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Abstract We complete the characterization of finite bands admitting a natural dual-
ity, by showing that every finite normal band admits a natural duality. In particular
we show that every finite normal band is finitely related.
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1 Introduction

A general notion of natural duality for a quasi-variety was initiated by Davey and
Werner [9], generalizing well-known dualities such as Stone duality for Boolean al-
gebras, Priestley duality for distributive lattices and Hofmann-Mislove-Stralka dual-
ity for semilattices. A natural duality for a quasi-variety gives a uniform method to
represent each algebra in the quasi-variety as the algebra of all continuous homomor-
phisms over some structured Boolean space. There has been some work on dualis-
ability of semigroups, especially bands and groups. As a part of Pontryagin duality,
it is known that every finite abelian group is dualisable. Davey and Quackenbush [8]
proved that the finite dihedral groups Dn, for odd n, are dualisable. Moreover, Quack-
enbush and Szabó [24] showed that a finite group with cyclic Sylow subgroups is
dualisable. In the other direction, they proved that finite non-abelian nilpotent groups
are not dualisable [23]. Sporadic examples of finite bands allowing such a duality
have appeared as examples in several places. Hobby [15] has studied an infinite fam-
ily of finite semigroups including some instances of bands and has shown that most
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Fig. 1 Varieties of normal
bands

of them do not admit a natural duality. Davey and Knox worked on dualisability of
bands and they proved that finite rectangular bands are dualisable [7]. In addition,
in [6] they gave dualities for the quasi-varieties of left normal, right normal and nor-
mal bands. Dualities for semilattices, left-zero and right-zero semigroups are covered
by Hofmann-Mislove-Stralka [16] and Banaschewski [2]. Jackson [18] has shown
that a quasi-variety of bands cannot admit a natural duality if it does not consist of
normal bands. We complete the classification of the dualisability of finite bands by
showing that all remaining quasi-varieties of normal bands admit a natural duality. In
particular we show that every finite normal band is finitely related.

2 Background

Normal bands were first studied by McLean [22]. Kimura [19] determined all iden-
tities on idempotent semigroups up to three variables, but a complete classification
of band varieties was given independently in the early 1970s by Fennemore [12],
Gerhard [13] and Biryukov [3]. In the following description, we refer to Howie’s
text [17]. The lattice of subvarieties of the variety N of normal bands is composed
of eight varieties as shown in Fig. 1. The atoms are the varieties L,S,R of left-zero
semigroups, semilattices and right-zero semigroups, respectively. The varieties left
normal bands L0, right normal bands R0 and rectangular bands RB are the remain-
ing nontrivial, proper subvarieties.

Shafaat [26] showed that the lattices of varieties and quasi-varieties have the same
set of atoms which is the set of varieties {L,S,R}. He described the lattice of quasi-
varieties by the following theorem.

Theorem 2.1 [26, Theorem 4] The following is a complete list of quasi-varieties of
normal bands (and implications defining them within N ):

(1) T : [x = y];
(2) L: [xy = x];
(3) S : [xy = yx];
(4) R: [xy = y];
(5) L∨ S : [xz = yz → xy = yx];
(6) RB: [xyx = x];
(7) S ∨R: [zx = zy → xy = yx];
(8) RB ∨ S : [xzy = yzx → xy = yx];
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Fig. 2 Quasi-varieties of
Normal Bands

(9) L0: [xyz = xzy];
(10) R0: [xyz = yxz];
(11) L0 ∨R: [zx = zy → uxy = uyx];
(12) R0 ∨L: [xz = yz → xyu = yxu];
(13) N : [xyzx = xzyx].

The lattice is depicted in Fig. 2 where solid points depict varieties. Throughout
this paper, we denote algebras by bold Latin letters, for example: A,B and their
underlying sets by A,B . Observe that the above quasi-varieties are generated by basic
semigroups as follows:

• L = ISP(L);
• S = ISP(S);
• R= ISP(R);
• RB = ISP(L × R);
• L0 = ISP(L0);
• L∨ S = ISP(L × S);
• RB ∨ S = ISP(RB × S);
• L0 ∨R= ISP(L0 × R);

where L, S, R, L0, RB are the 2-element left-zero semigroup, the 2-element semi-
lattice, the 2-element right-zero semigroup, the 3-element left normal semigroup ob-
tained by adjoining a zero to L, and the 4-element rectangular band isomorphic to
product of L and R, respectively.

3 Some dualities for Bands

For details on the following definitions and preliminary steps concerning natural du-
alities, see Clark and Davey [4]. Let M be a finite algebra. We say M admits a natural
duality or M is dualisable if there is some discrete topological structure M∼ such that
every algebra A ∈ ISP(M) is represented as an algebra of morphisms hom(X,M∼) for
some X ∈ IScP

+ M∼ where M∼ = 〈M;G,H,R,T 〉 such that
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(1) G is a set of total operations on M such that (for g ∈ G of arity n ≥ 1) g : Mn →
M is a homomorphism;

(2) H is a set of partial operations on M such that if h ∈ H is n-ary then the do-
main, dom(h), of h is a (non-empty) subalgebra of Mn and h : dom(h) → M is
a homomorphism;

(3) R is a set of finitary relations on M such that if r ∈ R is n-ary then r forms a
subalgebra of Mn;

(4) T is the discrete topology on M .

