→∞ xn = �(t0, 0)u. But lim

n→∞ xn = x, so x = �(t0, 0)u, which

implies x ∈ X2(t0). This shows that X2(t0) is closed, for all t0 ≥ 0.
Next we show that X = X1(t0) ⊕ X2(t0), for all t0 ≥ 0.
Let z ∈ X and f : R+ → X ,

f (t) =
{−�(t, t0)z, t ∈ [t0, t0 + 1]
0, otherwise

.

Obviously f ∈ L1(X), so there exists an unique x ′ ∈ X2(0) such that the function
x f : R+ → X ,

x f (t) = �(t, 0)x ′ +
∫ t

0
�(t, τ ) f (τ )dτ, is in L∞(X).

But

x f (t) = �(t, t0)(�(t0, 0)x
′ − z), for all t ≥ t0 + 1.

Therefore �(t0, 0)x ′ − z ∈ X1(t0).
Clearly

z = z − �(t0, 0)x
′ + �(t0, 0)x

′ ∈ X1(t0) + X2(t0), for all t0 ≥ 0.

So
X = X1(t0) + X2(t0), for all t0 ≥ 0. (3)

Next we show that X1(t0) ∩ X2(t0) = {0}, for all t0 ≥ 0.
Let t0 ≥ 0 and y ∈ X1(t0) ∩ X2(t0). So �(·, t0)y ∈ L∞(X) and there exists

v ∈ X2(0) such that y = �(t0, 0)v.

Therefore

�(·, t0)y = �(·, t0)�(t0, 0)v = �(·, 0)v ∈ L∞(X),

which shows that v ∈ X1(0) ∩ X2(0) = {0}. So y = 0. By (3) this proves that
X = X1(t0) ⊕ X2(t0), for all t ≥ t0 ≥ 0.

Thus we have shown that X1(t0) and X2(t0) are closed complements in X .
We show next that the function �(t1, t0) : X2(t0) → X2(t1) is invertible.
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Let t1 ≥ t0 ≥ 0, z ∈ X2(t1) and f : R+ → X ,

f (t) =
{−�(t, t1)z, t ∈ [t1, t1 + 1]
0, otherwise

.

Since f ∈ L1(X), then there exists an unique u ∈ X2(0) such that the function
x f : R+ → X ,

x f (t) = �(t, 0)u +
∫ t

0
�(t, τ ) f (τ )dτ,

is in L∞(X).
But

x f (t) = �(t, t1)(�(t1, 0)u − z) = �(t, t1)(�(t1, t0)�(t0, 0)u − z),

for all t ≥ t1 + 1.
We know that �(t1, t0)�(t0, 0)u − z is an element of X1(t1) ∩ X2(t1), so

z = �(t1, t0)�(t0, 0)u.

Obviously �(t0, 0)u ∈ X2(t0) and u is unique, so �(t1, t0) is invertible, for all t1 ≥
t0 ≥ 0.

Let t0 ≥ 0, � > 0, x1 ∈ X1(t0) \ {0}, x2 ∈ X2(t0) \ {0} and the functions
y, z, w : R+ → X ,

y(t) =
{

�(t, t0)
x1||x1|| , t ≥ t0

x1||x1|| , t < t0
, z(t) =

{
�(t, t0)

x2||x2|| , t ≥ t0
x2||x2|| , t < t0

,

w(t) = y(t) + z(t).

It can easily be seen that if x ∈ X1(t0), then �(t1, t0)x ∈ X1(t1), for all t1 ≥ t0 ≥ 0.
Therefore y(t) ∈ X1(t) and z(t) ∈ X2(t), so w(t) 
= 0, for all t ≥ 0.
We also consider the functions f, v : R+ → X ,

f (t) = ϕ[t0,t0+�](t)
w(t)

||w(t)|| and

v(t) =
∫ t

0
ϕ[t0,t0+�](τ ) dτ

||w(τ)||
y(t) −

∫ ∞

t
ϕ[t0,t0+�](τ ) dτ

||w(τ)||
z(t).

