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Abstract The investigation and classification of nonunique factorization phenom-
ena has attracted some interest in recent literature. For finitely generated monoids,
S.T. Chapman and P.A. García-Sánchez, together with several co-authors, derived
a method to calculate the catenary and tame degree from the monoid of relations.
Then, in Philipp (Semigroup Forum 81:424–434, 2010), the algebraic structure of
this approach was investigated and the restriction to finitely generated monoids was
removed. We now extend these ideas further to the monotone catenary degree and
then apply all these results to the explicit computation of arithmetical invariants of
semigroup rings.

Keywords Nonunique factorizations · Monoid of relations · Monotone catenary
degree

1 Introduction

An integral domain and, more generally, a commutative, cancellative monoid is called
atomic if every nonzero nonunit has a factorization into irreducible elements, and it is
called factorial if this factorization is unique up to ordering and associates. Nonunique
factorization theory is concerned with the description and classification of nonunique
factorization phenomena arising in atomic domains. It has its origin in algebraic num-
ber theory—the ring of integers of an algebraic number field is atomic but generally
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Characterization of arithmetical invariants by the monoid of relations II 221

not factorial—but in recent decades it became an autonomous theory with many con-
nections to zero-sum theory, commutative ring theory, module theory, additive combi-
natorics, and representations of monoids. We refer to the monograph [14] for a recent
presentation of the various aspects of the theory.

To describe these phenomena, various invariants have been studied in the litera-
ture. Among these, the tame degree, the catenary degree, and—a variant thereof—the
monotone catenary degree received some attention in recent research; for some new
results, see, e.g. [3,12], and [13]; for an overview of known results and additional
references, see, e.g., the monograph [14]; for a statement of the formal definitions,
see Sect. 2 and the beginning of Sect. 4. Additionally, monotone and near monotone
chains of factorizations have been studied in [10,11], and [12, Sect. 7].

There are natural connections between arithmetical invariants on the one side and
presentations of the semigroup on the other side. It is quite surprising that investigations
of this type were started only fairly recently by Chapman et al. in [4]. First results
were restricted to finitely generated monoids (with a focus on numerical monoids) and
to the catenary and tame degrees. But then the study was extended to more general
settings and to a wider range of arithmetical invariants (see [4,29], and especially
[3,5], and [6]). In the present paper, we establish results of this flavor. More precisely,
in Sects. 3 and 4 we extend the tools from [24] to study the monotone catenary degree
by submonoids of the monoid of relations.

Apart from being of interest in their own right, all these results, which characterize
arithmetical invariants by certain monoids of relations, can often be used successfully
for further arithmetical investigations. So we do in Sect. 5, where we apply the abstract
semigroup theoretical results of the previous sections to semigroup rings and to gen-
eralized power series rings. This is part of a more general strategy in factorization
theory. Indeed, domains of arithmetical interest (such as orders in algebraic number
fields) are rarely studied in a direct way but mainly by transfer homomorphisms to
auxiliary monoids which have a simpler structure but which still carry much arithmeti-
cal information of the starting domains (in case of orders in algebraic number fields,
the auxiliary monoids are T -block monoids). The auxiliary monoids have such sim-
ple constituents for which monoids of relations can actually be determined and then
they give the required information on the arithmetical invariants. For a more detailed
description of such an approach we refer to [26] where semigroup theoretical results
of the present paper—in particular, Lemma 3.4—are used to study the arithmetic of
non-principal orders in algebraic number fields.

2 Preliminaries

In this note, our notation and terminology will be consistent with [14]. Let N denote
the set of positive integers and let N0 = N � {0}. For integers n, m ∈ Z, we set
[n, m] = {x ∈ Z | n ≤ x ≤ m}. By convention, the supremum of the empty
set is zero and we set 0

0 = 1. The term “monoid” always means a commutative,
cancellative semigroup with unit element. When not mentioned otherwise, we will
write all monoids multiplicatively. For a monoid H , we denote by H× the set of
invertible elements of H and by q(H) the quotient group of H , i.e., H−1 H . We call
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H reduced if H× = {1} and call Hred = H/H× the reduced monoid associated with
H . Of course, Hred is always reduced. Note that the arithmetic of H is determined
by Hred and therefore we can restrict our attention to reduced monoids whenever
convenient. We denote by A(H) the set of atoms of H , by A(Hred) the set of atoms
of the associated reduced monoid Hred, by Z(H) = F(A(Hred)) the free (abelian)
monoid with basis A(Hred), and by πH : Z(H) → Hred the unique homomorphism
such that πH |A(Hred) = id. We call Z(H) the factorization monoid and call πH the
factorization homomorphism of H . For a ∈ H , we denote by Z(a) = π−1

H (aH×) the
set of factorizations of a and denote by L(a) = {|z| | z ∈ Z(a)} the set of lengths of a,
where | · | is the ordinary length function in the free monoid Z(H). In this terminology,
a monoid H is called half-factorial if |L(a)| = 1 for all a ∈ H \ H× and factorial
if |Z(a)| = 1 for all a ∈ H \ H×. This definition of being half-factorial coincides
with the classical definition, since then every two factorizations of an element have
the same length.

With all these notions at hand, for a ∈ H , we call

ρ(a) = sup L(a)

min L(a)
the elasticity of a and

ρ(H) = sup{ρ(a) | a ∈ H} the elasticity of H.

Note that H is half-factorial if and only if ρ(H) = 1.
For two factorizations z, z′ ∈ Z(H), we call

d(z, z′) = max

{∣∣∣∣ z

gcd(z, z′)

∣∣∣∣ ,
∣∣∣∣ z′

gcd(z, z′)

∣∣∣∣
}

the distance between z and z′

and, for two subset X, Y ⊂ Z(H), we call

d(X, Y ) = min{d(x, y) | x ∈ X, y ∈ Y } the distance between X and Y.

If one of the sets is a singleton, say X = {x}, we write d({x}, Y ) = d(x, Y ).
Let a ∈ H . We call two lengths k, l ∈ L(a) with k < l adjacent if [k, l] ∩ L(a) =

{k, l} and, for M ⊂ N, we set ZM (a) = {x ∈ Z(a) | |x | ∈ M}. If the set is
a singleton, say M = {k}, then we write Z{k}(a) = Zk(a). Additionally, we call
	H = {|l − k| | k, l ∈ L(a) are adjacent for some a ∈ H} the set of distances of H .

Definition 2.1 Let H be an atomic monoid and let a ∈ H .

1. Factorizations z0, . . . , zn ∈ Z(a) with n ∈ N and d(zi−1, zi ) ≤ N for some N ∈ N

and i ∈ [1, n] are called
• an N-chain concatenating z0 and zn (in Z(H)).
• a monotone N-chain concatenating z0 and zn (in Z(H)) if |zi−1| ≤ |zi | for all

i ∈ [1, n].
• an equal-length N-chain concatenating z0 and zn (in Z(H)) if |zi−1| = |zi |

for all i ∈ [1, n].
2. The
• catenary degree c(a)
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• monotone catenary degree cmon(a)

• equal catenary degree ceq(a)

denotes, respectively, the smallest N ∈ N0 ∪ {∞} such that, for all z, z′ ∈ Z(a)

with |z| ≤ |z′|, there is
• an N -chain concatenating z and z′.
• a monotone N -chain concatenating z to z′ or concatenating z′ to z.
• an equal-length N -chain concatenating z and z′.

Then we call
• c(H) = sup{c(a) | a ∈ H} the catenary degree of H .
• cmon(H) = sup{cmon(a) | a ∈ H} the monotone catenary degree of H .
• ceq(H) = sup{ceq(a) | a ∈ H} the equal-length catenary degree of H .

Note that sup{c(H), ceq(H)} ≤ cmon(H).
For the description and computation of the monotone catenary degree, we follow

the same two step procedure as in [3]. In order to formulate this precisely, we need to
define another variant of the catenary degree.

Definition 2.2 Let H be an atomic monoid. For a ∈ H , we define

cad(a) = sup{d(Zk(a), Zl(a)) | k, l ∈ L(a) are adjacent}

as the adjacent catenary degree of a.
Also, cad(H) = sup{cad(a) | a ∈ H} is called the adjacent catenary degree of H .

By [3, (4.1)], we find

c(H) ≤ cmon(H) = sup{ceq(H), cad(H)}.

Here we follow the same strategy as in [24, Sect. 3] for the definition of the
R-relation and the μ-invariant.

Definition 2.3 Let H be an atomic monoid and let a ∈ H .

1. Factorizations z0, . . . , zn ∈ Z(a) with n ∈ N and gcd(zi−1, zi ) �= 1 for all i ∈
[1, n] are called
• an R-chain concatenating z0 and zn (in Z(H)).
• a monotone R-chain concatenating z0 to zn (in Z(H)) if |zi−1| ≤ |zi | for all

i ∈ [1, n].
• an equal-length R-chain concatenating z0 and zn (in Z(H)) if |zi−1| = |zi |

for all i ∈ [1, n].
2. Two elements z, z′ ∈ Z(H) are
• R-related
• Req-related

respectively, if there is an
• R-chain
• equal-length R-chain

concatenating z and z′. We then write z ≈ z′ respectively z ≈eq z′.
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Note that, with the above definitions,≈ and≈eq are congruences on Z(H)×Z(H).
Based on these definitions, we can now recall the definition of the μ-invariant (for

reference see [24, Sect. 3]) and give the definition of the μeq-invariant and the μad-
invariant. Note that the definition of the last one differs significantly from the other
two since there is no appropriate equivalence relation we can make use of.

Definition 2.4 Let H be an atomic monoid and let a ∈ H .

1. Let Ra denote the set of R-equivalence classes of Z(a) and, for η ∈ Ra , let
|η| = min{|z| | z ∈ η}. We set

μ(a) = sup{|η| | η ∈ Ra} ≤ sup L(a)

and define μ(H) = sup{μ(a) | a ∈ H}.
2. For k ∈ L(a), let Ra,k denote the set of Req-equivalence classes of Zk(a). We set

μeq(a) = sup{k ∈ L(a) | |Ra,k | > 1} ≤ sup L(a)

and define μeq(H) = sup{μeq(a) | a ∈ H}.
3. We set

μad(a)= sup{k ∈ L(a) | d(Zk(a), Zl(a))=k for l ∈ L(a), l < k, l adjacent to k}.