Under these conditions, there is a naturally defined dual adjunction between the
quasi-variety A = ISP(M) and the topological quasi-variety X = IScP

+ M∼ consist-
ing of isomorphic copies of topologically closed substructures of non-zero powers of
M∼ . On the other hand, if M∼ fails to yield a natural duality on A then M is said to be
non-dualisable.

We will establish dualisability for various bands by way of the following “Inter-
polation Condition” (IC).

IC Duality Theorem 3.1 [4] Suppose G ∪ H ∪ R is finite. Then M∼ dualises M
provided the following interpolation condition (IC) is satisfied: for each n ∈ N and
each substructure X of M∼n, every morphism ϕ : X → M∼ extends to term function
t : Mn → M of the algebra M.

Our dualities will be built upon five existing dualities namely the dualities for
the quasi-varieties generated by the 2-element semilattice S, the 2-element left-zero
semigroup L, the 2-element right-zero semigroup R, the 4-element rectangular band
RB and the 3-element left normal band L0. (Throughout this article associativity and
idempotence are assumed)

• The variety S of semilattices satisfies the identity xy ≈ yx. The meet semilattice
with 1, S = 〈{0,1};∧,1〉 was proved to be dualisable by Hofmann, Mislove and
Stralka [16] (for more details we also refer the reader to Davey and Werner [9]) and
its alter ego is obtained by taking the existing operations and adding the discrete
topology, so S∼ = 〈{0,1};∧,1,T 〉. A simple modification of the proof shows that
〈{0,1};∧〉, 〈{0,1};∧,0〉, 〈{0,1};∧,0,1〉 are also dualisable.

• The variety L of left-zero semigroups satisfies the identity xy ≈ x and the variety
R of right-zero semigroups satisfies the dual identity. As these are term-equivalent
to sets, duality for these two varieties is covered by the duality for sets given by
Banaschewski [2] (for details see [9]).

• The variety RB of rectangular bands satisfies the identity xyx ≈ x or equivalently
the anti-commutative quasi-identity xy ≈ yx → x ≈ y. Clark and Davey [4] gave
a natural duality for the variety of rectangular bands while Davey and Knox [7]
gave a new proof that every finite rectangular band is naturally dualisable.

• Davey and Knox [6] gave a sufficient condition for the dualisability of the quasi-
variety generated by a finite dualisable algebra with zero added. As a result, the
variety of left normal bands is naturally dualisable by [6, Theorem 3.6].



Dualities for quasi-varieties of bands 421

4 Dualities for Quasi-varieties of Normal Bands

In this section we will prove that the five nonvariety quasi-varieties of normal
bands are dualisable by showing that they possess alter egos that satisfying (IC).
Shafaat [26] showed that every quasi-variety of normal bands is generated by a direct
product of some of the bands L,S,R,L0 and R0. Hence, each of these quasi-varieties
is generated by the direct product of two dualisable algebras from two different va-
rieties. However, it is not always true that the direct product of dualisable algebras
is dualisable. For example, let I = 〈{0,1};→〉 denote the 2-element implication al-
gebra. For a, b ∈ {0,1}, define Ia,b = 〈{0,1};→, a, b〉. Then I0,1 and I1,0 are term-
equivalent to the 2-element Boolean algebra, whence dualisable by Stone duality, but
I0,1 ×I1,0 is not, as shown in [5]. We modify this example in the last section of this ar-
ticle by showing the product of a dualisable groupiod with constant with a dualisable
2-element right-zero semigroup with constant is non-dualisable.

Saramago [25] and Davey and Willard [10] showed that if two algebras generate
the same quasi-variety and one of them is dualisable then the other is dualisable.
In all proofs, we consider an algebra D that generates the specified quasi-variety of
normal bands, and show that D is dualisable. Moreover, in each case the alter ego of
the algebra D is of finite type, hence it is sufficient to show that (IC) holds. We end
this subsection with three lemmas that will be used often below. The first is general
and the second and third refer to the 2-element semilattice and the 2-element left- or
right-zero semigroup, respectively.

Definition 4.1 A family of maps {ϕi : X → Yi | i ∈ I } is separating if for all x �= y

in X, there is i ∈ I with ϕi(x) �= ϕi(y).

Lemma 4.2 Let D be a finite algebra, let M and N be subalgebras of D and gM :
D → M, gN : D → N be homomorphisms onto M and N, respectively with {gM,gN }
separating. Assume D∼ is an alter ego of D that includes the unary homomorphisms
gM , gN . Consider X � D∼n, for some n ∈ N and assume that ϕ : X → D∼ is a morphism
such that there is a term t (x1, . . . , xn) with

(∀x ∈ X ∩ Mn) ϕ(x) = t (x) and (∀x ∈ X ∩ Nn) ϕ(x) = t (x).

Then ϕ(x) = t (x), for every x ∈ X.

