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Abstract Let G be a locally compact, Hausdorff, étale groupoid whose unit space is
totally disconnected. We show that the collection A(G) of locally-constant, compactly
supported complex-valued functions on G is a dense ∗-subalgebra of Cc(G) and
that it is universal for algebraic representations of the collection of compact open
bisections of G. We also show that if G is the groupoid associated to a row-finite
graph or k-graph with no sources, then A(G) is isomorphic to the associated Leavitt
path algebra or Kumjian–Pask algebra. We prove versions of the Cuntz–Krieger and
graded uniqueness theorems for A(G).
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502 L. O. Clark et al.

1 Introduction

A ring R is said to have invariant basis number if any two bases (i.e., R-linearly inde-
pendent spanning sets) of a free left R-module have the same number of elements.
Many familiar rings (e.g., fields, commutative rings, left-Noetherian rings) have invari-
ant basis number, but there are many examples of noncommutative rings that do not. A
ring R without invariant basis number is said to have module type (m, n) if m < n are
natural numbers chosen minimally with Rm ∼= Rn as left R-modules. In the 1940’s,
Leavitt constructed algebras Lm,n with module type (m, n) for all pairs of natural
numbers with m < n [13,14]. The Lm,n are now known as the Leavitt algebras,
and when m = 1, the Leavitt algebra L1,n is the unique nontrivial unital complex
algebra generated by elements x1 . . . xn and y1, . . . , yn such that

∑n
i=1 xi yi = 1 and

yi x j = δi, j 1 for all i, j ≤ n. In the 1970’s, independent of Leavitt’s work and moti-
vated by the search for C∗-algebraic analogues of Type III factors, Cuntz defined a
class of C∗-algebras On , one for each integer n ≥ 2, which are generated by elements
s1, . . . , sn satisfying

∑n
i=1 si s∗

i = 1 and s∗
i si = 1 for all i (it follows that s∗

i s j = δi, j 1
for all i, j ≤ n). A consequence of the uniqueness of L1,n is that it is isomorphic to
the dense ∗-subalgebra of On generated by s1, . . . , sn via an isomorphism that carries
each xi to si and each yi to s∗

i .
Shortly after Cuntz’s work, Cuntz and Krieger [6] generalised Cuntz’s results to

describe a class of C∗-algebras OA associated to binary-valued matrices A. At about
the same time, Enomoto and Watatani provided a very elegant description of these
Cuntz–Krieger algebras in terms of the directed graphs encoded by the matrices.
Nearly twenty years later, Kumjian et al. [12] developed the class of C∗-algebras now
known as graph C∗-algebras, as a far-reaching generalisation of the Cuntz–Krieger
algebras patterned on Enomoto and Watatani’s approach. Each graph C∗-algebra is
described in terms of generators associated to the vertices and edges in the graph subject
to relations encoded by connectivity in the graph. The Cuntz algebra On corresponds
to the graph with one vertex and n edges. A remarkable assortment of important
C∗-algebraic properties of a graph C∗-algebra can be characterised in terms of the
structure of the graph (see [15] for a good overview). Shortly afterwards, Kumjian and
Pask [10] introduced a sort of higher-dimensional graph, now known as a k-graph,
and an associated class of C∗-algebras, as a flexible visual model for the higher-rank
Cuntz–Krieger algebras discovered by Robertson and Steger [20]. When k = 1, a
k-graph is essentially a directed graph, and Kumjian and Pask’s C∗-algebras coincide
with the graph C∗-algebras of [12].

In the early 2000’s, the algebraic community became interested in the similarity
between the constructions of Leavitt and Cuntz and the potential for the graph C∗-
algebra template to provide a broad class of interesting new algebras. Following the
lead of [12], Abrams and Aranda Pino associated Leavitt path algebras to a broad
class of directed graphs. The Leavitt path algebra of a directed graph is the universal
algebra whose presentation in terms of generators and relations is essentially the same
as that of the graph C∗-algebra. Moreover, the graded uniqueness theorem for Leavitt
path algebras implies that the C∗-algebra of a directed graph is a norm completion
of its Leavitt path algebra [16,23]. Further generalising Leavitt path algebras, Aranda
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Groupoid generalisation of Leavitt path algebras 503

Pino et al. [3] recently constructed a class of algebras associated to k-graphs, which
they call Kumjian–Pask algebras.

A very powerful framework for constructing C∗-algebras is the notion of a groupoid
C∗-algebra. Renault’s structure theory for groupoid C∗-algebras [19] is exploited in
[12] where structural properties of the graph C∗-algebra are deduced by showing that
the graph C∗-algebra is isomorphic to a groupoid C∗-algebra and then tapping into
Renault’s results [19]. The same approach was taken in [10] to establish important
structural properties of k-graph C∗-algebras: the C∗-algebra of a k-graph is defined
in terms of generators and relations, but its structure is analysed by identifying it with
a groupoid C∗-algebra.

In this paper, from a sufficiently well-behaved groupoid G, we construct a complex
algebra A(G) with the following properties:

(1) A(G) has a natural description as a universal algebra (Theorem 3.10);
(2) A(G) is isomorphic to a dense subalgebra of the groupoid C∗-algebra C∗(G)

(Proposition 4.2); and
(3) given a k-graph �, if G = G� is the groupoid corresponding to � as in [10]

(Proposition 4.3), then A(G) is isomorphic to the Kumjian–Pask algebra KPC(�).
In particular, if E is a directed graph and G = G E is the graph groupoid associated
to E , then A(G) is isomorphic to the Leavitt path algebra LC(E).

In [22], Steinberg defines a groupoid algebra K G for an arbitrary commutative
ring K with unit and shows that K G is a quotient of an associated inverse semi-
group algebra. We show that the algebra A(G) is identical to K G for K = C

(the complex numbers).1 Our approach is different from that of [22] and our uni-
versal property and uniqueness theorems (see below) provide new tools for study-
ing K G and the inverse semigroup algebras associated to them in the case where
K = C; it would be interesting to investigate versions of these theorems for general
K .