Then we set μad(H) = sup{μad(a) | a ∈ H}.
Then μ(H) = 0 if and only if |Ra | ≤ 1 for all a ∈ H and μeq(H) = 0 if and only if
|Ra,k | ≤ 1 for all a ∈ H and k ∈ L(a).

Definition 2.5 Let H ⊂ D be monoids.

1. We call H ⊂ D saturated or, equivalently, a saturated submonoid if, for all
a, b ∈ H , a | b in D already implies that a | b in H ; that is, for all a, b ∈ H and
c ∈ D, a = bc implies c ∈ H .

2. If H ⊂ D is a saturated submonoid, then we set D/H = {aq(H) | a ∈ D} and
[a]D/H = aq(H) and we call q(D)/q(H) = q(D/H) the class group of H in D.

Definition 2.6 Let H be an atomic monoid. We call

∼H = {(x, y) ∈ Z(H)× Z(H) | π(x) = π(y)} the monoid of relations of H ,

∼H,eq = {(x, y) ∈∼H | |x | = |y|} the monoid of equal-length relations of H ,

∼H,mon = {(x, y) ∈∼H | |x | ≤ |y|} the monoid of monotone relations of H ,

and, for a ∈ H , we set

Aa(∼H ) = A(∼H ) ∩ (Z(a)× Z(a)),

Aa(∼H,eq) = A(∼H,eq) ∩ (Z(a)× Z(a)),

Aa(∼H,mon) = A(∼H,mon) ∩ (Z(a)× Z(a)).
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By [24, Lemma 11], ∼H⊂ Z(H) × Z(H) is a saturated submonoid of a free
monoid and thus a Krull monoid by [14, Theorem 2.4.8.1]. By [3, Proposition 4.4.1],
∼H,eq⊂∼H is a saturated submonoid and hence a Krull monoid, and, by [3, Propo-
sition 4.4.2], ∼H,eq is finitely generated if Hred is finitely generated. Unfortunately,
∼H,mon⊂∼H is not saturated, but, by Lemma 5.8, we find that ∼H,mon is a finitely
generated Krull monoid if H is finitely generated.

We briefly recall the main result on the catenary degree from [24] and offer a
corrected proof for monoids fulfilling the ascending chain condition on principal ideals
here.

Lemma 2.7 (cf. [24, Proposition 8, Corollary 9, Proposition 16]). Let H be an atomic
monoid which fulfills the ascending chain condition on principal ideals. Then

1. c(a) ≥ μ(a) for all a ∈ H, and c(H) = μ(H).
2. c(H) = sup{μ(a) | a ∈ H, Aa(∼H ) �= ∅, |Ra | > 1}.

Proof 1. Let a ∈ H be such that |Ra | > 1. We may assume that c(a) < ∞. Let
N ∈ N0 be such that μ(a) ≥ N . Let ρ ∈ Ra be such that |ρ| ≥ N and z ∈ ρ such
that |z| = |ρ|. Let z′ ∈ Z(a) be such that z �≈ z′ and let z = z0, z1, . . . , zk = z′ be
a c(a)-chain concatenating z and z′. Let i ∈ [1, k] be minimal such that z �≈ zi .
Then zi−1 �≈ zi , and therefore

N ≤ |z0| ≤ |zi−1| ≤ d(zi , zi−1) ≤ c(a).

The preceding argument has shown c(H) ≥ μ(H). Next we show

μ(H) ≥ c(H).

We show that, for all a ∈ H , we have c(a) ≤ μ(H). Since H fullfills the ascending
chain condition on principal ideals we can proceed by induction on a. For a = 1,
this is trivial. Now suppose a �= 1 and that, for all b ∈ H with b | a and b
not an associate of a, we have c(b) ≤ μ(H). Now let z, z′ ∈ Z(a). If z �≈ z′,
then there are z′′, z′′′ ∈ Z(a) such that z′′ ≈ z, z′′′ ≈ z′, and z′′ and z′′′ are
minimal in their R-classes with respect to their lengths. Since gcd(z′′, z′′′) = 1,
we find d(z′′, z′′′) = max{|z′′|, |z′′′|} ≤ μ(a) ≤ μ(H). Now it remains to show
that, for any two factorizations z, z′ ∈ Z(a) with z ≈ z′, there is a μ(H)-chain
concatenating them. By definition, there is an R-chain z0, . . . , zk with z = z0 and
z′ = zk , and gi = gcd(zi−1, zi ) �= 1 for all i ∈ [1, k]. Since πH (g−1

i zi−1) | a,
we find a μ(H)-chain concatenating g−1

i zi−1 and g−1
i zi for all i ∈ [1, k] by

induction hypothesis, and thus there is a μ(H)-chain concatenating zi−1 and zi for
all i ∈ [1, k]; thus there is a μ(H)-chain concatenating z and z′. So c(a) ≤ μ(H).

2. When we compare the definitions, we see that the only thing remaining is

{a ∈ H | Aa(∼H ) �= ∅, |Ra | > 1} = {a ∈ H | |Ra | > 1}.

One inclusion is trivial and, for the other one, let a ∈ H be such that |Ra | > 1,
and let z, z′ ∈ Z(a) be two factorizations of a such that z �≈ z′ and such that
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both are minimal in their R-equivalence classes with respect to their lengths. Now
assume (z, z′) /∈ A(∼H ). Then there is k ≥ 2 and (x1, y1), . . . , (xk, yk) ∈ A(∼H )

such that (z, z′) = (x1, y1) · · · · · (xk, yk). But now we find the following R-chain
from z to z′: z0 = z and zi = zi−1x−1

i yi for i ∈ [1, k]. Then zk = z′ and
gcd(zi−1, zi ) �= 1. Since this is a contradiction, we have (z, z′) ∈ A(∼H ), and
thus (z, z′) ∈ Aa(∼H ) �= ∅. ��

3 A characterization of the monotone catenary degree by monoids of relations

Lemma 3.1 Let H be an atomic monoid, a ∈ H and x, y ∈ Z(a).

1. If x �≈eq y with |x | = |y|, then (x, y) ∈ Aa(∼H,eq).
2. Let k, l ∈ L(a) be adjacent with k < l. If d(Zk(a), Zl(a)) = l, then (x, y) ∈

Aa(∼H,mon) for all x ∈ Zk(a) and y ∈ Zl(a).

Proof Since the arithmetic of H is determined solely by Hred, we may assume that H
is reduced.

1. Let a ∈ H and x, y ∈ Z(a) be such that (x, y) /∈ Aa(∼H,eq). Then, trivially,
(x, y) /∈ A(∼H,eq) and thus there are (x1, y1), . . . , (xk, yk) ∈ A(∼H,eq) with
k ≥ 2 such that (x, y) = (x1, y1) · · · · · (xk, yk). Then x = x1 · · · · · xk, y1x2 · · · · ·
xk, y1 · · · · · yk = y is an Req-chain concatenating x and y, and therefore x ≈eq y.

2. Let a ∈ H , let k, l ∈ L(a) be adjacent with k < l and d(Zk(a), Zl(a)) = l, and
let x ∈ Zk(a) and y ∈ Zl(a). Now suppose (x, y) /∈ Aa(∼H,mon). Then, trivially,
(x, y) /∈ A(∼H,mon) and there are (x1, y1), . . . , (xk, yk) ∈ A(∼H,mon) with k ≥ 2
and |y1| − |x1| ≤ · · · ≤ |yk | − |xk |. Then we set x ′ = x−1

1 y1x . If |y1| − |x1| = 0,
we find |x ′| = k and gcd(x ′, y) �= 1, a contradiction to d(Zk(a), Zl(a)) = l.
Otherwise, if |y1| − |x1| > 0, then k = |x | < |x ′| < |y| = l, a contradiction to k
and l being adjacent. ��

In principal, we follow the same strategy as in [24, Sect. 3] for the μ-invariant when
studying the μeq-invariant. For the μad-invariant, we cannot construct an equivalence
relation like the R-relation or the Req-relation. Thus we follow a slightly modified
strategy in the proofs of parts 3 and 4 from Theorem 3.2

Theorem 3.2 Let H be an atomic monoid. Then

1. ceq(a) ≥ μeq(a) for all a ∈ H, and ceq(H) = μeq(H).
2. ceq(H) = sup{μeq(a) | a ∈ H, Aa(∼H,eq) �= ∅, |Ra,k | > 1 for some k ∈ L(a)}
= sup{k ∈ N | a ∈ H, Aa(∼H,eq) �= ∅, k ∈ L(a), |Ra,k | > 1}.

3. cad(a) ≥ μad(a) for all a ∈ H, and cad(H) = μad(H).
4. cad(H) = sup{μad(a) | a ∈ H, Aa(∼H,mon) �= ∅}.

In particular,

cmon(H) = sup({μeq(a) | a ∈ H, Aa(∼H,eq) �= ∅, |Ra,k | > 1 for some k ∈ L(a)}
∪{μad(a) | a ∈ H, Aa(∼H,mon) �= ∅}).

123



Characterization of arithmetical invariants by the monoid of relations II 227

Proof Since the arithmetic of H is determined solely by Hred we may assume that H
is reduced.

1. First we prove ceq(a) ≥ μeq(a) for all a ∈ H . We may assume that ceq(a) <∞
and μeq(a) ≥ 1. Let N ∈ N be such that N ≤ μeq(a). Then there exists k ∈ L(a)

such that |Ra,k | > 1 and k ≥ N . Let z, z′ ∈ Zk(a) be such that z �≈eq z′, and let
z = z0, z1, . . . , zn = z′ be an equal-length ceq(a)-chain concatenating z and z′.
Now we choose i ∈ [1, n] minimal such that z �≈eq zi . Then zi−1 �≈eq zi , and we
find

ceq(a) ≥ d(zi−1, zi ) = k ≥ N .