Proof Let x ∈ X. As gM(x) ∈ X ∩ Mn, we have ϕ(gM(x)) = t (gM(x)) which im-
plies that gM(ϕ(x)) = gM(t (x)). Similarly, gN(x) ∈ X ∩ Nn implies ϕ(gN(x)) =
t (gN(x)). Then we have gN(ϕ(x)) = gN(t (x)). Since gM , gN are separating homo-
morphisms and ϕ is a morphism, therefore ϕ(x) = t (x), for every x ∈ X. �

The following two basic lemmas will essentially establish (IC) for S and L
(whence R); we need the precise details for our proofs later.

Lemma 4.3 Let S∼ = 〈{a, b}; ∗, a, b〉 be the 2-element bounded semilattice with ∗
the semilattice operation and a ∗ b = b. For X � S∼n, let ϕ : X → S∼ be a morphism.
Let â be the ∗-product of all elements of the set {x ∈ X | ϕ(x) = a} and I = {i ≤ n |
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(̂a)i = a}. Then the set I �= ∅ and for all x ∈ X, we have ϕ(x) = xi1 ∗ · · · ∗ xim where
{i1, . . . , im} = I .

Proof First, â is well defined as ϕ(a) = a. Since the constant tuple b �= â, it follows
that the set I is nonempty. We will prove that for x ∈ X, we have ϕ(x) = a if and
only if xi = a for all i ∈ I . By the definition of â and I , it follows that for x ∈ X with
ϕ(x) = a we have xi = a for all i ∈ I . Conversely, if for all i ∈ I we have xi = a then
x ∗ â = â. It follows that a = ϕ(̂a) = ϕ(x) ∗ ϕ(̂a) = ϕ(x) ∗ a = ϕ(x).

Equivalently, for x ∈ X, we have ϕ(x) = b if and only if there exists j ∈ I with
xj = b. Hence for all x ∈ X we have ϕ(x) = xi1 ∗ · · · ∗ xim where {i1, . . . , im} = I . �

Lemma 4.4 Let L∼ = 〈{a, c}; ∗,∨,∧,′ 〉 be an algebra where 〈{a, c};∨,∧,′ 〉 is a
Boolean algebra with a < c and 〈{a, c}; ∗〉 is a 2-element left-zero or right-zero semi-
group. For X � L∼n, let ϕ : X → L∼ be a homomorphism. Let J = {j ≤ n | (∀x ∈ X)

ϕ(x) = xj } and define ǎ = ∨

ϕ−1(a). Then the set J �= ∅ and we have (ǎ)j = a if
and only if j ∈ J .

Proof Let X �= ∅. Since ϕ(a) = a, then ϕ−1(a) �= ∅. Hence, ǎ is well defined. Sup-
pose that (ǎ)j = a. We shall prove that ϕ(x) = xj for every x ∈ X. Either ϕ(x) = a

or ϕ(x) = c, let’s suppose the first case. Hence x ∈ ϕ−1(a) and ǎ ∨ x = ǎ. However,
ǎj ∨ xj = ǎj = a. Therefore, xj = a = ϕ(x). In the second case, if ϕ(x) = c, then
ϕ(x′) = a. Applying the above argument proves that (x′)j = a, whence xj = c =
ϕ(x).

To prove that J �= ∅, it is enough to show that ǎ �= c. Suppose by way of con-
tradiction that ǎ = c, then (ǎ)′ = a. However, ǎ = ǎ ∨ (ǎ)′ which implies that
ϕ(ǎ) = ϕ(ǎ) ∨ ϕ((ǎ)′) = a ∨ c = c, a contradiction. �

We introduce the following notation which will be required in the coming proofs.

Notation 4.5 Let M = {x, y} and N = {x, y, z}. Define the binary operations
∨x,y : M2 → M , ∧x,y : M2 → M , ∨x,y,z : N2 → N and ∧x,y,z : N2 → N as fol-
lows:

∨x,y x y

x x y

y y y

,

∧x,y x y

x x x

y x y

,

∨x,y,z x y z

x x y z

y y y z

z z z z

,

∧x,y,z x y z

x x x x

y x y y

z x y z

.

Note that ∨x,y (∧x,y ) is the join (meet) in the chain x < y and ∨x,y,z (∧x,y,z) is the
join (meet) in the chain x < y < z.

4.1 L∨ S duality

We will show that the quasi-variety generated by the product of the left-zero semi-
group L with the 2-element semilattice S is dualisable by finding an alter ego satis-
fying (IC). By symmetry, the quasi-variety generated by the product of the 2-element
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semilattice S with the 2-element right-zero semigroup R is also dualisable. Consider
the semigroup D on {(i, s) | i, s ∈ {0,1}} with the multiplication ∗ given by

(∀(i1, s1), (i2, s2) ∈ D) (i1, s1) ∗ (i2, s2) = (i1, s1 · s2).

It is easy to check that D is isomorphic to L × S. Note that for k ∈ {0,1},
Lk = {(i, k) | i ∈ {0,1}}, Sk = {(k, s) | s ∈ {0,1}}

form 2-element left-zero subsemigroups and 2-element subsemilattices, respectively,
under ∗. Let ρk : D → D, κl : D → D and λ0 : D → D be endomorphisms defined as
follows:

ρk((i, s)) = (i, k), λ0((i, s)) = (0, s), κl((i, s)) = (i′, s)

where ′ is the complement operation on {0,1} such that 0′ = 1 and 1′ = 0. We will
not notationally distinguish between an endomorphism and its restriction to a subset
of its domain. To make the proof notationally easier to read, let

a = (0,1), b = (1,1), c = (0,0) and d = (1,0).

