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Abstract In this paper we investigate the ascending chain conditions on principal
left and right ideals for semidirect products of semigroups and show how this is con-
nected to the corresponding problem for rings of skew generalized power series. Let
S be a left cancellative semigroup with a unique idempotent e, T a right cancellative
semigroup with an idempotent f and ω : T → End(S) a semigroup homomorphism
such that ω(f ) = idS . We show that in this case the semidirect product S �ω T sat-
isfies the ascending chain condition for principal left ideals (resp. right ideals) if and
only if S and T satisfy the ascending chain condition for principal left ideals (resp.
right ideals and Imω(t) is closed for complete inverses for all t ∈ T ). We also give
several examples to show that for more general semigroups these implications may
not hold.

Keywords Ascending chain condition · Principal ideal · Semidirect product ·
Semigroup · Cancellation property

1 Introduction

The aim of this article is to investigate how ascending chain conditions for princi-
pal left and right ideals behave in regard to semidirect products of semigroups. The
motivation comes from the following theorem for rings.

Theorem 1.1 [5, Theorem 3.3] Let R be a ring, (S, ·,≤) a strictly totally ordered
monoid and ω : S → End(R) a monoid homomorphism.
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(i) R[[S,ω]] is an ACCPL-domain if and only if R is an ACCPL-domain, S is an
ACCPL-monoid and ωs is injective for any s ∈ S.

(ii) R[[S,ω]] is an ACCPR-domain if and only if R is an ACCPR-domain, S is an
ACCPR-monoid and ωs is injective and preserves nonunits of R for any s ∈ S.

We are able to prove a similar result for semidirect products of semigroups (see
Theorem 3.11 and Corollary 3.12) from where the main parts of the above theorem
follow as a corollary.

Let S be a semigroup. If S is not a monoid we may adjoint an identity 1 to form
a monoid which will be denoted by S1. If S is already a monoid we define S1 = S.
Recall that a left ideal of S is any nonempty subset of S that is closed under mul-
tiplication from the left with elements of S. Right ideals are defined analogously. A
principal left (resp. right) ideal of S generated by an element a ∈ S is given by S1a

(resp. aS1).
An element b ∈ S is an inverse of a ∈ S if aba = a and bab = b. If such an element

b exists then a is said to be a regular element of S. If there exists an inverse b of a

such that ab = ba then a is completely regular and we shall say that b is a complete
inverse of a. If such b exists then it is unique. The set of all regular elements of S will
be denoted by Reg(S).

A semigroup S is said to satisfy the ascending chain condition on principal left
ideals (ACCPL) if there does not exist an infinite strictly ascending chain of principal
left ideals of S. The ascending chain condition on principal right ideals (ACCPR) if
defined analogously. Semigroups that satisfy the ACCPL (resp. ACCPR) are some-
times called ACCPL-semigroups (resp. ACCPR-semigroups). It has been shown in
[5, Example 2.6] that these two conditions are independent. For any undefined con-
cepts on semigroups we refer the reader to [1].

In Sect. 2 we present some results involving cancellativity that we need later on. In
particular in the class of all left cancellative semigroups we give a characterization of
those semigroups that contain at most one idempotent. The main results are contained
is Sect. 3 where we study in detail under what conditions the semidirect product
of semigroups will satisfy ACCPL and ACCPR. We divide the proof of the main
theorem into several lemmas and give numerous examples to demonstrate that the
conditions involved are essential. At the end of Sect. 3 we show how our results are
connected to the skew generalized power series rings. We postpone the more technical
proofs of our examples to Sect. 4.

2 Cancellativity and chain conditions

Ascending chain conditions for principal one-sided ideals are essentially conditions
on sequences of elements. We put this simple fact into a lemma since we will use
it throughout this paper. The point of this lemma is also that even though one-sided
ideals are given via S1 we need only work with sequences in S.

Lemma 2.1 For an arbitrary semigroup S the following are equivalent:

(1) S is an ACCPR-semigroup.
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(2) For any sequences (an)n∈N and (bn)n∈N in S such that an = an+1bn for all n ∈ N,
there exists N ∈ N and a sequence (cn)n∈N in S such that an+1 = ancn for all
n ≥ N .

(3) For any sequences (an)n∈N and (bn)n∈N in S such that an = an+1bn for all n ∈ N,
there exists N ∈ N and cN ∈ S such that aN+1 = aNcN .

Proof (1) ⇒ (2): If (an)n∈N and (bn)n∈N are as in (2) then we have a chain a1S
1 ⊆

a2S
1 ⊆ a3S

1 ⊆ · · · of principal right ideals, which must stabilize say at N . Hence
there exists a sequence (cn)n∈N ⊆ S1 such that an+1 = ancn for all n ≥ N . If cn = 1
for some n, then an+1 = an and hence an+1 = an = an+1bn = anbn. So we may take
cn = bn instead of cn = 1. The new sequence (cn)n∈N then lies in S.