If x2 ∈ X2(t0) \ {0}, then there exists u2 ∈ X2(0) \ {0} such that x2 = �(t0, 0)u2.
If t ≥ t0, we have

v(t) =
∫ t

0
ϕ[t0,t0+�](τ )

1

||w(τ)||dτ
�(t, t0)x1

||x1||

123
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−�(t, 0)

[∫ ∞

0
ϕ[t0,t0+�](τ )

1

||w(τ)||dτ
u2

||�(t0, 0)u2||
]

+
∫ t

0
ϕ[t0,t0+�](τ )

1

||w(τ)||dτ
�(t, t0)x2

||x2||
= �(t, 0)

[
−

∫ ∞

0
ϕ[t0,t0+�](τ )

1

||w(τ)||dτ
u2

||�(t0, 0)u2||
]

+
∫ t

0
ϕ[t0,t0+�](τ )

1

||w(τ)||dτw(t).

Therefore v(t) = �(t, 0)v(0) + ∫ t
0 �(t, τ ) f (τ )dτ for all t ≥ t0.

But v(0) ∈ X2(0) and v ∈ L∞(X), so v(t) = x f (t), for all t ≥ t0. The function v

is continuous, so by Theorem 3.1

||v(t)|| ≤ k|| f ||1, for all t ≥ t0 ≥ 0.

If t = t0 and since || f ||1 = �, the above inequality becomes

1

�

∫ t0+�

t0

dτ

||w(τ)|| ≤ k.

If � → 0, then

||w(t0)|| ≥ 1

k
, for all t0 ≥ 0.

But w(t0) = x1||x1|| + x2||x2|| , so γ [X1(t0), X2(t0)] ≥ 1
k , for all t0 ≥ 0, where

γ [X1(t0), X2(t0)] = inf
x1∈X1(t0),x2∈X2(t0)

∣∣∣∣
∣∣∣∣ x1
||x1|| + x2

||x2||
∣∣∣∣
∣∣∣∣ .

We denote P1(t) = P(t) and P2(t) = I − P(t), for all t ≥ 0.
We have that 2

||Pi (t0)|| ≥ γ [X1(t0), X2(t0)], for all t0 ≥ 0, i = 1, 2 ([9], Theorem
11.D, p. 8), so

||Pi (t0)|| ≤ 2k, for all t0 ≥ 0, i = 1, 2,

which proves that the functions t 	→ ||Pi (t)|| : R+ → R+ are bounded, i = 1, 2.
Let x ∈ X and t ≥ t0 ≥ 0. We have that

||Pi (t)x − Pi (t0)x || = ||Pi (t)x − �(t, t0)Pi (t0)x + �(t, t0)Pi (t0)x − Pi (t0)x ||
≤ ||Pi (t)||||x − �(t, t0)x || + ||�(t, t0)Pi (t0)x − Pi (t0)x ||,

for all t ≥ t0 ≥ 0 and x ∈ X, i = 1, 2.
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If t → t0, then

lim
t → t0
t > t0

||Pi (t)x − Pi (t0)x || = 0,

for all x ∈ X , so the functions t 	→ Pi (t)x : R+ → X are righthand-side continuous,
i = 1, 2.

If t < t0, it follows that �(t0, t) : X2(t) → X2(t0) is invertible.
We show that t 	→ �−1(t0, t)x : [0, t0] → X is continuous on [0, t0], for all

x ∈ X2(t0).
Let s ∈ [0, t0], (sn)n such that lim

n→∞ sn = s and x ∈ X2(t0). Then there exists

y ∈ X2(0) such that x = �(t0, 0)y.
We have

�−1(t0, sn)x = �−1(t0, sn)�(t0, 0)y

= �−1(t0, sn)�(t0, sn)�(sn, 0)y = �(sn, 0)y −−−→
n→∞ �(s, 0)y

= �(s, 0)�−1(t0, 0)x = �(s, 0)(�(t0, s)�(s, 0))−1x = �−1(t0, s)x .

This proves that t 	→ �−1(t0, t)x : [0, t0] → X is continuous on [0, t0], for all
x ∈ X2(t0).

We show that

�(t0, t)Pi (t) = Pi (t0)�(t0, t), for all t0 ≥ t ≥ 0, i = 1, 2.

It is sufficient to show that the relation above is true for i = 2. Let x ∈ X , since
P2(t0)x ∈ X2(t0), there exists u ∈ X2(0) such that P2(t0)x = �(t0, 0)u, so we have
that

�(t, t0)P2(t0)x = �(t, t0)�(t0, 0)u = �(t, 0)u = P2(t)�(t, t0)P2(t0)x

= P2(t)�(t, t0)x − P2(t)�(t, t0)P1(t0)x,

but P2(t)�(t, t0)P1(t0)x = 0, for all t ≥ t0 ≥ 0, so

�(t, t0)P2(t0)x = P2(t)�(t, t0)x, for all t ≥ t0 ≥ 0, x ∈ X.