Now we prove μeq(H) ≥ ceq(H). We show that, for all N ∈ N0, all a ∈ H , and all
factorizations z, z′ ∈ Z(a) with |z| = |z′| ≤ N , there is an equal-length μeq(H)-
chain from z to z′. We proceed by induction on N . If N = 0, then z = z′ = 1
and d(z, z′) = 0 ≤ μeq(H). Suppose N ≥ 1 and that, for all a ∈ H and all
z, z′ ∈ Z(a) with |z| = |z′| < N , there is an equal-length μeq(H)-chain from
z to z′. Now let a ∈ H and let z, z′ ∈ Z(a) with |z| = |z′| ≤ N . If z �≈eq z′,
then μeq(H) ≥ μeq(a) ≥ |z| = d(z, z′). Now it remains to show that, for any
two factorizations z, z′ ∈ Z(a) with |z| = |z′| ≤ N and z ≈eq z′, there is an
equal-length μeq(H)-chain concatenating them. By definition, there is an Req-
chain z0, . . . , zk with z0 = z, z′ = zk , gi = gcd(zi−1, zi ) �= 1, and |zi | = |z| for
all i ∈ [1, k]. By induction hypothesis, there is an equal-length μeq(H)-chain from
g−1

i zi−1 to g−1
i zi for all i ∈ [1, k], and hence there is an equal-length μeq(H)-

chain from zi−1 to zi for i ∈ [1, k]; thus there is an equal-length μeq (H)-chain
from z to z′.

2. By part 1, we have ceq(H) = μeq(H) and, by Definition 2.4.2, the third equality
is obvious. Thus it suffices to show that

{μeq(a) | a ∈ H, |Ra,k | > 1 for some k ∈ L(a)}
= {μeq(a) | a ∈ H, Aa(∼H,eq) �= ∅, |Ra,k | > 1 for some k ∈ L(a)}.

The inclusion from right to left is clear. Now let a ∈ H and k ∈ L(a) be such that
|Ra,k | > 1. Then there exist z, z′ ∈ Zk(a) such that z �≈eq z′. By Lemma 3.1.1,
we find (z, z′) ∈ Aa(∼H,eq) �= ∅.

3. First let a ∈ H . We show that cad(a) ≥ μad(a), and then cad(H) ≥ μad(H)

follows by passing to the supremum on both sides. If μad(a) = 0 or μad(a) = ∞,
this is trivial. Now let μad(a) = l ∈ N. Then there is k ∈ L(a) and k < l with l
adjacent to k. Then, by Definition 2.2, cad(a) ≥ d(Zk(a), Zl(a)) = max{k, l} =
l = μad(a).
Now we prove μad(H) ≥ cad(H). We must prove that cad(a) ≤ μad(H) for all a ∈
H . Assume to the contrary that there is some a ∈ H such that cad(a) > μad(H).
Let l ∈ N be minimal such that there is some k < l and a ∈ H with k and l
adjacent lengths of a and d(Zk(a), Zl(a)) > μad(H). If d(Zk(a), Zl(a)) = l, then
l ≤ μad(H) < d(Zk(a), Zl(a)) ≤ l a contradiction. Thus d(Zk(a), Zl(a)) < l
and there are some x ∈ Zk(a) and y ∈ Zl(a) such that g = gcd(x, y) �= 1. We set
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b = πH (g−1x) and find

μad(H) < d(Zk(a), Zl(a)) = d(x, y) = d(g−1x, g−1 y) = d(Zk−|g|(b), Zl−|g|).

Since k − |g| and l − |g| are adjacent lengths of b and l − |g| < l, this contradicts
the minimal choice of l. Thus we infer that cad(a) ≤ μad(H).

4. By part 3 and Definition 2.4.3, we find

cad(H) = μad(H) = sup{μad(a) | a ∈ H}.

If μad(a) = ∞ for some a ∈ H then cad(H) = ∞ by part 3. Thus we may assume
that μad(a) <∞ for all a ∈ H and it suffices to show that

sup{μad(a) | a ∈ H} = sup{μad(a) | a ∈ H, Aa(∼H,mon) �= ∅}.

In fact, we only have to show that sup{μad(a) | a ∈ H} ≤ sup{μad(a) | a ∈
H, Aa(∼H,mon) �= ∅}. Now let a ∈ H and μad(a) = k ∈ N. Then there is
l ∈ L(a) with l < k, l adjacent to k, and d(Zk(a), Zl(a)) = k. Now let x ∈ Zl(a)

and y ∈ Zk(a). Then we have gcd(x, y) = 1. By Lemma 3.1.2, we have (x, y) ∈
Aa(∼H,mon) �= ∅.

The additional statement now follows easily by parts 2 and 4. ��
Lemma 3.3 Let H be an atomic monoid and let a ∈ H.

1. Let x, y ∈ Z(a) with min{|x |, |y|} > cmon(a). Then there is a monotone R-chain
concatenating x and y, and thus x ≈ y; in particular, if |x | = |y|, then x ≈eq y.

2. Let k, l ∈ L(a). Then

d(Zk(a), Zl(a)) = max{k, l} if and only if gcd(x, y)

= 1 for all x ∈ Zk(a) and y ∈ Zl(a).

3. Let k, l ∈ L(a) be adjacent with k < l such that there are x ∈ Zk(a) and y ∈ Zl(a)

such that there is a monotone R-chain concatenating x and y. Then μad(a) �= l.

Proof Since the arithmetic of H is determined solely by Hred, we may assume that H
is reduced.

1. Let a ∈ H and x, y ∈ Z(a) be such that min{|x |, |y|} > cmon(a). We may
assume that |x | ≤ |y|. Then there is a monotone cmon(a)-chain concatenating x
and y, say z0 = x, z1, . . . , zk = y. Since, for all i ∈ [1, k], we have d(zi−1, zi ) ≤
cmon(a) < |x | = |z0|, we have gcd(zi−1, zi ) �= 1 for all i ∈ [1, k]. Thus z0, . . . , zk

is a monotone R-chain concatenating x and y, and therefore x ≈ y. If |x | = |y|,
then z0, . . . , zk is an equal-length chain, and therefore x ≈eq y.

2. Follows immediately by the definition of the distance of factorizations in Z(H).
3. Let a ∈ H , let k, l ∈ L(a) be adjacent with k < l, let x ∈ Zk(a), and y ∈ Zl(a)

be such that there is a monotone R-chain from x to y, say z0 = x, z1, . . . , zn = y
for some n ∈ N. Now choose i ∈ [1, n] minimal such that |zi | = l. Due to
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the minimality of i , we find zi−1 ∈ Zk(a). Since gcd(zi−1, zi ) �= 1, we find
d(Zk(a), Zl(a)) < l, and therefore μad(a) �= l. ��

Lemma 3.4 Let H be an atomic monoid. Then

1. ceq(H) ≤ sup{|y| | (x, y) ∈ A(∼H,eq), x �≈eq y}.
2. cad(H) ≤ sup{|y| | (x, y) ∈ A(∼H,mon), |x | < |y|, |x |, |y| ∈ L(πH (x))

adjacent, and there is no monotone R-chain from x to y}.
In particular,

cmon(H) ≤ sup{|y| | (x, y) ∈ A(∼H,mon), there is no monotone R-chain from

x to y, and either |x | = |y| or |x |, |y| ∈ L(πH (x)) are adjacent}.

Proof Since the arithmetic of H is determined solely by Hred, we may assume that H
is reduced.

1. The inequality ceq(H) ≤ sup{|y| | (x, y) ∈ A(∼H,eq)} has been proven in [3,
Proposition 4.4.3]. The slightly stronger statement here follows immediately by
the definition of μeq(·); see Definition 2.4.2.

2. By Theorem 3.2.4, we have cad(H) = sup{μad(a) | a ∈ H, Aa(∼H,mon) �= ∅}.
Now the assertion follows from Lemma 3.3.3, Lemma 3.1.2, and the definition of
μad(·); see Definition 2.4.3.

The additional statement follows from

cmon(H) = sup{ceq(H), cad(H)} and A(∼H,eq) ⊂ A(∼H,mon).

��

4 Tameness and monotone chains

Definition 4.1 Let H be an atomic monoid.

1. For a ∈ H and x ∈ Z(H), let t(a, x) denote the smallest N ∈ N0 ∪ {∞} with the
following property:

If Z(a)∩ xZ(H) �= ∅ and z ∈ Z(a), then there exists some z′ ∈ Z(a)∩ xZ(H)

such that d(z, z′) ≤ N .
For subsets H ′ ⊂ H and X ⊂ Z(H), we define

t(H ′, X) = sup{t(a, x) | a ∈ H ′, x ∈ X},

and we define t(H) = t(H,A(Hred)). This is called the tame degree of H .
2. If t(H) <∞, then we call H tame.

Being tame is a very strong finiteness condition within nonunique factorization
theory, in particular, the finiteness of the tame degree implies the finiteness of the
elasticity and the catenary degree among other invariants. Next, we give a list of
examples where tameness is characterized in various classes of monoids and domains;
for a similar list, the reader is referred to [16, Examples 3.2].
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1. Finitely generated monoids. If Hred is finitely generated, then H is tame (see [14,
Theorem 3.1.4]).

2. Finitely primary monoids. Let H be finitely primary of rank s ∈ N. Then H is
tame if and only if s = 1 (see [14, Theorem 3.1.5]).

3. Weakly Krull domains. Let R be a v-noetherian weakly Krull domain with nonzero
conductor f = (R : R̂) and finite v-class group Cv(R). Note that, in particular,
orders in algebraic number fields fulfill all these properties.
Then R is tame if and only if, for every nonzero prime ideal p ∈ X(R) with p ⊃ f,
there is precisely one P ∈ X(R̂) such that P ∩ R = p (see [14, Theorem 3.7.1]).

4. Krull monoids and therefore Krull domains. Let H be a Krull monoid, F = F(P)

a monoid of divisors and G P = {[p] | p ∈ P} ⊂ F/Hred = G the set of classes
containing prime divisors. Suppose that one of the following conditions hold:
(a) H has the approximation property.
(b) Every g ∈ G P contains at least two prime divisors.
(c) There is an m ∈ N such that −G p ⊂ m(G P ∪ {0}).
(d) The torsion free rank of G is finite.
Then H is tame if and only if D(G P ) <∞ (see [16, Theorem 4.2]). In particular,
all principal orders in algebraic number fields are tame.

5. C-like monoids. Let H be a C-like monoid. Then H is tame if and only if the
natural map s-spec(Ĥ)→ s-spec(H) is bijective (see [19, Theorem 8.3] and [19,
Definition 5.6] for a precise definition of C-like monoids).
Next we give two examples of C-like monoids. R• = (R\{0}, ·), the multiplicative
monoid of the domain, is a C-like monoid if
• (see [19, Proposition 6.1]) R is an integral domain and R• is finitely primary.
• (see [19, Proposition 6.5]) R is a Mori domain with complete integral closure

R̂, Cv(R̂) is finite, (R : R̂) �= 0, and either
– R is semilocal, and R̂/(R : R̂) is quasi artinian or
– Cv(R) is finite and S−1 R̂/S−1(R : R̂) is quasi artinian, where S ⊂ R• is

the submonoid of regular elements.