The Cuntz–Krieger uniqueness theorem and gauge-invariant uniqueness theorem
are important tools in the study of graph C∗-algebras. Versions of these theorems
have been established for many generalisations of Cuntz–Krieger algebras [5,8,10–
12,17,18]. For Leavitt path algebras, the graded uniqueness theorem is the analogue
of the gauge-invariant uniqueness theorem. The first version of this graded uniqueness
theorem was a corollary to Ara, Moreno, and Pardo’s characterisation [2, Theorem 4.3]
of the graded ideals in a Leavitt path algebra. It was first stated explicitly by Raeburn
who proved both the graded uniqueness theorem and Cuntz–Krieger uniqueness the-
orem for Leavitt path algebras of row-finite graphs with no sinks and over fields
equipped with a positive definite ∗-operation [16, Theorem 1.3.2 and Theorem 1.3.4].
Tomforde extended these results to Leavitt path algebras of arbitrary graphs over arbi-
trary fields in [23, Theorem 4.8 and Theorem 6.8], and later proved the two uniqueness
theorems for Leavitt path algebras of arbitrary graphs over a ring [24, Theorem 5.3
and Theorem 6.5]. Aranda Pino et al. [3] subsequently proved versions of these theo-
rems for Kumjian–Pask algebras. In Sect. 5 we prove versions of the Cuntz–Krieger

1 We would like to thank Steinberg who brought this to our attention after reading an earlier version of this
paper.
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uniqueness theorem (Theorem 5.1) and the graded uniqueness theorem (Theorem 5.4)
for A(G). We also give an example of a groupoid satisfying our hypothesis that is not
necessarily the groupoid of a k-graph.

Our aim in defining and initiating the analysis of A(G) is twofold: (1) to provide a
broad framework for future generalisations of Leavitt path algebras from other combi-
natorial structures; and (2) to make available the powerful toolkit of groupoid analysis
to study these algebras. In addition, we hope this will provide a new and useful per-
spective on the interplay between algebra and analysis at the interface between Leavitt
path algebras and graph C∗-algebras.

2 Preliminaries

A groupoid is a small category with inverses. We write G(2) ⊆ G × G for the set of
composable pairs in G; we write G(0) for the unit space of G, and we denote by r and
s the range and source maps r, s : G → G(0). So (α, β) ∈ G(2) if s(α) = r(β). For
U, V ⊆ G, we define

U V := {αβ : α ∈ U, β ∈ V, and r(β) = s(α)}. (2.1)

A topological groupoid is a groupoid endowed with a topology under which r and s
are continuous, the inverse map is continuous, and such that composition is continuous
with respect to the relative topology on G(2) inherited from G × G.

Recall that if G is a groupoid, then an open bisection of G is an open subset
U ⊆ G such that r |U and s|U are homeomorphisms. We will work exclusively with
locally compact, Hausdorff groupoids which are étale in the sense that the source map
s : G → G(0) is a local homeomorphism. The range map is then a local home-
omorphism as well. If G is étale then G(0) is open in G and G admits a Haar
system consisting of counting measures. The following also appears as [7, Propo-
sition 4.1].

Lemma 2.1 Let G be a locally compact, Hausdorff, étale groupoid. Suppose that
G(0) is totally disconnected. Then the topology on G has a basis of clopen bisections.
Moreover, if G is locally compact and Hausdorff, then G has a basis of compact open
bisections.

Proof Proposition 2.8 of [19] implies that G has a basis of open bisections. For each
γ ∈ G, let U be an open bisection containing γ . Since r is an open map there exists
a basic clopen neighbourhood X of r(γ ) such that X ⊆ r(U ). Then XU = {h ∈ U :
r(h) ∈ X} = U ∩ r−1(X) is homeomorphic to X by choice of U and in particular is
a clopen bisection containing γ . If G is also locally compact, then U may be chosen
to be precompact. Hence the clopen subset XU is a compact open bisection. 
�
Notation 2.2 For the remainder of this paper, � will denote a discrete group, G will
denote a locally compact, Hausdorff, étale groupoid with totally disconnected unit
space, and c will denote a continuous cocycle from G to � (that is, c carries composition
in G to the group operation in �).
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Groupoid generalisation of Leavitt path algebras 505

By Lemma 2.1, with �, G and c as above, G has a basis of compact open bisections.
Since G is Hausdorff, compact subsets of G are closed. We will use this fact frequently
and without further comment.

Remark 2.3 These hypotheses might sound very restrictive, but, for instance, every
k-graph groupoid satisfies them (see, for example, [8]).

Remark 2.4 Let U be a compact open subset of a topological space X . Let F be a
finite cover of U by compact open subsets of U . For each nonempty H ⊆ F , let
VH := ( ⋂

H
) \ ( ⋃

(F \ H)
)
. Since each V ∈ F is compact and open, so is each

VH . In particular, since F is finite, so is K := {H ⊆ F : H �= ∅, VH �= ∅}, and

U =
⊔

H∈K

VH

is an expression for U as a finite disjoint union of nonempty compact open sets such
that for each W ∈ K we have W ⊆ V for at least one V ∈ F , and such that whenever
W ∈ K and V ∈ F satisfy W �⊆ V , we have W ∩ V = ∅. We refer to this as the
disjointification of the cover F of U .

Throughout this paper, unless stated otherwise, all algebras are taken to be complex
∗-algebras, and all representations are assumed to preserve adjoints.

3 The algebra A(G)

Definition 3.1 Let X be a topological space. A function f : X → Y is locally constant
if for every x ∈ X there exists a neighbourhood U of x such that f |U is constant.

Observe that if f : X → C is locally constant then it is automatically continuous,
and the support of f is clopen in X .