Let ∨a,b , ∧a,b be binary operations on L1 as defined in Notation 4.5. Similarly, define
the binary operations ∨c,d , ∧c,d on L0.

By Lemma 4.4, 〈L1; ∗,∨a,b,∧a,b, κl, a, b,T 〉 and 〈L0; ∗,∨c,d ,∧c,d , κl, c, d,T 〉
dualise 〈L1; ∗〉 and 〈L0; ∗〉, respectively. By Lemma 4.3, 〈S0; ∗, a, c,T 〉 and
〈S1; ∗, b, d,T 〉 dualise 〈S0; ∗〉 and 〈S1; ∗〉, respectively. Observe that ∨c,d = ρ0 ◦
∨a,b ◦ (ρ1 × ρ1) and similarly ∧c,d = ρ0 ◦ ∧a,b ◦ (ρ1 × ρ1). Finally, the set
� = {b, c, d} forms a subsemigroup of D. Let

GD = {∗, ρ1, ρ0, λ0, κl} ∪ D

and

HD = {∨a,b,∧a,b}.

Theorem 4.6 The alter ego

D∼ = 〈{a, b, c, d};GD,HD,�,T 〉
dualises D and hence L∨ S has a natural duality.

Proof Since D∼ is of finite type, by the IC Duality Theorem 3.1, it suffices to prove
that D∼ satisfies (IC). Let n ∈ N and X � D∼n. Let ϕ : X → D∼ be a morphism. We will
apply Lemma 4.2 on D with subalgebra M chosen to be L1 and subalgebra N chosen
to be S0.

Now we consider first L1. As every term function of Lk is a projection, for all
x ∈ X ∩ Ln

k , we have ϕ(x) = xj , for some j ∈ {1, . . . , n}. Let

IL1 = {j ≤ n | (∀x ∈ X ∩ Ln
1) ϕ(x) = xj }.
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Define ǎ = ∨

a,b ρ1(ϕ
−1(a)). Hence we have ǎ ∈ X ∩ Ln

1 and ϕ(ǎ) = a. Applying
Lemma 4.4 on 〈L1; ∗,∨a,b,∧a,b, κl〉, we have (ǎ)j = a, for j ∈ IL1 , and (ǎ)k = b,
for k /∈ IL1 .

We now consider S0. Define â to be the ∗-product of all elements of the set
λ0(ϕ

−1(a)) and let

IS0 = {i ∈ {1, . . . , n} | (̂a)i = a} = {i1, . . . , im}.
Applying Lemma 4.3 on 〈S0; ∗, a, c〉, for every x ∈ X ∩Sn

0 we have ϕ(x) = xi1 ∗ · · · ∗
xim , where {i1, . . . , im} = IS1 , and (̂a)i = a, for i ∈ IS0 , and (̂a)l = c, for l /∈ IS0 .

Now we claim that IS0 ∩ IL1 �= ∅. Suppose to the contrary that IS0 and IL1

are disjoint. Without loss of generality, we may assume that IS0 = {1, . . . ,m} and
IL1 = {m + 1, . . . ,m + |IL1 |} . The following table will give a contradiction to the
assumption IS0 ∩ IL1 = ∅.

x 1 . . . m m + 1 . . . |IL1 | + m |IL1 | + m + 1 . . . n ϕ(x)

ǎ b . . . b a . . . a b . . . b a

â a . . . a c . . . c c . . . c a

ǎ ∗ â b . . . b c . . . c d . . . d a

The last line shows that ϕ does not preserve the subsemigroup �, a contradiction.
Hence IS0 ∩ IL1 �= ∅.

We are now in a position to apply Lemma 4.2. Let j ∈ IS0 ∩ IL1 and t : Dn → D
be a term function given by

t (x1, . . . , xn) = xj ∗ xi1 ∗ · · · ∗ xim.

For all x ∈ X ∩ Sn
0 , we have ϕ(x) = xi1 ∗ · · · ∗ xim , which is equal to t (x1, . . . , xn) on

S0, and for all x ∈ X ∩ Ln
1, we have ϕ(x) = xj , for some j ∈ IL1 , which is equal to

t (x1, . . . , xn) on L1. Since ρ1 and λ0 are separating retracts onto L1 and S0, respec-
tively, Lemma 4.2 shows that ϕ(x) = t (x), for all x ∈ X. �

4.2 RB ∨ S duality

Let M be a finite rectangular band. Then by Davey and Knox [7] M is dualisable by
some alter ego M∼ of finite type. Let S be a 2-element semilattice. Then by Hofmann,
Mislove and Stralka [16], S is dualisable by some alter ego S∼ of finite type. Consider
the semigroup D on {(i, s, j) | i, s, j ∈ {0,1}} with the multiplication ∗ given by

(∀(i1, s1, j1), (i2, s2, j2) ∈ D) (i1, s1, j1) ∗ (i2, s2, j2) = (i1, s1 · s2, j2).