While the tameness of a monoid implies the finiteness of the catenary degree, it does
not imply the finiteness of the equal catenary degree and therefore not the finiteness
of the monotone catenary degree. In order to point this out, we discuss a monoid
originally introduced in [9, Example 4.5].

Recall that a monoid H is called finitely primary if there exist s, k ∈ N and a
factorial monoid F = [p1, . . . , ps] × F× with the following properties:

• H \ H× ⊂ p1 · · · · · ps F and
• (p1 · · · · · ps)

k F ⊂ H .

If this is the case, then we call H a finitely primary monoid of rank s and exponent k.

Example 4.2 (cf. [9, Example 4.5]). There exists a tame monoid H such that ceq(H) =
∞, and thus cmon(H) = ∞ but cad(H) <∞.

Proof We proceed in four steps.

1. We start with the construction of a finitely primary monoid. Let G be an additively
written abelian group and f : G → N0 a map with f (0) = 0 and finite image
f (G) such that, for all g, g′ ∈ G, the following two conditions are satisfied:
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(a) f (g + g′) ≤ f (g)+ f (g′) and
(b) if f (g) = 0, then f (−g) = 0.
Then, by construction,

H(G, f ) = {(g, k) | g ∈ G, k ∈ N0 with k ≥ f (g)} ⊂ (G × N0,+)

is a finitely primary monoid of rank one and exponent max f (G).
2. We consider a group G with basis E = {em, e′m | m ∈ N}, where ord(em) =

ord(e′m) = m for all m ∈ N, whence

G =
⊕
m∈N

(〈em〉 ⊕ 〈e′m〉) =
⊕
m∈N

(Z/mZ)2.

Let f : G → N0 be defined by f (0) = 0, f (e) = 1 for all e ∈ E , and f (g) = 2
for all g ∈ G \ (E ∪ {0}). Then f satisfies all properties required in part 1, and we
study H(G, f ) = H .
In this case H is reduced because H× ⊂ {(x, 0) | x ∈ f −1(0)} = {(0, 0)} since
f −1(0) = {0} by definition.

3. Let n ∈ N and an = (0, n) ∈ H . Then zn = (en, 1) + · · · + (en, 1) ∈ Zn(an),
z′n = (e′n, 1)+· · ·+(e′n, 1) ∈ Zn(an), and we assert that, for every z ∈ Zn(an)\{zn},
we have d(zn, z) = n. Then we find

cmon(H) ≥ ceq(H) ≥ ceq(an) ≥ n,

whence cmon(H) = ceq(H) = ∞. Let z ∈ Zn(an) \ {zn}. Then z has the form
z = (g1, 1) + · · · + (gn, 1) with g1, . . . , gn ∈ G. Since 1 ≥ f (gi ) for every
i ∈ [1, n], it follows that {g1, . . . , gn} ⊂ E ∪ {0}. If en ∈ {g1, . . . , gn}, then g1 =
· · · = gn = en , because E is a basis. Since z �= zn , we infer that en /∈ {g1, . . . , gn},
whence d(zn, z) = n.

4. Let (g, n) ∈ H(G, f ). Since (0, 1) /∈ H(G, f )× and (g, n) = (g, 2) + (n −
2)(0, 1), we conclude that max L((g, n)) ∈ {n − 1, n}. Now we prove that either
max L((g, n)) = n − 1 or d(Zn−1((g, n)), Zn((g, n))) = 3. If max L((g, n)) =
n − 1, then the assertion is trivial. Thus assume max L((g, n)) = n. Then there is
z ∈ Zn((g, n)) of the form z = (em1 , 1) + · · · + (emn , 1) with em1 , . . . , emn ∈ E
and em1+· · ·+emn = g. Now we find z′ = (em1+em2+e2, 2)+(e2, 1)+(em3 , 1)+
· · · + (emn , 1) ∈ Zn−1((g, n)) and d(Zn−1((g, n)), Zn((g, n))) ≤ d(z, z′) = 3.
This proves the assertion in the second case.
If n ≤ 6, then max L((g, n)) ≤ 6, and thus cad((g, n)) ≤ 6. Let now n ≥ 7.
Then there are n′ ∈ [3, 6] and n′′ ∈ N such that n = n′ + 4n′′ and (g, n) =
(g, n′) + n′′(0, 4). Since we have z1 = 4(e4, 1), z2 = (e2, 1) + (e4, 1) + (e2 +
3e4, 2), z3 = 2(e2 + 2e4, 2) ∈ Z((0, 4)), |z1| = 4, |z2| = 3, |z3| = 2, and
d(z1, z2) = d(z2, z3) = 3, we find that cad((g, n)) ≤ max{3, n′} = n′ ≤ 6 <∞.

5. By [14, Theorem 3.1.5.2.a], each finitely primary monoid of rank one is tame. ��
Note that, for the monoid H in Example 4.2, we have cad(H) <∞, and therefore

the question of whether the finiteness of the tame degree implies the finiteness of the
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adjacent catenary degree remains open. Nevertheless, the following result from [16]
might be interpreted as a strong sign that the tame degree can dominate the adjacent
catenary degree.

Lemma 4.3 (cf. [16, Theorem 5.1.b],). Let H be a tame monoid. Then there exists
a constant M ∈ N0 such that, for all a ∈ H and for each two adjacent lengths
k, l ∈ L(a) ∩ [min L(a)+ M, max L(a)− M], we have d(Zk(a), Zl(a)) ≤ M.

Lemma 4.4 Let H be an atomic monoid.

1. If H is half-factorial, then cad(H) = 0 and cmon(H) = ceq(H) = c(H).
2. If a ∈ H satisfies |L(a)| ≤ 2, then μad(a) ≤ t(H).

Proof Since the arithmetic of H is determined solely by Hred, we may assume that H
is reduced.

1. Since, for all a ∈ H with |L(a)| = 1, we have no adjacent lengths, it follows
that cad(H) = 0, and thus cmon(H) = ceq(H). As—in this special situation—
every chain of factorizations is an equal-length chain of factorizations, we get
ceq(H) = c(H).

2. Choose a ∈ H such that |L(a)| ≤ 2. If |L(a)| = 1, then μad(a) = 0. Now
suppose |L(a)| = 2. If μad(a) = 0, then there is nothing to show. Now suppose
μad(a) > 0. Then μad(a) = max L(a), and thus gcd(x, y) = 1 for all x, y ∈ Z(a)

with |x | = min L(a) and |y| = max L(a). Let x, y ∈ Z(a) with |x | = min L(a)

and |y| = max L(a) and choose u ∈ A(H) such that x ∈ Z(a)∩u H×Z(H). Then
there is no y′ ∈ Z(a) ∩ u H×Z(H) with |y′| = |y|. Now we find

t(H) ≥ t(a, u H×) ≥ d(y, Z(a) ∩ u H×Z(H)) = |y| = max L(a) = μad(a).��

Next we formulate another variant of the catenary degree, which is somewhat similar
to the adjacent catenary degree and equals it in a special situation. The main difference
is that we can prove that the m-adjacent catenary degree is finite for tame monoids
when m is sufficiently large.

Definition 4.5 Let H be an atomic monoid, let a ∈ H and let m ∈ N.

1. We set

μad,m(a) = sup{k ∈ L(a) | d(Zk(a), Z[k−m,k+m]\{k}(a)) = k} and μad,m(H)

= sup{μad,m(a) | a ∈ H}.

2. We define

cad,m(a) = sup{d(Zk(a), Z[k−m,k+m]\{k}(a)) | k ∈ L(a)}

as the m-adjacent catenary degree of a.
Also, cad,m(H) = sup{cad,m(a) | a ∈ H} is called the m-adjacent catenary degree
of H .
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Obviously, we find

cad,m(H)

⎧⎪⎨
⎪⎩
= 0 m < min	(H)

≤ cad(H)

= cad(H) 	(H) = {n} and n ≤ m < 2n.

Since the definitions of the m-adjacent catenary degree and μad,m(H) are similar
to those of the adjacent catenary degree and μad(H), we can now prove the analog of
Theorem 3.2.3 for the two newly defined invariants.

Theorem 4.6 Let H be an atomic monoid and let m ∈ N. Then

1. cad,m(a) ≥ μad,m(a) for all a ∈ H, and cad,m(H) = μad,m(H).
2. cad,m(H) ≤ t(H) for all m ≥ t(H).

Proof 1. For m < min	(H), we have cad,m(H) = 0 = μad,m(H) by definition.
Now let m ∈ N and m ≥ min	(H).
First we let a ∈ H and show that cad,m(a) ≥ μad,m(a), after which cad,m(H) ≥
μad,m(H) follows by passing to the supremum on both sides. If μad,m(a) = 0
or μad,m(a) = ∞, this is trivial. Now let μad,m(a) = k ∈ N and [k −
m, k + m] \ {k} ∩ L(a) = {l1, . . . , ln}. Then, by Definition 4.5.2, cad,m(a) ≥
d(Zk(a), Z[k−m,k+m]\{k}(a)) = k = μad,m(a).
Now we prove μad,m(H) ≥ cad,m(H). We must prove that cad,m(a) ≤ μad,m(H)

for all a ∈ H . Assume to the contrary that there is some a ∈ H such that
cad,m(a) > μad,m(H). Let k ∈ N be minimal such that there is a ∈ H with
d(Zk(a), Z[k−m,k+m]\{k}(a)) > μad,m(H). If d(Zk(a), Z[k−m,k+m]\{k}(a)) = k,
then k ≤ μad,m(H) < d(Zk(a), Z[k−m,k+m]\{k}(a)) = k, a contradiction.
Thus d(Zk(a), Z[k−m,k+m]\{k}(a)) < k and then there are some x ∈ Zk(a)

and y ∈ Z[k−m,k+m]\{k}(a) such that g = gcd(x, y) �= 1 and d(x, y) =
d(Zk(a), Z[k−m,k+m]\{k}(a)). If b = πH (g−1x), then |x |−|g| = k−|g|, |y|−|g| ∈
L(b) ∩ [k − m − |g|, k + m − |g|] and

μad,m(H) < d(Zk(a), Z[k−m,k+m]\{k}(a)) = d(x, y)

≤ d(Zk−|g|(b), Z[k−m−|g|,k+m−|g|]\{k−|g|}(b)) ≤ k − |g| < k,

a contradiction to the minimal choice of k. Thus we infer that cad,m(a) ≤
μad,m(H).