Definition 3.2 Let G be a locally compact, Hausdorff, étale groupoid with totally
disconnected unit space. We define A(G) to be the compex vector space

A(G) = { f ∈ Cc(G) : f is locally constant}

with pointwise addition and scalar multiplication.

The following lemma shows that A(G) is precisely the algebra CG of [22, Defin-
ition 4.1]. (In fact, Definition 3.2 agrees precisely with the definition of CG given in
the preprint version of [22]—see [21, Definition 3.1]—and then the following Lemma
is [21, Proposition 3.3]).

Lemma 3.3 Let � be a discrete group and G be a locally compact, Hausdorff, étale
groupoid with totally disconnected unit space. If U is the basis of all compact open
subsets of G, we have A(G) = span{1U : U ∈ U}.
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506 L. O. Clark et al.

Proof For any U ∈ U , the function 1U is locally constant, and hence span{1U : U ∈
U} ⊆ A(G). We must show that A(G) ⊆ span{1U : U ∈ U}. Fix f ∈ A(G). Since f
is locally constant and U is a basis, for each α ∈ supp( f ), there is a neighbourhood
Uα ∈ U of α such that f |Uα is constant. Since supp( f ) is clopen, we may assume that
Uα ⊆ supp( f ). Since supp( f ) is compact there is a finite subset F ⊆ {Uα}α∈supp f

such that supp( f ) = ⋃
F . Let K be the disjointification of F discussed in Remark 2.4.

Since f is constant on each V ∈ F and each W ∈ K is a subset of some V ∈ F , the
function f is constant on each W ∈ K . Hence, writing f (W ) for the unique value
taken by f on W ∈ K , we have f = ∑

W∈K f (W )1W . 
�

Definition 3.4 Let � be a discrete group, G a locally compact, Hausdorff, étale
groupoid with totally disconnected unit space, and c : G → � a continuous cocycle.
For n ∈ � we write Gn := c−1(n). We write An(G) for the subset of A(G) consisting
of functions whose support is contained in Gn . We say that a subset S of G is graded
if the cocycle c is constant on S. If S ⊆ Gn , we say that S is n-graded. For each n ∈ �

we write Bco
n (G) for the collection of all n-graded compact open bisections of G. We

write Bco∗ (G) for
⋃

n∈� Bco
n (G).

Lemma 3.5 Let � be a discrete group, G a locally compact, Hausdorff, étale groupoid
with totally disconnected unit space, and c : G → � a continuous cocycle. We
have A(G) = span{An : n ∈ �} ⊆ Cc(G). Every f ∈ A(G) can be expressed as
f = ∑

U∈F aU 1U where F is a finite subset of Bco∗ (G) whose elements are mutually
disjoint and a : U �→ aU is a function from F to C.

Proof We have A(G) ⊇ span{An : n ∈ �} because each An consists of locally
constant functions. For the reverse inclusion, fix f ∈ A(G). Since � is discrete and c
is continuous, each Gn is clopen. Since supp( f ) is compact, there is a finite collection
N ⊆ G such that supp( f ) ⊆ ⋃

n∈N Gn . For n ∈ N let fn denote the pointwise
product f 1Gn . Then fn is locally constant and continuous because 1Gn and f are. We
then have f = ∑

n∈N fn ∈ span{An : n ∈ �}.
Let f ∈ A(G). By Lemma 3.3, there is a finite set K0 of compact open sets and an

assignment W �→ dW of scalars to the elements of K0 such that f = ∑
W∈K0

dW 1W .
Let

K := {W ∩ Gn : W ∈ K0, n ∈ �, W ∩ Gn �= ∅}.

Since � is discrete and c is continuous, each Gn is open. Since each W ∈ K0 is
compact, K is finite. Each V ∈ K is graded; we write c(V ) for the unique value taken
by c on V . For each V ∈ K , let

bV =
∑

W∈K0,W∩Gc(V )=V

dW

Then f = ∑
V ∈K bV 1V .
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Groupoid generalisation of Leavitt path algebras 507

Let F be the disjointification of K . Each U ∈ F is graded because F is a refinement
of K . For U ∈ F , define

aU =
∑

V ∈K , U⊆V

bV .

Then f = ∑
U∈F aU 1U is the desired expression. 
�

Recall that given a locally compact, Hausdorff, étale groupoid G such that s : G →
G(0) is a local homeomorphism, and given f, g ∈ A(G) ⊆ Cc(G), the functions f ∗
and f ∗ g are given by

f ∗(γ ) = f (γ −1) (3.1)

( f ∗ g)(γ ) =
∑

r(α)=r(γ )

f (α)g(α−1γ ). (3.2)

Proposition 3.6 Let � be a discrete group, G a locally compact, Hausdorff, étale
groupoid with totally disconnected unit space, and c : G → � a continuous cocycle.
Under the operations (3.1) and (3.2), A(G) is a �-graded ∗-algebra with graded
subspaces An as described in Definition 3.4.

Remark 3.7 For us, an involution on a ∗-algebra over C is always conjugate linear.

Remark 3.8 We do not assume that � is abelian so we will write the group operation
multiplicatively.

Proof That A(G) is a complex algebra follows from [22, Proposition 4.6]. We must
verify that A(G) is a ∗-algebra and that A(G) is graded. The An are mutually linearly
independent because the Gn are disjoint and restriction of functions gives a vector-
space isomorphism of each An onto the space of locally constant functions on Gn .
Observe that the ∗-operation is a conjugate-linear involution on A(G) and takes An

to An−1 . Next we will show that the multiplication defined on A(G) is a graded
multiplication. If f ∈ Am and g ∈ An , then if ( f ∗ g)(γ ) �= 0 we have f (α) �= 0
and g(α−1γ ) �= 0 for some α with r(α) = r(γ ). In particular, c(α) = m, and
c(α−1γ ) = n forcing c(γ ) = mn (because c(γ ) = c(αα−1γ ) = c(α)c(α−1γ )).
Hence supp( f ∗ g) ⊆ Gmn . 
�

We finish this section by presenting of A(G) as a universal algebra.