(2) ⇒ (3): This is obvious.
(3) ⇒ (1): Suppose there exists a strictly increasing chain a1S

1
� a2S

1
� a3S

1
�

· · · of principal right ideals of S. Then there is a sequence (bn)n∈N ⊆ S1 such that
an = an+1bn for all n ∈ N. Infact bn must lie in S since the inclusions in the chain
are strict. By assumption aN+1 = aNcN ∈ aNS1 for some N and cN ∈ S, which is a
contradiction. �

Of course with obvious changes we also get a version of the above lemma for
ACCPL.

Left and right cancellativity of semigroups is often very helpful when considering
ACCPR and ACCPL. Recall that a semigroup S is left (resp. right) cancellative if
ax = ay (resp. xa = ya) implies x = y for all a, x, y ∈ S. The following is a gen-
eralization of [5, Proposition 2.1] to semigroups and only one-sided cancellativity is
assumed.

Proposition 2.2 For a left cancellative semigroup S the following are equivalent:

(1) S is an ACCPR-semigroup.
(2) For any sequences (an)n∈N and (bn)n∈N in S such that an = an+1bn for all n ∈ N,

there exists N ∈ N such that bn is regular and an ∈ anS for all n ≥ N .
(3) For any sequences (an)n∈N and (bn)n∈N in S such that an = an+1bn for all n ∈ N,

there exists N ∈ N such that bN is regular and aN+1 ∈ aN+1S.

Proof (1) ⇒ (2): Let (an)n∈N and (bn)n∈N be as in (2). Then by Lemma 2.1
an+1 = ancn for some cn ∈ S for all n ≥ N . Choose any n ≥ N . Then an = an+1bn =
ancnbn ∈ anS, which implies ancn = ancnbncn and by left cancellativity cn = cnbncn.
From this we get cnbn = cnbncnbn and again by left cancellativity bn = bncnbn. This
shows that bn is regular.

(2) ⇒ (3): This is obvious.
(3) ⇒ (1): Let (an)n∈N, (bn)n∈N ⊆ S be sequences such that an = an+1bn for all

n ∈ N. By assumption there exists N ∈ N such that bN is regular and aN+1 = aN+1x

for some x ∈ S. Let c be an inverse of bN . Then cbNcx = cx and by left cancellativity
bNcx = x. Hence aN+1 = aN+1x = aN+1bNcx = aNcx. By Lemma 2.1 S satisfies
ACCPR. �

Next we characterize left cancellative semigroups in which at most one idempotent
exists.
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Proposition 2.3 For a left cancellative semigroup S the following are equivalent:

(1) S has at most one left identity.
(2) S has at most one idempotent.
(3) Every inverse in S is complete.
(4) Each element in S has at most one inverse.
(5) If s = sab for some elements a, b, s in S then a is a complete inverse of b.
(6) Reg(S) is either empty or a subgroup of S.

Proof Let s and x be elements of S such that s = sx. Then for all a ∈ S we have
sa = sxa and left cancellativity implies a = xa. So x is a left identity.

(1) ⇔ (2): Any left identity is an idempotent and any idempotent e = e2 is a left
identity by the above.

(2) ⇒ (3): Let a′ be an inverse of a. Then aa′ and a′a are idempotents, hence they
are equal.

(3) ⇒ (4): This is obvious since complete inverses are unique.
(4) ⇒ (1): Let e and f be two left identities of S. Then ef e = e and f ef = f and

also eee = e. So e and f are both inverses of e, hence e = f .
(1) ⇒ (5): If s = sab then also sa = saba, so by the above ab and ba are left

identities. This implies aba = a, bab = b and by assumption ab = ba.
(5) ⇒ (1): Let e and f be two left identities of S. Then e = ef e so by assumption

e and f are each others complete inverses. In particular they commute, hence e =
f e = ef = f .

(2) ⇒ (6): Every regular element is L-related to some idempotent and R-related to
some idempotent. So either Reg(S) is empty or every element in Reg(S) is H -related
to a unique idempotent of S. In the second case Reg(S) is an H -class, because every
element that is related to an idempotent is automatically regular. Since this H -class
contains an idempotent it is a subgroup of S.

(6) ⇒ (2): This follows from the fact that all idempotents lie in Reg(S) and a
group has only one idempotent. �

Observe that conditions (2) and (6) are equivalent in any semigroup. Note also
that in a left cancellative monoid S the identity element 1 is a unique left identity
and regular elements are exactly the invertible elements of S in the group sense. The
following example shows that a left cancellative semigroup with a unique left identity
need not be a left cancellative monoid.

Example 2.4 Let N denote the set of positive integers. Define multiplication on S =
N × N by

(n,m) · (n′,m′) = (
nmn′,m′).