It is clear that D ∼= L × S × R. Note that for k ∈ {0,1}, Mk = {(i, k, j) | i, j ∈ {0,1}}
form rectangular bands under ∗. Notice that for fixed coordinates i, j , the sets Sij =
{(i, s, j) | s ∈ {0,1}} form 2-element subsemilattices under ∗. We define the sets

Ris = {(i, s, j) | j ∈ {0,1}} and Lsj = {(i, s, j) | i ∈ {0,1}}
which form right-zero subsemigroups and left-zero subsemigroups under ∗, respec-
tively. Observe that D generates the quasi-variety join RB ∨ S . (See Fig. 2.)
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Let σk : D → D, ρk : D → D, λk : D → D, κl : D → D and κr : D → D be the
endomorphisms defined as follows:

σk((i, s, j)) = (i, k, j), ρk((i, s, j)) = (i, s, k), λk((i, s, j)) = (k, s, j),

κl((i, s, j)) = (i′, s, j), κr ((i, s, j)) = (i, s, j ′),

where ′ is the complement operation on the set {0,1} such that 0′ = 1,1′ = 0.
To make the proof notationally easier, let

a = (0,1,0), b = (0,1,1), c = (1,1,0), d = (1,1,1),

e = (0,0,0), f = (0,0,1), g = (1,0,0), h = (1,0,1)

be the elements of the set D. Let ∨a,b , ∧a,b be binary operations on R01 = {a, b} as
defined in Notation 4.5. Similarly, we define the remaining binary operations ∨Z,∧Z

on Z ∈ {Lsj ,Ris}.
Observe that ∨c,d = κl ◦ ∨a,b ◦ (κl × κl), ∨e,f = σ0 ◦ ∨a,b ◦ (σ1 × σ1) and ∨g,h =

σ0 ◦ κl ◦ ∨a,b ◦ ((κl ◦ σ1) × (κl ◦ σ1)), and similarly, the remaining partial operations
∧Z and ∨Z can be expressed in terms of ∧a,b , ∧a,c , ∨a,c and some endomorphisms.
Let

GD = {∗, κr , κl} ∪ D ∪ {λk, σk, ρk | k ∈ {0,1}}
and let

HD = {∧a,b,∧a,c,∨a,b,∨a,c}.
Finally, the sets �1 = {e, c, g} and �2 = {e, b, f } form subsemigroups of D. Notice
that by Lemma 4.3,

S∼00 = 〈S00; ∗, a, e,T 〉
dualises S00. We will show in the proof of Theorem 4.7 that

M∼1 = 〈M1; ∗,∨a,b,∨a,c,∧a,b,∧a,c, κr , κl, a, b, c, d,T 〉
dualises the rectangular band M1.

Theorem 4.7 The alter ego

D∼ = 〈D;GD,HD, {�1,�2},T 〉
dualises D and hence RB ∨ S has a natural duality.

Proof We can apply the IC Duality Theorem 3.1 since the alter ego D∼ is of finite type.
Let n ∈N and X � D∼n. Let ϕ : X → D∼ be a morphism. We will apply Lemma 4.2 on
D with M chosen to be the subsemigroup M1 and N chosen to be the subsemigroup
S00.

First, we consider the rectangular band M1. It is easy to check that M1 ∼= L10 ×
R01. Let

IL10 := {k ∈ {1, . . . , n} | (∀x ∈ X ∩ Ln
10) ϕ(x) = xk}.
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Now define (ǎ)L = ∨

a,c ρ0(σ1(ϕ
−1(a))); then (ǎ)L ∈ X ∩ Ln

10 and ϕ((ǎ)L) = a.
Applying Lemma 4.4 on 〈L10; ∗,∨a,c,∧a,c, κl〉, we have (ǎ)Lk = a, for k ∈ IL10 , and
(ǎ)Ll = c, for l /∈ IL10 . Let

IR01 := {j ∈ {1, . . . , n} | (∀x ∈ X ∩ Rn
01) ϕ(x) = xj }.

Define (ǎ)R = ∨

a,b λ0(σ1(ϕ
−1(a))); then (ǎ)R ∈ X ∩ Rn

01 and ϕ((ǎ)R) = a. Then
by applying Lemma 4.4 on 〈R01; ∗,∨a,b,∧a,b, κr 〉, we have (ǎ)Rj = a, for j ∈ IR01 ,

and (ǎ)Rq = b, for q /∈ IR01 .
We now consider S00. Define â to be ∗-product of all elements of the set λ0 ◦

ρ0(ϕ
−1(a)) and let

IS00 = {i ≤ n | (̂a)i = a} = {i1, . . . , im}.
Applying Lemma 4.3 on 〈S00; ∗, a, e〉, for every x ∈ X ∩ Sn

00 we have ϕ(x) = xi1 ∗
· · · ∗ xim , for {i1, . . . , im} = IS00 . Moreover, we have (̂a)i = a, for i ∈ IS00 and (̂a)s =
e, for s /∈ IS00 .