Definition 3.9 Let � be a discrete group, G a locally compact, Hausdorff, étale
groupoid with totally disconnected unit space, and c : G → � a continuous cocy-
cle. Let B be an algebra over C. A representation of Bco∗ (G) in B is a family
{tU : U ∈ Bco∗ (G)} ⊆ B satisfying

(R1) t∅ = 0;
(R2) tU tV = tU V for all U, V ∈ Bco∗ (G); and
(R3) tU + tV = tU∪V whenever U and V are disjoint elements of Bco

n (G) for some n
such that U ∪ V is a bisection.
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The following theorem gives an alternative formulation of [21, Theorem 3.11].

Theorem 3.10 Let � be a discrete group, G a locally compact, Hausdorff, étale
groupoid with totally disconnected unit space, and c : G → � a continuous cocycle.
Then {1U : U ∈ Bco∗ (G)} ⊆ A(G) is a representation of Bco∗ (G) which spans A(G).
Moreover, A(G) is universal for representations of Bco∗ (G) in the sense that for every
representation {tU : U ∈ Bco∗ (G)} of Bco∗ (G) in an algebra B, there is a unique
homomorphism π : A(G) → B such that π(1U ) = tU for all U ∈ Bco∗ (G).

Proof The collection {1U : U ∈ Bco∗ (G)} certainly satisfies (R1) and (R3), and it
satisfies (R2) by [22, Proposition 4.5 (3)]. That this family spans A(G) follows from
Lemma 3.5.

Let B be a complex algebra and let {tU : U ∈ Bco∗ (G)} be a representation of
Bco∗ (G) in B. We must show that there is a homomorphism π : A(G) → B satisfying
π(1U ) = tU for all U ∈ Bco∗ (G); uniqueness follows from the previous paragraph.
We begin by showing that

∑

U∈F

tU = t⋃ F for n ∈ � and finite F ⊆ Bco
n (G) consisting of mutually disjoint

bisections such that
⋃

F ∈ Bco
n (G). (3.3)

Let F ⊆ Bco
n (G) be a finite collection of mutually disjoint bisections such that

⋃
F

is a bisection. We claim that r(U ) ∩ r(V ) = ∅ for distinct U, V ∈ F . To see this, fix
x ∈ r(U ). There exists α ∈ U such that r(α) = x , and this α is the unique element of⋃

F whose range is x because
⋃

F is a bisection. Since U ∩ V = ∅, we have α �∈ V
and hence x �∈ r(V ). So the sets r(U ) where U ∈ F are mutually disjoint as claimed.
Thus each U ∈ F satisfies U = r(U )(

⋃
F). A standard induction extends (R3) to

finite collections of mutually disjoint compact open subsets of G(0). Combining this
with (R2), we obtain

t⋃ F = tr(
⋃

F)t
⋃

F =
∑

U∈F

tr(U )t⋃ F =
∑

U∈F

t
r(U )

(⋃
F
) =

∑

U∈F

tU .

We show next that the formula
∑

U∈F aU 1U �→ ∑
U∈F aU tU is well-defined on

linear combinations of indicator functions where F ⊆ Bco∗ (G) is a finite collection of
mutually disjoint bisections. It will follow from Lemma 3.5 that there is a unique linear
map π : A(G) → B such that π(1U ) = tU for each U ∈ Bco∗ (G). Fix f ∈ A(G) and
suppose that

∑

U∈F

aU 1U = f =
∑

V ∈H

bV 1V

where each of F and H is a finite set of mutually disjoint elements of Bco∗ (G). We
must show that

∑

U∈F

aU tU =
∑

V ∈H

bV tV .
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Since the Gn are mutually disjoint, for each n ∈ � we have

∑

U∈F∩Bco
n (G)

aU 1U = f |Gn =
∑

V ∈H∩Bco
n (G)

bV 1V ,

so we may assume that F, G ⊆ Bco
n (G) for some n ∈ �.

Let K = {U ∩ V : U ∈ F, V ∈ H, U ∩ V �= ∅}. Then each W ∈ K belongs to
Bco

n (G). Moreover, for U ∈ F we have U = ⊔{W ∈ K : W ⊆ U }. Hence (3.3)
gives tU = ∑

W∈K ,W⊆U tW for each U ∈ F ; a similar decomposition holds for tV for
each V ∈ H . Therefore

∑

U∈F

aU tU =
∑

U∈F

∑

W∈K , W⊆U

aU tW =
∑

W∈K

⎛

⎝
∑

U∈F, W⊆U

aU

⎞

⎠ tW ,

and similarly

∑

V ∈F

bV tV =
∑

W∈K

⎛

⎝
∑

V ∈F, W⊆V

bV

⎞

⎠ tW .

Fix W ∈ K . It suffices now to show that
∑

U∈F, W⊆U aU = ∑
V ∈F, W⊆V bV . By

definition of K , the set W is nonempty, so let α ∈ W . Then for U ∈ F , we have
α ∈ U �⇒ W ∩ U �= ∅ �⇒ W ⊆ U . Since α ∈ W , this implies that
α ∈ U ⇐⇒ W ⊆ U . Hence

f (α) =
∑

U∈F

aU 1U (α) =
∑

U∈F, α∈U

aU =
∑

U∈F, W⊆U

aU .

a similar calculation shows that
∑

V ∈F, W⊆V bV = f (α) as well. So there is a linear
map π : A(G) → B such that π(1U ) = tU for all U ∈ Bco∗ (G).