Therefore

Pi (t)x = �−1(t0, t)Pi (t0)�(t0, t)x −−−−−→
t → t0
t < t0

Pi (t0)x,

for all x ∈ X, i = 1, 2.
This implies that t 	→ Pi (t)x : R+ → X are lefthand-side continuous, i = 1, 2.
Thus the functions t 	→ Pi (t)x : R+ → X are continuous, for all x ∈ X, i = 1, 2.
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We can conclude now that the evolution family {�(t, t0)}t≥t0≥0 is uniform
dichotomic. Sufficiency.

Let f : R+ → X, f ∈ L1(X), and the function y : R+ → X ,

y(t) =
∫ t

0
�(t, τ )P(τ ) f (τ )dτ −

∫ ∞

t
�−1(τ, t)Q(τ ) f (τ )dτ,

where P(t) : R+ → B(X) is the family of projectors compatible to the evolution
family {�(t, t0)}t≥t0≥0 and Q(t) = I − P(t), for all t ≥ 0. Obviously both integrals
from the relation above are convergent. We denote x = y(0) and so x ∈ X2(0).

We have

x f (t) = �(t, 0)x +
∫ t

0
�(t, τ ) f (τ )dτ

= −
∫ t

0
�(t, 0)�−1(τ, 0)Q(τ ) f (τ )dτ −

∫ ∞

t
�(t, 0)�−1(τ, 0)Q(τ ) f (τ )dτ

+
∫ t

0
�(t, τ ) f (τ )dτ

= −
∫ t

0
�(t, τ )Q(τ ) f (τ )dτ −

∫ ∞

t
�−1(τ, t)Q(τ ) f (τ )dτ +

∫ t

0
�(t, τ ) f (τ )dτ

=
∫ t

0
�(t, τ )P(τ ) f (τ )dτ −

∫ ∞

t
�−1(τ, t)Q(τ ) f (τ )dτ = y(t),

for all t ≥ 0.
So x f = y. But

||y(t)|| ≤ N (sup
τ≥0

||P(τ )|| + sup
τ≥0

||Q(τ )||)|| f ||1 < ∞,

for all t ≥ 0. Therefore y is an element of L∞(X). ��
Remark 3.1 In the hypothesis of the theorem above it can easily be seen that the
subspace X1(t0) = {x ∈ X : �(·, t0)x ∈ L∞} is actually P(t0)X , for all t0 ≥ 0, i.e.
all the bounded solutions verify condition (i) in Definition 2.5.

References

1. Chicone, C., Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Diferential Equations.
Mathematical Surveys and Monographs, vol. 70. American Mathematical Society, Providence (1999)

2. Coppel, W.A.: Stability and Asymptotic Behaviour of Differential Equations. Health Mathematical
Monographs, Boston (1965)

3. Coppel, W.A.: Dichotomies in Stability Theory. Lecture Notes in Mathematics, vol. 629. Springer,
New York (1978)

4. Daleckij, J.L.,Krein,M.G.: Stability ofDiferentialEquations inBanachSpace.AmericanMathematical
Society, Providence (1974)

5. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in
Mathematics, vol. 194. Springer, New York (1999)

123



Admissibility and uniform dichotomy 237

6. Hartman, P.: Ordinary Differential Equations. Wiley, New-York (1964)
7. Levitan, B.M., Zhikov, V.V.: Almost Periodic Functions and Differential Equations. Cambridge

University Press, Cambridge (1982)
8. Massera, J.L., Schäffer, J.J.: Linear differential equations and functional analysis. I. Ann. Math. 67,

517–573 (1958)
9. Massera, J.L., Schäffer, J.J.: Linear Diferential Equations and Function Spaces. Academic Press, New

York (1966)
10. van Minh, N., Räbiger, F., Schnaubelt, R.: Exponential stability, exponential expansiveness and expo-

nential dichotomy of evolution equations on the half-line. Integr. Equ. Oper. Theory 32, 332–353
(1998)

11. van Minh, N., Huy, N.T.: Characterizations of dichotomies of evolution equations on the half-line.
J. Math. Anal. Appl. 261, 28–44 (2001)

12. Perron, O.: Die stabilitätsfrage bei differentialgleichungen. Math. Z. 32, 703–728 (1930)
13. Preda, P.: a, b-dichotomie des équations différentielles linéaires. An. Univ. Timişoara Ser. Ştiinţ. Mat.
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