2. If H is not tame, then there is no m ∈ N with m ≥ t(H). Thus we may assume
that t(H) <∞. Let m ≥ t(H). If μad,m(H) = ∞, then t(H) > m. Thus we may
assume that μad,m(H) < ∞. By part 1, it suffices to show that μad,m(a) ≤ t(H)

for all a ∈ H . Let a ∈ H . If μad,m(a) = 0, then there is nothing to show.
Now suppose μad,m(a) = k > 0 and d(Zk(a), Z[k−m,k+m]\{k}(a)) = k. Then we
have L(a) ∩ [k − m, k + m] \ {k} = {l1, . . . , ln} and d(Zk(a), Zli (a)) = k for
all i ∈ [1, n]. Then gcd(x, y) = 1 for all x ∈ Zk(a) and y ∈ Zl1(a). Now let
x ∈ Zk(a), y ∈ Zl1(a), and choose u ∈ A(H) such that y ∈ Z(a) ∩ u H×Z(H).
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We find

t(H) ≥ t(a, u H×) ≥ d(x, Z(a) ∩ u H×Z(H)) = min{d(x, Zl(a)

∩ u H×Z(H)) | l ∈ L(a), l �= k} ≥ min{k, m + 1} = k = μad,m(a).

(4.1)

For l ∈ [k−m, k+m] the inequality is clear by the choice of k. and for |l−k| ≥ m
the inequality holds trivially since m + 1 > t(H). ��

Another interesting observation arising from the proof of Theorem 4.6.2 is the
fact that the crucial inequality (4.1) might fail for m < t(H) for some a ∈ H (of
course, with μad,m(a) > 0). Additionally, Theorem 4.6.2 can never be used to bound
cad(H), since cad(H) = cad,m(H) for m = min	(H) if |	(H)| = 1, but then
t(H) ≥ m + 2 > m, and therefore Theorem 4.6.2 does not hold for cad(H).

5 Applications to semigroup rings and generalized power series rings

The arithmetic of semigroup rings and generalized power series rings has attracted a
lot of interest; for an overview, we refer to [1] and [2]; and for some recent results,
we refer to [20] and [21]. Nevertheless, there are nearly no precise results on their
arithmetic. In order to apply our monoid theoretic tools from Sect. 3 and [24] to
the explicit computation of various arithmetical invariants of semigroup rings and
generalized power series rings, we follow a 2-step strategy. In the first step, we apply
transfer principles as described in much detail in [14, Sect. 3.2], and in the second
step, we make use of the monoid theoretic tools.

Definition 5.1 A monoid homomorphism θ : H → B is called a transfer homomor-
phism if it has the following properties:

T1 B = θ(H)B× and θ−1(B×) = H×.
T2 If a ∈ H, r, s ∈ B and θ(a) = rs, then there exist b, c ∈ H such that θ(b) ∼ r ,

θ(c) ∼ s, and a = bc.

Definition 5.2 Let θ : H → B be a transfer homomorphism of atomic monoids and
θ̄ : Z(H)→ Z(B) the unique homomorphism satisfying θ̄ (u H×) = θ(u)B× for all
u ∈ A(H). We call θ̄ the extension of θ to the factorization monoids.

For a ∈ H , the catenary degree in the fibers c(a, θ) denotes the smallest N ∈
N0 ∪ {∞} with the following property:

For any two factorizations z, z′ ∈ Z(a) with θ̄ (z) = θ̄ (z′), there exists a finite
sequence of factorizations (z0, z1, . . . , zk) in Z(a) such that z0 = z, zk = z′,
θ̄ (zi ) = θ̄ (z), and d(zi−1, zi ) ≤ N for all i ∈ [1, k]; that is, z and z′ can be
concatenated by an N -chain in the fiber Z(a) ∩ θ̄−1((θ̄(z))).

Also, c(H, θ) = sup{c(a, θ) | a ∈ H} is called the catenary degree in the fibers of
H .

123



Characterization of arithmetical invariants by the monoid of relations II 235

We briefly fix the notation concerning sequences over finite abelian groups. Let G
be an additively written, finite abelian group. For a subset A ⊂ G and an element
g ∈ G, we set −A = {−a | a ∈ A} and A − g = {a − g | a ∈ A}. Let F(G) be the
free abelian monoid with basis G. The elements of F(G) are called sequences over
G. If a sequence S ∈ F(G) is written in the form S = g1 · · · · · gl , we tacitly assume
that l ∈ N0 and g1, . . . , gl ∈ G. For a sequence S = g1 · · · · · gl , we call

– |S| = l the length of S,
– σ(S) =∑l

i=1 gi ∈ G the sum of S,
– supp(S) = {g1, . . . , gl} ⊂ G the support of S,
– �(S) = {∑i∈I gi | ∅ �= I ⊂ [1, l]} ⊂ G the set of subsums of S, and
– −�(S) = {∑i∈I (−gi ) | ∅ �= I ⊂ [1, l]} = {−g | g ∈ �(S)} ⊂ G the set of

negative subsums of S.

The sequence S is called

• a zero-sum sequence if σ(S) = 0,
• zero-sum free if there is no non-trivial zero-sum subsequence, i.e. 0 /∈ �(S), and
• a minimal zero-sum sequence if S is nontrivial, σ(S) = 0, and every subsequence

S′ | S with 1 ≤ |S′| < |S| is zero-sum free.

For a subset G0 ⊂ G, we set

B(G0) = {S ∈ F(G0) | σ(S) = 0} for the block monoid over G0 and

A(G0) = {S ∈ F(G0) | S minimal zero-sum sequence} ⊂ B(G0).

Then, in fact, B(G0) is an atomic monoid and A(G0) = A(B(G0)) is its set of atoms.
The Davenport constant D(G0) ∈ N is defined to be the supremum of all lengths

of sequences in A(G0).

Definition 5.3 Let G be an additive abelian group, G0 ⊂ G a subset, T a monoid,
ι : T → G a homomorphism, and σ : F(G0)→ G the unique homomorphism such
that σ(g) = g for all g ∈ G0. Then we call

B(G0, T, ι) = {St ∈ F(G0)× T | σ(S)+ ι(t) = 0}

the T -block monoid over G0 defined by ι.
If T = {1}, then B(G0, T, ι) = B(G0) is the block monoid of all zero-sum

sequences over G0 and if G0 = {0} then B(G0, T, ι) = [0]×T . Since 0 ∈ B(G0, T, ι)

is prime, the arithmetic of T and B(G0, T, ι) coincide in this situation.

Lemma 5.4 Let D be an atomic monoid, P ⊂ D a set of prime elements, and T ⊂ D
an atomic submonoid such that D = F(P) × T . Let H ⊂ D be a saturated atomic
submonoid, let G = q(D/H) be its class group, let ι : T → G be a homomorphism
defined by ι(t) = [t]D/H , and suppose each class in G contains some prime element
from P.

1. The map β : H → B(G, T, ι), given by β(pt) = [p]D/H + ι(t) = [p]D/H +
[t]D/H , is a transfer homomorphism onto the T -block monoid over G defined by
ι and c(H, β) ≤ 2
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2. The following inequalities hold:

c(B(G, T, ι)) ≤ c(H) ≤ max{c(B(G, T, ι)), c(H, β)},
cmon(B(G, T, ι)) ≤ cmon(H) ≤ max{cmon(B(G, T, ι)), c(H, β)}, and

t(B(G, T, ι)) ≤ t(H) ≤ t(B(G, T, ι))+ D(G)+ 1.

In particular, the equality c(H) = c(B(G, T, ι)) holds if c(B(G, T, ι)) ≥ 2, and
the equality cmon(H) = cmon(B(G, T, ι)) holds if cmon(B(G, T, ι)) ≥ 2.

3. L(H)=L(B(G, T, ι)), 	(H)=	(B(G, T, ι)), min	(H) = min	(B(G, T, ι)),
and ρ(H) = ρ(B(G, t, ι)).

4. We set B = {S ∈ B(G, T, ι) | 0 � S}. Then B and B(G, T, ι) have the same
arithmetical properties, and

c(B) ≤ c(H) ≤ max{c(B), c(H, β)},
cmon(B) ≤ cmon(H) ≤ max{cmon(B), c(H, β)}, and

t(B) ≤ t(H) ≤ t(B)+ D(G)+ 1.

In particular, the equality c(H) = c(B) holds if c(B) ≥ 2, and the equality
cmon(H) = cmon(B) holds if cmon(B) ≥ 2.
Additionally, L(H) = L(B), 	(H) = 	(B), min	(H) = min	(B), and
ρ(H) = ρ(B).

Proof 1. Follows by [14, Proposition 3.2.3.3 and Proposition 3.4.8.2].
2. The assertion on the catenary degree follows by [14, Theorem 3.2.5.5], the assertion

on the monotone catenary degree by [14, Lemma 3.2.6], and the assertion on the
tame degree by [14, Theorem 3.2.5.1].

3. Follows by [14, Proposition 3.2.3.5].
4. Since 0 ∈ B(G, T, ι) is a prime element, it defines a partition B(G, T, ι) = [0]×B

with B = {S ∈ B(G, T, ι) | 0 � S}. Thus all studied arithmetical invariants
coincide for B and B(G, T, ι). Now the assertions follow from part 2 and part 3. ��

From now on, we write monoids additively. Then, for a reduced monoid H , H× =
{0}.

Definition 5.5 Let K be a field and H a reduced atomic monoid. Then we call

• K [[H ]] = K [[Xs | s ∈ A(H)]] the generalized power series ring
• K [H ] = K [Xs | s ∈ A(H)] the semigroup ring

defined by H over K .

We restrict ourselves to the simplest monoids possible, i.e., to numerical monoids.
Recall that a submonoid H ⊂ (N0,+) is called a numerical monoid if the set of
gaps G(H) = N0\H is finite. Special cases of generalized power series rings and
semigroup rings are studied in [14, Example 3.7.3]).
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Theorem 5.6 Let H ⊂ (N0,+) be a numerical monoid.