We must check that π is a homomorphism. To see that π is multiplicative, fix
f, g ∈ A(G). Express f = ∑

U∈F aU 1U and g = ∑
V ∈H bV 1V where F and H are

finite subsets of Bco∗ (G), and calculate:

π( f g) = π

(
( ∑

U∈F

aU 1U

)( ∑

V ∈H

bV 1V

)
)

= π

(
∑

U∈F

∑

V ∈H

aU bV 1U 1V

)

.

Since [22, Proposition 4.5 (3)] gives 1U 1V = 1U V for all U, V , we then have

π( f g) = π

(
∑

U∈F

∑

V ∈H

aU bV 1U V

)

=
∑

U∈F

∑

V ∈H

aU bV tU V .
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510 L. O. Clark et al.

Each tU V = tU tV by (R2), so

π( f g) =
∑

U∈F

∑

V ∈H

aU bV tU tV =
(

∑

U∈F

aU tU

)(
∑

V ∈H

bV tV

)

= π( f )π(g)

as required. 
�

4 A(G) is dense in C∗(G)

Since our aim is to produce algebras associated to totally disconnected, locally com-
pact, Hausdorff groupoids whose relationship to the groupoid C∗-algebra is analogous
to that of Leavitt path algebras to graph C∗-algebras, we show in this section that the
subalgebra A(G) of Cc(G) is dense in the full (and hence also the reduced) C∗-algebra
of G. We could prove this as in [12, Proposition 4.1] or [22, Proposition 6.7] by using
the Stone-Weierstrass theorem, but a direct argument takes about the same amount of
effort.

We first prove a technical lemma.

Lemma 4.1 Let G be a locally compact, Hausdorff, étale groupoid with totally discon-
nected unit space. Fix a compact open bisection U of G and suppose that f ∈ Cc(G)

is supported on U. Fix ε > 0. There exists a finite set V of nonempty compact
open bisections of G such that U = ⊔ V and such that for each V ∈ V , we have
| f (α) − f (β)| ≤ ε for all α, β ∈ V .

Proof For each γ ∈ U let Uγ be a compact open neighbourhood of γ such that
Uγ ⊆ U and | f (α) − f (γ )| < ε/2 for all α ∈ Uγ . Since U is compact, there is a
finite subset F of U such that {Uγ : γ ∈ F} covers U . Let V be the disjointification of
the Uγ as in Remark 2.4. Fix V ∈ V . Then there exists γ ∈ F such that V ⊆ Uγ , and
then for α, β ∈ V , we have | f (α) − f (β)| ≤ | f (α) − f (γ )| + | f (γ ) − f (β)| < ε.
�

To state the next proposition, we recall from [19] that for a locally compact, Haus-
dorff, étale groupoid G, the I -norm on Cc(G) is defined as follows. For f ∈ Cc(G),
let

‖ f ‖I,r := sup
u∈G(0)

⎧
⎨

⎩

∑

r(α)=u

| f (α)|
⎫
⎬

⎭
and ‖ f ‖I,s := sup

u∈G(0)

⎧
⎨

⎩

∑

s(α)=u

| f (α)|
⎫
⎬

⎭
.

Then the I -norm of f is ‖ f ‖I := max{‖ f ‖I,r , ‖ f ‖I,s}. The I -norm dominates each
of the universal norm, the reduced norm, and the uniform norm on Cc(G). (See [19]
for further details.)

Proposition 4.2 Let � be a discrete group, G a locally compact, Hausdorff étale
groupoid with totally disconnected unit space, and c : G → � a continuous cocycle.
With notation as above, A(G) is dense in Cc(G) under each of the reduced norm, the
universal norm, the I -norm, and the uniform norm.
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Proof Since the I -norm dominates the other three norms, it suffices to prove the result
for the I -norm. Fix f ∈ Cc(G) and ε > 0. Since f has compact support, supp( f )

can be written as a finite union of elements of Bco∗ (G). So we can write f = ∑n
i=1 fi

where each fi is supported on an element of Bco∗ (G). For each i , apply Lemma 4.1 to
supp( fi ) to obtain a cover Ui of the support of fi by disjoint compact open bisections
such that for U ∈ Ui , we have | fi (α) − fi (β)| ≤ ε/n for all α, β ∈ Ui . For each
i ≤ n and each U ∈ Ui , fix zi,U ∈ f (U ), so | fi (α) − zi,U | ≤ ε/n for all α ∈ U .
Then let gi := ∑

U∈Ui
zi,U 1U for all i ≤ n and define g := ∑n

i=1 gi ∈ A(G). We
have

‖ f − g‖I ≤
n∑

i=1

‖ fi − gi‖I .

Fix i ≤ n. It suffices to show that ‖ fi − gi‖I ≤ ε/n. Fix u ∈ G(0). Since fi

is supported on a bisection, there is at most one α ∈ s−1(u) ∩ supp( fi ). If there
is no such α, then

∑
s(α)=u |( fi − gi )(α)| = 0 and we are done. So suppose that

α ∈ s−1(u) ∩ supp( fi ). Then there is a unique U0 ∈ Ui such that α ∈ U0. Therefore∑
s(α)=u |( fi − gi )(α)| = | fi (α) − zi,U0 | ≤ ε/n. Since u ∈ G(0) was arbitrary, we

conclude that ‖ fi − gi‖I,s ≤ ε/n. A symmetric argument gives ‖( fi − gi )(α)‖I,r ≤
ε/n. Hence ‖ fi − gi‖I ≤ ε/n as required. 
�
Proposition 4.3 Suppose that � is a row-finite, k-graph with no sources and that
G� is the corresponding k-graph groupoid. Then A(G�) as constructed above is
isomorphic to the Kumjian–Pask algebra KP(�, C).