We claim that IS00 ∩ IL10 �= ∅ and IS00 ∩ IR01 �= ∅. Suppose by way of con-
tradiction that IS00 ∩ IL10 = ∅. Without loss of generality, we may assume that
IS00 = {1, . . . ,m}, IL10 = {m + 1, . . . , |IL10 | + m}. The table below will give us a
contradiction to the assumption that IS00 ∩ IL10 = ∅.

x 1 . . . m m + 1 . . . m + |IL10 | m + |IL10 | + 1 . . . n ϕ(x)

(ǎ)L c . . . c a . . . a c . . . c a

â a . . . a e . . . e e . . . e a

(ǎ)L ∗ â c . . . c e . . . e g . . . g a

The last line shows that ϕ does not preserve the relation �1, hence IS00 ∩ IL10 �= ∅.
By symmetry, we have IS00 ∩ IR01 �= ∅.

We are now in a position to apply Lemma 4.2. Let iL ∈ IS00 ∩ IL10 and iR ∈ IS00 ∩
IR01 . Let t : Dn → D be the term function given by

t (x1, . . . , xn) = xiL ∗ xi1 ∗ · · · ∗ xim ∗ xiR .

Then, for all x ∈ X ∩ Mn
1 , we have ϕ(x) = xiL ∗ xiR which is equal to t (x1, . . . , xn)

on M1, and for all x ∈ X ∩ Sn
00, we have ϕ(x) = xi1 ∗ · · · ∗ xim , which is equal to

t (x1, . . . , xn) on S00. Since σ1 and λ0 ◦ ρ0 are separating retracts onto M1 and S00,
respectively, Lemma 4.2 shows that ϕ(x) = t (x), for all x ∈ X. �

4.3 L0 ∨R duality

We will show that the quasi-variety generated by the product of the left normal band
L0 and right-zero semigroup R is dualisable (and by symmetry we conclude that the
quasi-variety generated by the product of right normal band and left-zero semigroup
is dualisable) by showing that it has an alter ego that satisfies (IC). Let D be the
semigroup on

{(i, j) | i ∈ {0,1,2} and j ∈ {0,1}}
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with multiplication ∗ defined by:

(∀(i1, j1), (i2, j2) ∈ D) (i1, j1) ∗ (i2, j2) =
{

(i1, j2) if i1 �= 0 and i2 �= 0,

(0, j2) otherwise.

Note that for l ∈ {0,1,2}, k ∈ {0,1}, the sets Rl = {(l, j) | j ∈ {0,1}} form 2-element
right-zero subsemigroups and Mk = {(i, k) | i ∈ {0,1,2}} form left normal idempo-
tent subsemigroups under ∗. For k ∈ {0,1}, the sets Lk = {(i, k) | i ∈ {1,2}} form
2-element left-zero subsemigroups and

S1 = {(i,1) | i ∈ {0,1}}, S2 = {(i,1) | i ∈ {0,2}},
S3 = {(i,0) | i ∈ {0,1}}, S4 = {(i,0) | i ∈ {0,2}}

form 2-element subsemilattices under ∗. Observe that D generates the quasi-variety
L0 ∨R. Let ρk : D → D, λl : D → D, κr : D → D and � : D → D be endomorphisms
defined as follows:

ρk((i, j)) = (i, k), λl((i, j)) = (l, j), κr ((i, j)) = (i, j ′)

and

�((i, j)) =

⎧

⎪

⎨

⎪

⎩

(0, j) if i = 0,

(1, j) if i = 2,

(2, j) if i = 1,

where ′ is the complement on the set {0,1}. To make it notationally easier for the
reader, we let

0 = (0,1), a = (1,1), b = (2,1), 0′ = (0,0), c = (1,0) and d = (2,0).

Let ∨a,c,∧a,c be binary operations on R1 = {a, c} as defined in Notation 4.5.
We define the following operations ∨b,d ,∧b,d ,∨0,0′ ,∧0,0′ ,∨a,b,0,∧0,a,b,∨c,d,0′ and
∧0′,c,d similarly.

Observe that ρ0 = κr ◦ ρ1, λ2 = � ◦ λ1, ∨b,d = � ◦ ∨a,c ◦ (� × �), ∧b,d =
� ◦∧a,c ◦ (�×�), ∨c,d,0′ = ρ0 ◦∨a,b,0 ◦(ρ1 ×ρ1) and ∧0′,c,d = ρ0 ◦∧0,a,b ◦(ρ1 ×ρ1).
We define ∨a,b to be the binary operation ∨a,b,0 restricted to the set L1, and similarly
for ∧a,b , ∨c,d and ∧c,d . Let

GD = {∗,′ , �, ρ1, λ0, λ1} ∪ D

and let

HD = {∨a,c,∧a,c,∨0,0′ ,∧0,0′ ,∨a,b,∧a,b,∨a,b,0,∧0,a,b}.
Finally, the set � = {0,0′, c, d} forms a subsemigroup of D. Notice that by using
Lemma 4.4, the alter ego L∼1 = 〈L1; ∗,∨a,b,∧a,b, �, a, b,T 〉 dualises L1 and R∼1 =
〈R1; ∗,∨a,c,∧a,c, κr , a, c,T 〉 dualises R1. We will show in the proof of Theorem 4.8
that

M∼1 = 〈M1; ∗,∨a,b,0,∧0,a,b, �, a, b,0,T 〉
dualises the left normal band M1.
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Theorem 4.8 The alter ego

D∼ = 〈{a, b, c, d,0,0′};GD,HD, {�},T 〉
dualises D and hence L0 ∨R has a natural duality.