1. K [[H ]] has finite catenary degree and finite elasticity.
2. Let

φ :
{

K [[H ]]• → H
f =∑

h∈H fh Xh �→ min{h ∈ H | fh �= 0} .
Then φ is a transfer homomorphism if and only if there is some m ∈ N such that
H = [m, m + 1, . . . , 2m − 1] (equivalently, H = N≥m ∪ {0}).

Proof 1. See [15, Proposition 6.10 and Theorem 6.7].
2. Suppose first that m ∈ N and H = N≥m ∪ {0}. Since φ−1(0) = K× = K [[H ]]×,

condition (T1) holds. For the proof of (T2), let u ∈ K [[H ]]• and φ(u) = d = a+b
for some a, b ∈ H . We may assume that a, b ∈ H\{0}. Then a + b ≥ 2m, and if
h ∈ H and h > a + b, then h − a > b ≥ m and thus h − a ∈ H . If

u = ud Xd +
∑
h>d

uh Xh , where ud ∈ K× and uh ∈ K for all h > d ,

then

u = Xa
(

ud Xb +
∑
h>d

uh Xh−a
)
= vw , where φ(v) = a and φ(w) = b .

To prove the converse, assume that there is some b ∈ H \ {0} such that b+1 /∈ H ,
and yet (T2) holds. Let b ∈ H be maximal such that b+1 /∈ H . Then 2b, 2b+1 ∈
H , hence u = X2b + X2b+1 ∈ K [[H ]], and φ(u) = b + b. By (T2), there exist
v, w ∈ K [[H ]] such that φ(v) = φ(w) = b and vw = u. But as b + 1 /∈ H , it
follows that

v = vb Xb +
∑
h∈H

h≥b+2

vh Xh , w = wb Xb +
∑
h∈H

h≥b+2

wh Xh ,

and hence vw �= u, a contradiction. ��
For the study of semigroup rings, the situation is even more difficult, since there is

then no transfer homomorphism R = F[H ] → H ; see [14, Example 3.7.3, Special
Case 3.3]. Thus—even after applying the transfer principles in order to be in an easier
situation—it is necessary to compute all the invariants of nonunique factorization for
more general T -block monoids, B(G, T, ι), where neither T nor G are trivial. In the
upcoming subsections, we exploit the results from [5,6], [24, Proposition 16] (repeated
as Lemma 2.7), [24, Theorem 19.2], and Sect. 3 (mainly Theorem 3.2) together with
recent programming techniques (see [17] and [23, Sect. 8]) and parallelization to
explicitly compute various arithmetical invariants, namely, the elasticity, the catenary
degree, the monotone catenary degree, and a bound for the tame degree of the T -
block monoids associated with the studied domains, and therefore for the domains
themselves.
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5.1 Preliminaries about zero-sum sequences and T -block monoids

In order to be able to describe the set of atoms of a T -block monoid precisely, we use
the terminology of sequences over finite abelian groups.

For our algorithmic considerations in the forthcoming sections, it will be very use-
ful to have some sort of order defined on the elements of a finite abelian group G.
By the structure theorem for finitely generated abelian groups, there are uniquely
determined r ∈ N0 and n1, . . . , nr ∈ N such that there is a group isomorphism
ϕ : G → Z/n1Z × · · · × Z/nr Z and 1 < n1 | · · · | nr . For i ∈ [1, r),
we choose [0, ni ) as a system of representatives for Z/ni Z. Now we can com-
pare two elements g1, g2 ∈ G by comparing ϕ(g1) and ϕ(g2) with respect to
the lexicographic order. For short, we simply write g1 ≤ g2 respectively g1 ≥
g2.

In particular, in Sect. 5.4, we will need some kind of coordinate representation for
the elements of a T -block monoid, i.e., a monoid isomorphism mapping a T -block
monoid onto a submonoid of Z

m × Z/n1Z× · · · × Z/nr Z for some m, r ∈ N0 and
n1, . . . , nr ∈ N. Let G be a finite abelian group, T a finitely generated monoid, and
ι : T → G a homomorphism. Let T = D1 × · · · × Dr be a product of finitely
primary monoids Di ⊂ [p(i)

1 , . . . , p(i)
ri ] × D̂i

× = D̂i where ri ∈ N, and the D̂i
×

are
finitely generated abelian groups for i ∈ [1, r ]. Then there are uniquely determined
li , ki ∈ N0 such that there is an isomorphism φi : D̂i

× → Z
li×Z/n(i)

1 Z×· · ·×Z/n(i)
ki

with 1 < n(i)
1 | · · · | n(i)

ki
for i ∈ [1, r ]. This isomorphism can be extended to

an isomorphism φ̄i : D̂i → Nri
0 × φi (D̂i

×
) for i ∈ [1, r ]. Now there is an iso-

morphism φ = φ̄1 × · · · × φ̄r : T̂ → φ̄1(D̂1) × · · · × φ̄r (D̂r ). This again can be
extended to an isomorphism ϕ̄ : F(G) × T̂ → N |G|0 × φ(T̂ ). Now we can define
the desired isomorphism by restriction of ϕ̄ to the T -block monoid B(G, T, ι) as
follows:

ϕ = ϕ̄|B(G, T, ι) : B(G, T, ι)→ ϕ̄(B(G, T, ι)) ⊂ N
|G|
0

×
r∏

i=1

⎛
⎝N

ri
0 × Z

li ×
ki∏

j=1

Z/n(i)
j Z

⎞
⎠ . (5.1)

5.2 The set of atoms A(G) of a block monoid

Based on ideas from [17], we give an algorithm for the computation of the set of
atoms A(G) for a finite additive abelian group G. The problem of computing A(G)

grows exponentially in terms of |G|, but, for very small groups as the ones involved
in Sect. 5.5, it can be easily performed—sometimes even by hand. Unfortunately, we
have to do some sort of brute force search in the set of all S ∈ F(G) with |S| ≤ D(G).
But with the algorithm presented below, we can avoid most of the redundant checks
and therefore speed up the computation dramatically.

Since modular arithmetic on vectors with multiple coordinates is quite inefficient,
it is necessary for a fast execution of the RAS, Algorithm 1, to pre-compute the sums
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Algorithm 1 Recursive Atom Search: A← RAS(A, S, �, B)

for all g ∈ B do
S′ ← Sg
if g ≤ −σ(S′) then

A← A ∪ {S′(−σ(S′))}
end if
�′ ← �

B′ ← ∅
for all g′ ∈ B do

if g + g′ ∈ � then
�′ ← �′ ∪ {g′}

else
B′ ← B′ ∪ {g′}

end if
end for
if |B′| > 0 then

A← RAS(A, S′, �′, B′)
end if

end for
return A

Algorithm 2 Atoms Computation Algorithm 1: A(G)← ACA1(G)

A← {0}
for all g ∈ G \ {0} do

if g ≤ −g then
A← A ∪ {g(−g)}

end if
�← {0, g}
B ← G \ {0,−g}
S← g
if |B| > 0 then

A← RAS(A, S, �, B)

end if
end for
return A

g + g′. This can be done once in the ACA1, Algorithm 2, before the main loop. For
additional details on speeding up these types of algorithms by special alignment of
the pre-computed data and on the parallelization aspects, the reader is referred to [17,
Sect. 3].

5.3 The set of atoms of a T -block monoid

Lemma 5.7 Let G be a finite additive abelian group, T a reduced atomic monoid,
ι : T → G a homomorphism, and B(G, T, ι) ⊂ F(G)× T the T -block monoid over
G defined by ι. Furthermore, suppose each class in G contains some p ∈ P, and let
ῑ : Z(T ) → F(G) be the homomorphism generated by the extension of ι onto Z(T )

such that, for a factorization z = a1 · · · · · an ∈ Z(T ) with ai ∈ A(T ) for i ∈ [1, n],
we have ῑ(z) = ι(a1) · · · · · ι(an).

123



240 A. Philipp

Then we have

A(B(G, T, ι)) =
{Sπ(z) | S ∈ F(G), z ∈ Z(T ), Sῑ(z) ∈ A(G), �n ≥ 2 : ∃Si ∈ F(G), zi ∈ Z(T )

with Si ῑ(zi ) ∈ A(G) for i ∈ [1, n] : S1π(z1) · · · · · Snπ(zn) = Sπ(z)} (5.2)

Proof Clearly, every atom a ∈ A(B(G, T, ι)) is of the form a = Sπ(z) with S ∈
F(G), z ∈ Z(T ), and Sῑ(z) ∈ A(G). Now suppose we have n ∈ [2, D(G)], Si ∈
F(G), zi ∈ Z(T ), Si ῑ(zi ) ∈ A(G) for i ∈ [1, n] and Sπ(z) = S1π(z1) · · · · · Snπ(zn).
Obviously then, a /∈ A(B(G, T, ι)). Now the other inclusion is obvious. ��

In general, it is very hard to calculate A(B(G, T, ι)) explicitly by the characterization
in (5.2). But if we restrict ourselves to a finite group G and a finitely generated reduced
monoid T such that A(G), A(T ), and ι(a) for a ∈ A(T ) are all known explicitly, we
can formulate the ACA2, Algorithm 3, for the computation of the set of atoms of a
T -block monoid.

Algorithm 3 Atoms Computation Algorithm 2: A(B(G, T, ι)) ← ACA2(G, T,

A(G),A(T ), ι)

A← ∅
D← 0
for all S ∈ A(G) do

if |S| > D then
D← |S|

end if
A← A ∪ {(S, 1)}

end for
F0 ← ∅
for all a ∈ A(T ) do

for all (S, 1) ∈ A do
if ι(a) | S then

F0 ← F0 ∪ {(ι(a)−1S, a)}
end if

end for
end for
E ← ∅
n← 1
while n < D and Fn−1 �= ∅ do

E ← E ∪ Fn−1
E ← E F0
Fn ← ∅
for all a ∈ A(T ) do

for all (S, b) ∈ A do
if ι(a) | S then

Fn ← Fn ∪ {(ι(a)−1S, ab)

end if
end for

end for
n← n + 1

end while
return A ∪ F0 ∪ . . . ∪ Fn−1
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5.4 Computing arithmetical invariants of a T -block monoid

Throughout this section, we implicitly use the isomorphism defined in (5.1). Thus we
only have to work with submonoids

S ⊂ Z
m × Z/n1Z× · · · × Z/nr Z with m, r ∈ N0 and n1, . . . , nr ∈ N

such that S ∼= ϕ(B(G, T, ι)), where G is an additively written finite abelian group, T
is a product of finitely many reduced finitely primary monoids of rank 1, ι : G → T is
a homomorphism, and ϕ is the isomorphism defined in (5.1). If T is not the product of
finitely many reduced finitely primary monoids of rank 1, then T would not be finitely
generated. Now we know A(S) explicitly, since, obviously, A(S) = ϕ(A(B(G, T, ι)))

and A(B(G, T, ι)) can be computed explicitly by the ACA2; see Algorithm 3.
For the computation of the tame degree, we use the definition of the distance of

factorizations and [24, Theorem 19.2]; for additional reference on this computation,
see [6, Sect. 4].