Proof By [10, Corollary 3.5], tλ := 1Z(λ,s(λ)) determines a Cuntz–Krieger �-family
in C∗(G). In particular, there is a Kumjian–Pask family ([3, Definition 3.1]) for �

determined by tλ = 1Z(λ,s(λ)) and tλ∗ = 1Z(s(λ),λ) for all λ ∈ �. It follows from
the universal property of KP(�, C) that there is a homomorphism φ : KP(�, C) →
A(G�) which carries each sλ to tλ and each sλ∗ to tλ∗ .

By [3, Theorem 3.4] the algebra KP(�, C) is spanned by the elements tμtν∗ where
μ, ν ∈ � with s(μ) = s(ν), and the Z-grading of KP(�, C) carries each sμsν∗ to
d(μ)−d(ν). So to see that φ is graded, it suffices to show that it preserves the grading
of each sμsν∗ , which it does since

φ(sμsν∗) = 1Z(μ,ν) = 1{(μx,d(μ)−d(ν),νx):x∈�∞,r(x)=s(μ)} ∈ Ad(μ)−d(ν).

Since each Z(v) is nonempty, φ(pv) �= 0 for each v ∈ E0. Thus the graded uniqueness
theorem for Kumjian–Pask algebras [3, Theorem 4.1] implies that φ is injective.

It remains to show that φ is surjective. By Lemma 3.3, A(G�) is spanned by the
functions 1U where U ranges over all compact open bisections in G�. Let U be a
compact open bisection. Since the grading is continuous and U is compact, we can
write 1U as the finite sum

∑
U∩Gn �=∅ 1U∩Gn where each U ∩ Gn is a graded compact

open bisection. So fix n ∈ N
k and a compact open n-graded bisection V . It suffices

to show that 1V ∈ span{1Z(μ,ν) : s(μ) = s(ν)}. Because V is compact and the sets
Z(μ, ν) form a basis for the topology on G� [10, Proposition 2.8], we can write V =
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⋃
(μ,ν)∈F Z(μ, ν) for some finite set F ⊆ {(μ, ν) ∈ �×� : s(μ) = s(ν)}. Since V is

n-graded, we have d(μ)−d(ν) = n for all (μ, ν) ∈ F . Let p := ∨
(μ,ν)∈F d(μ). Then

for each (μ, ν) ∈ F we have Z(μ, ν) = ⋃{Z(μα, να) : α ∈ s(μ)�p−d(μ)}. Let H :=
{(μα, να) : (μ, ν) ∈ F, α ∈ s(μ)�p−d(μ)}. Then Z(η, ζ )∩ Z(η′, ζ ′) = ∅ for distinct
(η, ζ ), (η′, ζ ′) ∈ H , so V = ⊔

(η,ζ )∈H Z(η, ζ ). Hence 1U = ∑
(η,ζ )∈H 1Z(η,ζ ), and

it follows that φ is surjective. 
�
Remark 4.4 When k = 1 in the preceding proposition, � is the path category of the
directed graph E = (�0,�1, r, s) and, in this case, the proposition specialises to the
statement that A(G) is isomorphic to the Leavitt path algebra of [1].

5 The uniqueness theorems

Interestingly, in the situation of groupoids, the graded uniqueness theorem is a corollary
of the natural generalisation of the Cuntz–Krieger uniqueness theorem. This in turn
is essentially Renault’s structure theorem for the reduced C∗-algebra of a groupoid in
which the units with trivial isotropy are dense in the unit space. This condition has been
referred to, variously, as “topologically free”, “topologically principal”, “essentially
free.”

Given a unit u, it is standard to denote the isotropy subgroup {α ∈ G : r(α) =
s(α) = u} by either G(u) or Gu

u . Here we have chosen the more suggestive notation
uGu, which is in keeping with the notation established in (2.1). Likewise, we write
Gu for s−1(u).

Theorem 5.1 Let G be a locally compact, Hausdorff, étale groupoid with totally
disconnected unit space. Suppose that {u ∈ G(0) : uGu = {u}} is dense in G(0). Let
π : A(G) → B be a ∗-homomorphism into a complex ∗-algebra B. Suppose that
ker(π) �= {0}. Then there is a compact open subset K ⊆ G(0) such that π(1K ) = 0.

Remark 5.2 To see why the hypothesis that the units with trivial isotropy are dense
is needed in Theorem 5.1, consider the situation where G = Z/2Z regarded as a
groupoid with one unit 0. Then A(G) is the group algebra Cδ0 + Cδ1, and the map
π : A(G) → C such that π(δ0) = π(δ1) = 1 is a ∗-homomorphism of A(G) which
is not injective, but which restricts to an injective representation of Cc(G(0)) = Cδ0.
A related construction applies for arbitrary G—see [4, Proposition 4.4].

To prove Theorem 5.1, we need a technical lemma.

Lemma 5.3 Let G be a locally compact, Hausdorff, étale groupoid. Fix α ∈ G and
a precompact neighbourhood V of α. Suppose that r(α)Gs(α) = {α}. Then there
exist neighbourhoods X of r(α) and Y of s(α) such that XVY is a precompact open
bisection.

Proof Suppose, to the contrary, that for every neighbourhood X of r(α) and every
neighbourhood Y of s(α), XVY fails to be a bisection. Let U be an open bisection con-
taining α. Fix a fundamental sequence of neighbourhoods (Yi )

∞
i=1 of s(α), and for each

i , let Xi := r(UYi ), so that (Xi )
∞
i=1 forms a fundamental sequence of neighbourhoods
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of r(α). Since each Xi V Yi fails to be a bisection, for each i there exist βi , γi ∈ Xi V Yi

with βi �= γi such that either s(βi ) = s(γi ) or r(βi ) = r(γi ) for all i . The sequence(
(βi , γi )