Proof We apply the IC Duality Theorem 3.1. Let n ∈ N and X � D∼n. Consider a
morphism ϕ : X → D∼. We will apply Lemma 4.2 on D with the subalgebra M chosen
to be the subsemigroup M1 and the subalgebra N to be the subsemigroup R1.

First, we consider M1. Let A = {x ∈ X ∩ Mn
1 | ϕ(x) �= 0} and define x̂ to be the

∗-product of all elements of A relative to some fixed ordering, with the constant a

first. Let IA = {i ≤ n | x̂i �= 0}. Hence by definition of x̂ and IA, we have for all
x ∈ A, xi �= 0 for all i ∈ IA. Conversely, let x ∈ X ∩ Mn

1 with xi �= 0, for all i ∈ IA.
Then x̂ ∗x = x̂, showing ϕ(x) �= 0 and x ∈ A. Therefore, for all x ∈ X∩Mn

1 , we have
ϕ(x) �= 0 if and only if xi �= 0 for all i ∈ IA. Equivalently, for all x ∈ X∩Mn

1 , we have
ϕ(x) = 0 if and only if there exists i ∈ IA such that xi = 0. Let πIA

: Dn → DIA be the
restriction to IA. It is clear that πIA

(A) ⊆ L
IA

1 . As ∨a,b,0,∧0,a,b, � are total operations
on M1, L1 is subuniverse of 〈M1; ∗,∨a,b,0,∧0,a,b, �, a, b,0〉 and a, b ∈ πIA

(A), then
πIA

(A) � L∼IA

1 .
Let ψ : πIA

(A) → L1 be given for all z ∈ πIA
(A) by ψ(z) = ϕ(x), where x ∈ A

and πIA
(x) = z. Then ψ is well defined if and only if ker(πIA

) ⊆ ker(ϕ). We will
argue that ψ is well defined, that is, for x, y ∈ A with πIA

(x) = πIA
(y) we show that

ϕ(x) = ϕ(y). Since x ∗ x̂ = y ∗ x̂ and ϕ preserves ∗, we know that ϕ(x) = ϕ(x ∗ x̂) =
ϕ(y ∗ x̂) = ϕ(y). Hence ker(πIA

) ⊆ ker(ϕ), that is, ψ is a unique morphism such
that ψ ◦ πIA

= ϕ. Since L∼1 dualises L1 with (IC), the morphism ψ extends to the
term t = xi for some i ∈ IA . Define the term function s to be s = xi ∗ xi1 · · · ∗ xim

where IA = {i1, . . . , im} and m ≤ n. It easy to see that t is equivalent to s on L1.
If x ∈ (X ∩ Mn

1 )\A then ϕ(x) = 0 and there exists l ∈ IA such that xl = 0. Hence
s(x) = 0 = ϕ(x). Thus for all x ∈ X ∩ Mn

1 , we have ϕ(x) = s(x).
We now consider the subsemigroup R1. Let

IR1 = {j ∈ {1, . . . , n} | (∀x ∈ X ∩ Rn
1 ) ϕ(x) = xj }

and define ǎ = ∨

a,c λ1(ϕ
−1(a)). Applying Lemma 4.4 on

〈X ∩ Rn
1 ; ∗,∨a,c,∧a,c, κr 〉,

we have IR1 �= ∅. Moreover, we have (ǎ)j = a, for j ∈ IR1 and (ǎ)k = c, for k /∈ IR1 .
We will argue that IR1 ∩ IA �= ∅. Suppose by way of contradiction that

IR1 ∩ IA = ∅. Without loss of generality we may assume that IR1 = {1, . . . , |IR1 |}
and IA = {|IR1 | + 1, . . . , |IR1 | + m}. Then the following table will give us a contra-
diction to the assumption IR1 ∩ IA = ∅.

x 1 . . . |IR1 | |IR1 | + 1 . . . |IR1 | + m |IR1 | + m + 1 . . . n ϕ(x)

x̂ 0 . . . 0 a, b . . . a, b 0 . . . 0 a, b

ǎ a . . . a c . . . c c . . . c a

x̂ ∗ ǎ 0 . . . 0 c, d . . . c, d 0′ . . . 0′ a, b
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The last line shows that ϕ does not preserve the relation �, a contradiction. We are
now in a position to apply Lemma 4.2. Let j ∈ IA ∩ IR1 and t : Dn → D be a term
function given by

t (x1, . . . , xn) = s(x) ∗ xj .