Now we are ready to describe the computation step by step.

5.4.1 Finding the elements of A(∼S)

The first step is finding the elements of A(∼S) explicitly. Unfortunately, this is a very
hard task. Probably, the most efficient way is the following one as described in [5,
Sects. 1 and 2].

1. Since we know A(S) explicitly, we can write the atoms of S in their coordinates
as vectors:

A(S) =
{
(a(1)

1 , . . . , a(1)
m , a(1)

m+1 mod n1, . . . , a(1)
m+r mod nr ), . . .

}
.

2. By [5, Sect. 2], finding the elements of A(∼S) is equivalent to determining the
minimal positive solutions of the following system of linear diophantine equations:

x1a(1)
1 + . . . + xka(k)

1 − y1a(1)
1 − . . . − yka(k)

1 = 0
...

...
...

...
...

x1a(1)
m + . . . + xka(k)

m − y1a(1)
m − . . . − yka(k)

m = 0
x1a(1)

m+1 + . . . + xka(k)
m+1 − y1a(1)

m+1 − . . . − yka(k)
m+1 ≡ 0 mod n1

...
...

...
...

...

x1a(1)
m+r + . . . + xka(k)

m+r − y1a(1)
m+r − . . . − yka(k)

m+r ≡ 0 mod nr

(5.3)

We write a solution (x1, . . . , xk, y1, . . . , yk) as ((x1, . . . , xk), (y1, . . . , yk)).
3. Again, by [5, Sect. 2] and [27, Sect. 2], finding the set of minimal positive solutions

is equivalent to finding the set of minimal positive solutions for the following
enlarged system and then projecting back by the map and removing the zero
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element (if appearing after the projection) from the set of solutions:

x1a(1)
1 + . . . − y1a(1)

1 − . . . = 0
...

...
...

x1a(1)
m + . . . − y1a(1)

m − . . . = 0
x1a(1)

m+1 + . . . − y1a(1)
m+1 − . . . + xk+1n1 − yk+1n1 = 0

...
...

...
...

...

x1a(1)
m+r + . . . − y1a(1)

m+r − . . . + xk+r nr − yk+r nr = 0

(5.4)

� :
{

N
k+r
0 × N

k+r
0 → N

k
0 × N

k
0

((x1, . . . , xk+r ), (y1, . . . , yk+r )) �→ ((x1, . . . , xk), (y1, . . . , yk)).

One of the most efficient algorithms for finding these solutions is due to Contejean
and Devie; see [7]. Nevertheless, this might take a very long time since the problem
of determining the set of all minimal non-negative solutions of a system of linear
diophantine equations is well known to be NP-complete.

5.4.2 Removing unnecessary elements

Clearly, elements of the form ((0, . . . , 0, 1, 0, . . . , 0), (0, . . . , 0, 1, 0, . . . , 0)) are min-
imal solutions. But as elements of A(∼S), these elements do not carry any infor-
mation about the arithmetic of S. Therefore we may simply drop them. Since, for
any two factorizations, (x, y) ∈ Z(S) is equivalent to (y, x) ∈ Z(S), we may also
reduce the number of pairs by a factor of two. This smaller set will be denoted by
A(∼S)∗ = {((x1, . . . , xk), (y1, . . . , yk)), . . .}.

5.4.3 Computing the elasticity

By our finiteness assumptions on T , i.e., since T is finitely generated, we know the set
A(∼S)∗ is finite. Thus we can simply compute the elasticity using [24, Proposition
14.2] as follows:

ρ(S)=max

{
x1+· · ·+xk

y1+· · ·+yk
,

y1+· · · + yk

x1 + · · ·+xk

∣∣∣∣ ((x1, . . . , xk), (y1, . . . , yk)) ∈ A(∼S)
∗
}

.

5.4.4 Computing the catenary degree

By Lemma 2.7.2, we need only consider elements a ∈ S such that their factorizations
appear as part of an element of A(∼S) and such that their sets of factorizations consist
of more than one R-equivalence class. Then we get the catenary degree by taking the
maximum over μ(a) for all those a ∈ S.
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Algorithm 4 Recursive R-Class Finder: R← RCF(R, Z = {z1, . . . , zn})
r ← {z1}
Z← Z \ {z1}
n← n − 1
Z = {z1, . . . , zn} {renumber}
i ← 1
while i < n do

for i = 1 to n do
if gcd(zi , x) �= 1 for some x ∈ r then

r ← r ∪ {zi }
Z← Z \ {zi }
n← n − 1
Z = {z1, . . . , zn} {renumber}
break

end if
end for

end while
R ∪ {r}
if Z �= ∅ then

R← RCF(R, Z)

end if
return R

Algorithm 5 Catenary degree Computation Algorithm: c(S) ← CCA(A(S),

A(∼S)∗)
A← ∅
for all (x, y) ∈ A(∼S)∗ do

A← A ∪ {π(x)}
end for
c← 0
for all a ∈ A do

Ra ← RCF(Z(a))

if |Ra | > 1 then
μ← min{|x | | Ra}
if c < μ then

c← μ

end if
end if

end for
return c

5.4.5 Computing the tame degree

After having computed Z(a) for all a ∈ S such that Aa(∼S) �= ∅, we can apply [24,
Theorem 19.1] for every u ∈ A(S). Since there are only finitely many, we get the tame
degree as the maximum of these values.

5.4.6 Computing the monotone catenary degree

For computing the monotone catenary degree, we compute the equal catenary degree
ceq(S) and the adjacent catenary degree cad(S). We start with the adjacent catenary
degree and proceed like in 5.4.1. We use the fact that ∼S,mon= {(x, y) ∈∼S| |x | ≤
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|y|} and again [5, Sect. 2]. Now finding the elements of A(∼S,mon) is equivalent to
determining the minimal positive solutions of a system of linear diophantine equations.

Before we construct this finite system of linear diophantine equations explicitly,
we formulate a short lemma.

Lemma 5.8 Let H be a finitely generated monoid.
Then ∼H,mon is a finitely generated Krull monoid.

Proof Let H be a finitely generated monoid. Since ∼H⊂ Z(H) × Z(H) is then a
saturated submonoid of a finitely generated monoid, ∼H is finitely generated by [14,
Proposition 2.7.5]. Now assume ∼H has n ∈ N generators. Then the atoms of ∼H

can be described as the minimal solutions of a system of finitely many, say k, linear
diophantine equations in 2n variables as in step 5.4.1 above. Then the atoms of∼H,mon
can be described as the minimal solutions of a system of k + 1 linear diophantine
equations in 2n + 1 variables—see below for the explicit description of this system
of linear diophantine equations. Thus H is a finitely generated Krull monoid by [14,
Theorem 2.7.14]. ��

The system is (5.3), with one additional variable z and one equation, namely,

x1 + · · · + xk − y1 − · · · − yk + z = 0.

The coefficients at z are zero in all other equations. Now we have two possibilities.

• Either we proceed by the same steps as in 5.4.1 and solve this directly
• or we use the incremental version of the algorithm of Devie and Contejoud (see [7,

Sect. 9]) and the set A(∼S), which we already computed in 5.4.1.

Next we can reduce the set of relations which we must consider, as in 5.4.2. By
Theorem 3.2.4, we have to consider only elements a ∈ S such that Aa(∼S,mon) �= ∅.
Then we get the adjacent catenary degree by taking the maximum over μad(a) for all
those a. For the computation of the equal catenary degree, we must know the elements
of A(∼S,eq). But these are already known, since A(∼S,eq) ⊂ A(∼S,mon). Here we can
again reduce the set of relations which we must consider, as in 5.4.2. By Theorem 3.2.4,
we have to consider only elements a ∈ S such that Aa(∼S,eq) �= ∅ and |Ra,k | > 1
for some k ∈ L(a). Now this can be done by applying the RCF, Algorithm 4, to Zk(a)

instead of Z(a). Then we get the equal catenary degree by taking the maximum over
μeq(a) for all those a.

Now we find the monotone catenary degree by cmon(S) = max{cad(S), ceq(S)}.

5.4.7 Reducing the computation time for the catenary degree

If we are only interested in the computation of the catenary degree, we can speed up
the very time consuming computations in Step 5.4.1 in the following way. In favor
of Lemma 2.7.2, we may restrict our search for minimal solutions of the system of
linear diophantine equations (5.4) to solutions (x1, . . . , xk+r , y1, . . . , yk+r ) such that∑k

i=1 xi ≤ c(S) and
∑k

i=1 yi ≤ c(S). Of course, we do not know c(S) a priori, but we
may replace it with any upper bound—the better the bound, the faster the computation.
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In our special situation of T -block monoids, we can find a reasonably good bound by
[14, Theorem 3.6.4.1] and by [14, Proposition 3.6.6]. Formulated in our terminology,
these results read as follows.

Theorem 5.9 Let G be an additively written abelian group, T a reduced finitely
generated monoid, ι : T → G a homomorphism, and B(G, T, ι) ⊂ F(G) × T the
T -block monoid over G defined by ι. Then

1. ρ(B(G, T, ι),F(G)× T ) ≤ ρ(T ).
2. c(B(G, T, ι)) ≤ ρ(T )D(G) max{c(T ), D(G)}.

Now we set C = ρ(T )D(G) max{c(T ), D(G)} for the upper bound. Though this does
not speed up the search for minimal solutions itself that much, it is a very efficient
(additional) termination criterion in our variant of the algorithm due to Contejean and
Devie; for reference on the originally proposed algorithm, see [7].

Unfortunately, this method has one drawback for the computation of the elasticity
and the tame degree. As we no longer compute all minimal solutions to our system
of linear diophantine equations, we no longer compute all elements in A(∼S), and
therefore we cannot compute more than a lower bound for the elasticity in Step 5.4.3
and for the tame degree in Step 5.4.5.