)∞
i=1 belongs to the precompact set V × V , so by passing to a subsequence

and relabelling we may assume that βi → β and γi → γ . Since the Xi and Yi are
fundamental sequences of neighbourhoods, it follows that r(βi ), r(γi ) → r(α) and
s(βi ), s(γi ) → s(α). Since r, s : G → G(0) are continuous and G(0) is Hausdorff,
r(β) = r(α) = r(γ ) and s(β) = s(α) = s(γ ). By hypothesis, s(α)Gr(α) = {α},
so we have β = γ = α. Since U is a neighbourhood of α, we then have βi , γi ∈ U
for large i . Fix i such that βi , γi ∈ U . Then βi �= γi but either r(βi ) = r(γi ) or
s(βi ) = s(γi ), contradicting that U is a bisection. 
�
Proof of Theorem 5.1 Fix f ∈ ker(π) \ {0}. Since s is a local homeomorphism, it is
an open map, and since f is locally constant, we deduce that s(supp( f )) ⊆ G(0) open.
Because {u ∈ G(0) : uGu = {u}} is dense in G(0), there exists u ∈ s(supp( f )) such
that uGu = {u}. Fix α ∈ supp( f ) with s(α) = u. Then r(α)Gs(α) = α(α−1Gu) ⊆
α(uGu) = {α}.

By Lemma 5.3, there exist compact open neighbourhoods X of r(α) and Y of s(α)

such that X supp( f )Y is a bisection containing α. Because r and s are continuous,
X supp( f )Y = r−1(X) ∩ supp( f ) ∩ s−1(Y ) is compact. Since f is locally constant,
X supp( f )Y is also open and there exist subneighbourhoods X0 ⊆ r(X supp( f )Y )

of r(α) and Y0 ⊆ s(X supp( f )Y ) of s(α) such that X0 supp( f )Y0 is a compact open
bisection and f (β) = f (α) for all β ∈ X0 supp( f )Y0.

We have 1X0 , 1Y0 ∈ A(G). By Lemma 3.3, f may be written as a linear combina-
tion of characteristic functions of compact open bisections. [22, Proposition 4.5 (3)]
together with bilinearity of multiplication implies that for β ∈ G,

(1X0 ∗ f ∗ 1Y0)(β) = 1X0(r(β)) f (β)1X0(s(β))

= 1X0 supp( f )Y0(β) f (β) = 1X0 supp( f )Y0(β) f (α).

Thus f0 := 1X0 ∗ f ∗ 1Y0 = f (α)1X0 supp( f )Y0 . Since π( f ) = 0, we have π( f0) = 0.
We have (X0 supp( f )Y0)

−1(X0 supp( f )Y0) = Y0 because X0 supp( f )Y0 is a bisec-
tion. Proposition 4.5 (3) [22] implies that

f ∗
0 ∗ f0 = | f (α)|21(X0 supp( f )Y0)−1(X0 supp( f )Y0)

= | f (α)|21Y0 .

Hence K := Y0 satisfies π(1K ) = 1
| f (α)|2 π( f ∗

0 ∗ f0) = 0 as required. 
�
Our graded uniqueness theorem now follows from a bootstrapping argument.

Theorem 5.4 Let � be a discrete group, G a locally compact, Hausdorff, étale
groupoid with totally disconnected unit space, and c : G → � a continuous cocycle.
Suppose that {u ∈ G(0) : uGeu = {u}} is dense in G(0). Let B be a complex ∗-algebra
and let π : A(G) → B be a graded ∗-homomorphism. Suppose that ker(π) �= {0}.
Then there is a compact open subset K ⊆ G(0) such that π(1K ) = 0.

Proof We first claim that there exists nonzero f ∈ Ae such that π( f ) = 0. To see
this, choose g ∈ ker(π)\ {0}. Since g is an element of the graded algebra A(G), g can
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be expressed as a finite sum of graded components g = ∑
h∈F gh where F ⊆ � and

each gh ∈ Ah . Now π(g) = ∑
h∈F π(gh) = 0, and each π(gh) ∈ Bh because π is a

graded homomorphism. Because the graded subspaces of B are linearly independent,
it follows that each π(gh) = 0. Since g �= 0, there exists k ∈ F such that gk �= 0.
By Lemma 3.5, we can write gk as

∑
V ∈K aV 1V where K is a finite set of mutually

disjoint elements of Bco
k (G). Note that g∗

k = ∑
V ∈K aV 1V −1 ; define f := g∗

k ∗ gk . We
claim that f ∈ Ae \ {0} and π( f ) = 0. To see this, first notice that

f =
(

∑

V ∈K

aV 1V −1

)

∗
(

∑

W∈K

aW 1W

)

=
∑

V,W∈K

aV aW 1V −1 ∗ 1W

=
∑

V,W∈K

aV aW 1V −1W

by [22, Proposition 4.5 (3)]. Now, because each V ∈ K is a subset of Gk , each
V −1W ⊆ Gk−1k = Ge, and thus f ∈ Ae as claimed. We have π( f ) = 0 because
π(gk) = 0.

To show that f is nonzero, fix α ∈ Gk such that g(α) �= 0. Since the elements
of K are mutually disjoint, there is a unique Vα ∈ K such that α ∈ Vα , and then
aVα = g(α) �= 0. Since s is a local homeomorphism, Gs(α) is a discrete space. Write
Cc(Gs(α)) for the space of finitely supported functions from Gs(α) to C and for each
β ∈ Gs(α) let δβ denote the point-mass at β so that Cc(Gs(α)) = span{δβ : β ∈
Gs(α)}. For f ∈ Cc(G), let ρ( f ) be the linear map on Cc(Gs(α)) determined by

ρ( f )δβ =
∑

s(α)=r(β)

f (α)δαβ.

Let (· | ·) be the standard inner product on Cc(Gs(α)), that is ( f |g) = ∑
β f (β)g(β).