For all x ∈ X ∩ Mn
1 we have ϕ(x) = s(x) which is equal to t (x1, . . . , xn) on M1,

and for all x ∈ X ∩ Rn
1 we have ϕ(x) = xj , for some j ∈ IA ∩ IR1 , which is equal

to t (x1, . . . , xn) on R1. Since ρ1 and λ1 are separating retracts onto M1 and R1,
respectively, Lemma 4.2 shows that ϕ(x) = t (x), for all x ∈ X. �

We conclude this section with a brief discussion about dualisability of a semi-
group and the residual character of the variety it generates. In addition, we give the
definition of finite degree and two corollaries to the main results in this article. A va-
riety is residually finite if and only if all of its subdirectly irreducible members are
finite. Golubov and Sapir [14] gave a description of all residually finite semigroups.
McKenzie [21] classified (independently of [14]) residually finite varieties of semi-
groups. He showed that if a semigroup is not a group or not very close to being union
of groups, then it generates a residually large variety.

There is no obvious connection between dualisability of an algebra and the resid-
ual character of the variety it generates, however it has been noticed that all known
dualisable semigroups generate residually finite varieties. This article continues to
reinforce this theme. However, it is not true that algebras that generate residually
finite varieties are dualisable. For example, the two element implication algebra is
non-dualisable, although it generates residually small variety.

Corollary 4.9 For a finite band M, the following are equivalent:

(1) M is dualisable;
(2) M is a normal band;
(3) M is not inherently non-dualisable;
(4) The variety HSP(M) has a finite residual bound.

For a fixed number n, the set of all term functions on a semigroup M forms a
subsemigroup FM(n) of MMn

. The clone of M is the set of all term functions of M,

Clo(M) :=
⋃

{FM(n) | n ∈ N}.

Definition 4.10 An algebra M has finite degree if there is a finite set R of finitary
relations on the set M , such that Clo(M) is the family of all operations preserving the
relations in R. Algebras with finite degree are also known as finitely related.

Aichinger, Mayr and McKenzie [1] showed that every finite group has the finite
degree property, while finite commutative semigroups and nilpotent semigroups were
shown to have finite degree in [5]. Dualisability by an alter ego of finite type implies
finite degree: it is the property CLO in [4] for example. Thus we obtain the following
corollary to the main results of this article.
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Corollary 4.11 Every finite normal band has finite degree.

After the submission of this article, two independent articles have appeared which
extend this corollary to cover the class of regular bands: Dolinka [11] and Mayr [20].

5 An inherently non-dualisable algebra

Each of the algebras shown to be dualisable in the previous sections are of the form
D × L or D × R, where D is some dualisable semigroup. The semigroups L and R
are projection algebras in the sense that all fundamental operations are projections,
and one might be led to speculate that the direct product of a dualisable algebra with
a projection algebra is always dualisable. We do not resolve this in the present article,
however in this section we show that it is possible to obtain a nondualisable algebra
from the direct product of a dualisable algebra with a dualisable projection algebra
with constants.

A finite algebra D is called inherently non-dualisable (abbreviated to IND) pro-
vided M is non-dualisable wherever M is a finite algebra with D ∈ ISP(M). In this
section, we will show that the direct product of a dualisable algebra with a 2-element
right-zero semigroup with constant can be inherently non-dualisable. The 2-element
implication algebra 〈{0,1};→,0〉 with 0 as added constant is dualisable as it is a term
equivalent to the 2-element Boolean algebra [4, Exercise 10.6], while the 2-element
right-zero algebra with a constant is dualisable as it is a pointed set and so is covered
by Banaschewski [2]. We show that the direct product is IND. First we recall the
Inherently Non-dualisable Algebra Lemma [4].

IND Lemma 5.1 Let D be a finite algebra. Assume there exists an infinite set S,
a subalgebra A of DS and an infinite subset A0 of A and a function u : N → N such
that

(i) if θ is a congruence on A of finite index at most n, then θ�A0 has only one class
with more than u(n) elements,

(ii) g /∈ A where g is the element of DS such that g(s) := ρs(b), for each s ∈ S, with
b any element of the block of ker(ρs)�A0 which has size greater than u(|D|).

The element g described in (ii) is often referred to as the ghost element.

Example 5.2 Let I0 = 〈{0,1};→,0〉 be the implication algebra with added constant
and let R0 = 〈{0,1}; ·,0〉 be a right-zero semigroup with 0 as added constant. The
direct product I0 × R0 is inherently non-dualisable.

Proof The direct product I0 × R0 is isomorphic to the algebra D = 〈{a, b, c, d}; ∗, a〉
with ∗ defined as follows.

∗ a b c d

a b b d d

b a b c d

c b b d d

d a b c d
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We apply Lemma 5.1 to show that D is inherently non-dualisable. Let S be an infinite
set and let A be the subalgebra of DS with underlying set DS\{c}. (We will leave
it to the reader to check that A is indeed subalgebra.) Let A0 = {cd

j | j ∈ S} where

cd
j is defined to be the constant element c except with d in the j th coordinate. Let

u : N → N be the function with u(n) = 1, for all n and let θ be a congruence on A
with the index n. Assume that cd

i θ cd
j and cd

k θ cd
l with i, j, k, l pairwise unequal.

Now we have cd
k = (cd

i ∗ cd
i ) ∗ cd

k θ (cd
j ∗ cd

i ) ∗ cd
k = cd d

j k . By symmetry we get cd
j θ

cd d
j k θ cd

k θ cd
l . Hence θ�A0 has a unique block with more than u(n) elements. It is

easily checked that the constant c is the ghost element. Since c /∈ A, we are done. �
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