5.4.8 Computing the elasticity from an appropriate subset of A(∼S)

In [8], Domenjoud proposed an algorithm for computing the set of minimal solutions of
a system of linear diophantine equations, which computes the set of minimal solutions
with minimal support in a first step. All other minimal solutions can then be found by
“appropriate” linear combinations of them using non-negative rational coefficients.
With this interesting fact in mind, we consider the following lemma.

Definition 5.10 Let H be an atomic monoid. For x ∈ Z(H), we set

supp(x) = {u ∈ A(Hred) | u | x}.

Lemma 5.11 Let H be a finitely generated monoid. Then

ρ(H) = sup

{ |x |
|y|

∣∣∣∣ (x, y) ∈ A′(∼H )

}
,

where A′(∼H ) = {(x, y) ∈ A(∼H ) | supp(x)∪supp(y) is minimal under inclusion}.
Proof Let (x, y) ∈∼H . Then there are n ∈ N, (xi , yi ) ∈ A′(∼H ), and qi ∈ Q with
0 ≤ qi < 1 for i ∈ [1, n] such that

(x, y) =
n∏

i=1

(xi , yi )
qi .

Such a decomposition exists, since the equivalent one exists for the set of solutions of
the associated system of linear diophantine equations, see [8, Theorem 3]. When we
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pass to the lengths, we find |x | =∑n
i=1 qi |xi | and |y| =∑n

i=1 qi |yi |. This yields

|x |
|y| · |y| = |x | =

n∑
i=1

qi |xi | =
n∑

i=1

qi
|xi |
|yi | |yi | ≤ n

max
i=1

|xi |
|yi |

n∑
i=1

qi |yi | = n
max
i=1

|xi |
|yi | · |y| .

Thus we find

|x |
|y| ≤

n
max
i=1

|xi |
|yi | .

Since A′(∼H ) ⊂ A(∼H ), the assertion now follows by [24, Proposition 14.2]. ��
Thus we can restrict ourselves to minimal solutions with minimal support for com-

puting the elasticity.
As far as computational performance is concerned, the most interesting point of this

approach is that there are straightforward optimizations of Domenjoud’s algorithm for
symmetric systems of linear diophantine equations like the one in (5.4).

5.5 Three explicit examples

Let p ∈ P be a prime. Let R = Fp[Xe1 , Xe2 ] with e1, e2 ≥ 2 being coprime. Then
R is a one-dimensional noetherian domain with integral closure R̂ = Fp[X ] and
conductor f = (R : R̂) = X f R̂, where X ∈ R̂ is a prime element and f is the
Frobenius number of the numerical monoid generated by e1 and e2. Thus R is an
order in the Dedekind domain R̂, and X R̂ is the only maximal ideal of R̂ containing
f. Furthermore, R̂× = R× = F

×
p . By the computations in [14, Special case 3.2 in

Example 3.7.3], we have G = Pic(R) ∼= Fp.
For a more detailed presentation of the explicit computations, the reader is referred

to [25, Sect. 2.3.5].

5.5.1 F3[X2, X3]

Now let p = 3. Since |G| = 3, we write G = {0, e, e′}. Clearly—or by applying
the ACA1, see Algorithm 2—we have A(G) = {0, ee′, e3, e′3}. Now we apply [14,
Theorem 3.7.1] and switch to the block monoid, which is a T -block monoid over
G, say B(G, T, ι) ⊂ F(G) × T , where T is the reduced finitely primary monoid
generated by A(T ) = {Xng | n ∈ {2, 3}, g ∈ G} and ι is the uniquely determinated
homomorphism ι : G → T such that ι(Xng) = g for all n ∈ {2, 3} and g ∈ G.

Now we apply the ACA2, see Algorithm 3, and find

A(B(G, T, ι)) = {(0, 1), (ee′, 1), (e3, 1), (e′3, 1), (1, X20), (1, X30),

(e, X2e′), (e, X3e′), (e′, X2e), (e′, X3e), (e2, X2e),

(e2, X3e), (e′2, X2e′), (e′2, X3e′)}.
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Using the construction from the beginning of Sect. 5.4, we find

T̂ ∼= N0 × Z/3Z and B(G, T, ι) ∼= S ⊂ N
4
0 × Z/3Z .

Then, for the set of atoms, we find

A(S) = {(1, 0, 0, 0, 0̄), (0, 1, 1, 0, 0̄), (0, 3, 0, 0, 0̄), (0, 0, 3, 0, 0̄), (0, 0, 0, 2, 0̄),

(0, 0, 0, 3, 0̄), (0, 1, 0, 2, 2̄), (0, 1, 0, 3, 2̄), (0, 0, 1, 2, 1̄), (0, 0, 1, 3, 1̄),

(0, 2, 0, 2, 1̄), (0, 2, 0, 3, 1̄), (0, 0, 2, 2, 2̄), (0, 0, 2, 3, 2̄)} .

Since the atom (1, 0, 0, 0, 0̄) is prime, we can restrict to a monoid S̄ ⊂ N
3
0 × Z/3Z.

Now we can find everything by using the algorithms presented at the end of Sect. 5.4.
Even in the modified version of the algorithm in Step 5.4.1—here the bound is 13.5—
we find about 7,500 minimal representations to consider after the reduction in Step
5.4.2.

From those, we get c(F3[X2, X3]) = 3 in Step 5.4.4. Since we did not compute all
minimal solutions, we find t(F3[X2, X3]) ≥ 4 in Step 5.4.5.

By using the alternative approach from Step 5.4.8, we find ρ(F3[X2, X3]) = 5
2 .

Note that this particular result on the elasticity can also be obtained by [14, Example
3.7.3, Special Case 3.2].

5.5.2 F2[X2, X3]

Let p = 2. Then |G| = 2, so write G = {0, e}. Obviously—or by applying the ACA1,
see Algorithm 2—we have A(G) = {0, e2}. Now we apply [14, Theorem 3.7.1] as
in the case p = 3 and switch to the block monoid, which is a T -block monoid over
G, say B(G, T, ι) ⊂ F(G) × T , where T is the reduced finitely primary monoid
generated by A(T ) = {Xng | n ∈ {2, 3}, g ∈ G} and ι is the uniquely determinated
homomorphism ι : G → T such that ι(Xng) = g for all n ∈ {2, 3} and g ∈ G.

Now we apply the ACA2, see Algorithm 3, as before and find

A(B(G, T, ι)) = {(0, 1), (e2, 1), (1, X20), (1, X30), (e, X2e), (e, X3e)} .

Using the construction from the beginning of Sect. 5.4, we find

T̂ ∼= N0 × Z/2Z and B(G, T, ι) ∼= S ⊂ N
3
0 × Z/2Z .

Then, for the set of atoms, we find

A(S) = {(1, 0, 0, 0̄), (0, 2, 0, 0̄), (0, 0, 2, 0̄), (0, 0, 3, 0̄), (0, 1, 2, 1̄), (0, 1, 3, 1̄)} .

Since the atom (1, 0, 0, 0̄) is prime, we can use the same arguments as in Lemma 5.4.4
and restrict to a monoid S̄ ⊂ N

2
0 × Z/2Z with a reduced set of atoms.

Since, in this case, Step 5.4.1 can be performed easily without any bound, we
compute all atoms. Given this list, we immediately find ρ(F2[X2, X3]) = 2 in Step
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5.4.3. Note that this particular result on the elasticity can also be obtained by [14,
Example 3.7.3, Special Case 3.2].

Now we proceed with Step 5.4.4 and we deduce c(F2[X2, X3]) = 3 and D(F2)+
1+ t(S) = 6 ≥ t(F2[X2, X3]) ≥ t(S) = 3.

Next, we compute the monotone catenary degree. For this, we proceed as in Step
5.4.6 and find cad(S) = 3 and ceq(S) = 3, and thus cmon(F2[X2, X3]) = cmon(S) = 3.

5.5.3 F2[X2, X5]

The results in this case differ slightly from then ones we obtained above. We have
|G| = 2, say G = {0, e}. Again, we have A(G) = {0, e2}. Now we apply [14,
Theorem 3.7.1] as before and switch to the block monoid, which is a T -block monoid
over G, say B(G, T, ι) ⊂ F(G)× T , where T is the reduced finitely primary monoid
generated by A(T ) = {Xng | n ∈ {2, 5}, g ∈ G} and ι is the uniquely determinated
homomorphism ι : G → T such that ι(Xng) = g for all n ∈ {2, 5} and g ∈ G.

Now we apply the ACA2, see Algorithm 3, as before and find

A(B(G, T, ι)) = {(0, 1), (e2, 1), (1, X20), (1, X50), (e, X2e), (e, X5e)} .

Using the construction from the beginning of Sect. 5.4, we find

T̂ ∼= N0 × Z/2Z and B(G, T, ι) ∼= S ⊂ N
3
0 × Z/2Z .

Then, for the set of atoms, we find

A(S) = {(1, 0, 0, 0̄), (0, 2, 0, 0̄), (0, 0, 2, 1̄), (0, 0, 5, 1̄), (0, 1, 2, 1̄), (0, 1, 5, 1̄)} .

Since the atom (1, 0, 0, 0̄) is prime, we can use the same arguments as in Lemma 5.4.4
and restrict to a monoid S̄ ⊂ N

2
0 × Z/2Z with a reduced set of atoms.

Since, in this case, Step 5.4.1 can be performed without any bound, we compute all
atoms. Now, we find a list of 25 atoms after Step 5.4.2. Given this list, we immediately
find ρ(F2[X2, X5]) = 3 in Step 5.4.3. Now we proceed with Step 5.4.4 and obtain
t(S) = 4, c(F2[X2, X5]) = 5, and D(F2) + 1 + t(S) = 7 ≥ t(F2[X2, X5]) ≥
max{t(S), c(F2[X2, X5])} = 5. Next, we compute the monotone catenary degree. For
this, we proceed as in Step 5.4.6 and start with the adjacent catenary degree. We find
cad(S) = 5. Next we compute the equal catenary degree and find ceq(S) = 6. Now
we find cmon(F2[X2, X5]) = cmon(S) = 6 > 5 = c(F2[X2, X5]).
Acknowledgments I thank my Ph.D. thesis advisors Prof. Franz Halter-Koch and Prof. Alfred
Geroldinger for all the help, advice, and mathematical discussions during my thesis which led to all results
in this article.
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