Since the elements of K are mutually disjoint,
(
ρ(1V )δs(α) | ρ(1W )δs(α)

) = 0 for
distinct V, W ∈ K . A calculation shows that for V ∈ K and β, γ ∈ Gs(α), we have
(δβ |ρ(1V −1)δγ ) = (ρ(1V )δβ |δγ ). Hence

(
ρ( f )δs(α) | δs(α)

) = (
ρ(gk)δs(α) | ρ(gk)δs(α)

)

=
∑

V,W∈K

aV aW
(
ρ(1W )δs(α) | ρ(1V )δs(α)

)

=
∑

V ∈K ,
s(α)∈s(V )

|aV |2 ≥ |aVα |2.

Hence ρ( f ) �= 0 which forces f �= 0.
By hypothesis {u ∈ G(0) : uGeu = {u}} is dense in G(0). By definition, Ae is equal

to the space of locally constant, continuous, compactly supported functions on Ge,
so we may apply Theorem 5.1 to see that π |Ae : Ae → B annihilates 1K for some

compact open K ⊆ G(0)
e = G(0). 
�

123



Groupoid generalisation of Leavitt path algebras 515

Corollary 5.5 Let � be a discrete group, G a locally compact, Hausdorff, étale
groupoid with totally disconnected unit space, and c : G → � a continuous cocycle.
Suppose that {u ∈ G(0) : uGeu = {u}} is dense in G(0). Let B be a �-graded complex
algebra and let {tU : U ∈ Bco∗ (G)} be a representation of Bco∗ (G) in B. Suppose that
tU ∈ Bn whenever U ∈ Bco

n (G) and that tK �= 0 for each compact open K ⊆ G(0).
Then the homomorphism π : A(G) → B obtained from Theorem 3.10 is injective.

Proof Since each A(G)n is spanned by {1U : U ∈ Bco
n (G)}, the homomorphism π

is graded. Since π(1K ) = tK �= 0 for all compact open K ⊆ G(0), it follows from
Theorem 5.4 that ker(π) = {0}. 
�
Remark 5.6 Suppose that G is a locally compact, Hausdorff, étale groupoid with
totally disconnected unit space such that {u ∈ G(0) : uGu = {u}} is dense in G(0).
We may apply Corollary 5.5 with c the trivial cocycle to prove that A(G) is the unique
algebra generated by nonzero elements {tU : U is a compact open bisection of G}
satisfying

(1) t∅ = 0;
(2) tU tV = tU V for all compact open bisections U, V ; and
(3) tU + tV = tU∪V whenever U and V are disjoint compact open bisections whose

union is a bisection.

Remark 5.7 In the proof of Theorem 5.4, to see that the function g∗
k ∗ gk was nonzero,

we really just checked that its image under Renault’s left-regular representation of
G associated to the unit s(α) is nonzero. However, since we are not working in a
C∗-completion, we can do everything at the level of linear algebra rather than on
Hilbert space. We could instead have appealed to the C∗-identity by regarding A(G)

as a subalgebra of Cr (G), but chose a more elementary argument: our argument is
essentially that used by Renault to show that the reduced norm is positive definite on
Cc(G).

Remark 5.8 Recall from [8] that if � is a finitely aligned k-graph, then the k-graph
groupoid G� is totally disconnected and locally compact, and carries a Z

k-grading
such that {u ∈ G(0) : uGeu = {u}} is dense in G(0). So our graded uniqueness theorem
applies to A(G�) for any finitely aligned k-graph. Likewise, Remark 5.6 suggests a
Cuntz–Krieger uniqueness theorem for A(G�). But in practise the relations described
in Definition 3.9 and Remark 5.6 are much harder to verify than those of [3, Defini-
tion 3.1].

We do not, at this stage, have any invariants at our disposal to decide whether,
given groupoids G and G ′ satisfying our hypotheses, the algebras A(G) and A(G ′)
are or are not isomorphic. It would be very interesting to develop computable algebraic
invariants of A(G) for this purpose, but it is beyond the scope of this paper.

However, as an indication that our construction is more flexible the construction
of Kumjian–Pask algebras in [3], we describe a class of groupoids that satisfy our
hypotheses but do not obviously arise from k-graphs.

Example 5.9 Let T : X → X be a surjective local homeomorphism of a totally
disconnected, compact, Hausdorff space X . Define T 0 := id and for k ≥ 2 let T k :=
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T ◦ · · · ◦ T be the k-fold self-composite of T . Let G be the Deaconu-Renault groupoid
defined in [9, Sect. 3]. So

G = {(x, n, y) ∈ X × Z × X : T k(x) = T l(y), n = k − l}.

Let G(0) be the subset {(x, 0, x) : x ∈ X}, which we identify with X in the obvious
way. The range and source maps are given by r(x, n, y) = x and s(x, n, y) = y.
Hence triples (x1, n1, y1) and (x2, n2, y2) are composable if and only if x2 = y1, in
which case (x1, n1, y1)(x2, n2, y2) := (x1, n1 + n2, y2). The inverse of (x, n, y) is
(y,−n, x). For open subsets U, V ⊆ X and k, l ≥ 0 such that T k |U and T l |V are
homeomorphisms and T k(U ) = T l(V ), define

Z(U, V, k, l) := {(x, k − l, y) ∈ G : x ∈ U, y ∈ V }.

Then

{Z(U, V, k, l) : U, V ⊆ X are compact open, k, l ≥ 0,

T k |U and T l |V are homeomorphisms and T k(U ) = T l(V )}

is a basis of compact open sets for a topology on G under which it becomes a locally
compact, Hausdorff groupoid with totally disconnected unit space X . Fix (x, n, y) ∈ G
and k, l such that k − l = n and T k(x) = T l(y). The source map on G restricts to a
homeomorphism on each basic open set Z(U, V, k, l) so is a local homeomorphism.
Moreover, the map c : G → Z defined by c((x, n, y)) = n is a cocycle and is
continuous because each basic open set belongs to some c−1(n). Hence (G, c) satisfies
our hypotheses, and A(G) is a sensible candidate for the Leavitt algebra of (X, T ).
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