It is easy to see that (S, ·) is a left cancellative semigroup with a unique left identity
(1,1). Since (1,1) is not a right identity, (S, ·) is not a monoid. This is an example
with trivial group Reg(S). However if G is any group then S × G is an example with
Reg(S × G) isomorphic to G.

Proposition 2.2 has a simple corollary (cf. [5, Corollary 2.2] for part (2)).
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Corollary 2.5 Let T be a left cancellative ACCPR-semigroup with at most one idem-
potent.

(1) Let ψ : S → T be a semigroup homomorphism such that ψ−1(Reg(T )) ⊆
Reg(S). If ψ is injective or if S is a left cancellative monoid then S is an ACCPR-
semigroup as well.

(2) If S is a subsemigroup of T such that RegS = RegT ∩ S then S is an ACCPR-
semigroup as well.

Proof (1): If ψ is injective then S is also a left cancellative semigroup. So in both
cases we may use Proposition 2.2. Let (an)n∈N and (bn)n∈N be sequences in S such
that an = an+1bn for all n ∈ N. Since ψ(an) = ψ(an+1)ψ(bn) for all n ∈ N there
exists N ∈ N and t ∈ T such that ψ(bN) is regular and ψ(aN+1) = ψ(aN+1)t . By
assumption bN is also regular. Let c be an inverse of bN . Then ψ(c) is an inverse
of ψ(bN). As in the proof of Proposition 2.3 this implies that t and ψ(bN)ψ(c)

are idempotents in T , so they are equal. Hence ψ(aN+1) = ψ(aN+1)ψ(bN)ψ(c) =
ψ(aN+1bNc). If ψ is injective then aN+1 = aN+1bNc and so aN+1 ∈ aN+1S. If S is
a monoid then we also have aN+1 ∈ aN+1S. So S satisfies condition (3) of Proposi-
tion 2.2 hence it is an ACCPR-semigroup.

(2): In this case the inclusion of S into T is an injective homomorphism that satis-
fies the condition in (1). �

3 Semidirect product of semigroups

Let S and T be two semigroups and ω : T → End(S) a semigroup homomorphism
where End(S) is the monoid of all endomorphisms of S. The image of an element
t ∈ T under ω will be denoted by ωt . Now define multiplication on the Cartesian
product S × T by

(s1, t1)(s2, t2) = (
s1ωt1(s2), t1t2

)
.

Then the set S × T together with this multiplication becomes a semigroup called the
semidirect product of semigroups S and T over ω. This semigroup will be denoted
by S �ω T .

The following lemma is easy to verify. Some parts of it can be found in [2, Lem-
mas 3.1 and 3.2].

Lemma 3.1 Let S and T be semigroups and ω : T → EndS a semigroup homomor-
phism. Then the following holds.

(1) If S and T are right cancellative then S �ω T is right cancellative.
(2) If S and T are left cancellative and ωt is injective for all t ∈ T then S �ω T is

left cancellative.

If there exists u ∈ T such that ωu is surjective then the implications go the other way
as well.
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If we take ωt = idS for all t ∈ T then S �ω T is the direct product of S and T .
It is known that for cancellative monoids S and T the direct product S × T satisfies
ACCPL if and only if S and T satisfy ACCPL (this is true also if S and T are
not cancellative, see Theorem 3.13). The same holds even for infinite direct sums of
cancellative monoids (see [3] and [5]). The aim of this section is to investigate how
ACCPL and ACCPR behave in regard to semidirect products of semigroups.

For the rest of this section, let S and T be semigroups and ω : T → End(S) a
semigroup homomorphism. First we consider when the fact that the semidirect prod-
uct satisfies ACCPL or ACCPR implies the same for each factor.

Lemma 3.2 If S �ω T satisfies ACCPL (ACCPR) and there exists f ∈ T such that
f 2 = f and ωf = idS then S satisfies ACCPL (ACCPR) as well.

Proof Denote Q = S �ω T and let s1, s2 ∈ S. If s1 = ss2 for some s ∈ S then
(s1, f ) = (s, f )(s2, f ). If (s1, f ) = (s, t)(s2, f ) for some s ∈ S and t ∈ T then
f = tf and s1 = sωt (s2). Hence ωt = ωtωf = ωtf = ωf = idS and so s1 = ss2.
This shows that

S1s1 ⊆ S1s2 iff Q1(s1, f ) ⊆ Q1(s2, f ). (1)

If s1 = s2s for some s ∈ S then (s1, f ) = (s2, f )(s, f ). If (s1, f ) = (s2, f )(s, t) for
some s ∈ S and t ∈ T then s1 = s2ωf (s) = s2s. This shows that

s1S
1 ⊆ s2S

1 iff (s1, f )Q1 ⊆ (s2, f )Q1. (2)

The conclusion of the lemma follows easily from (1) and (2). �

Note that the existence of an idempotent f as in Lemma 3.2 gives us an inclusion
S ↪→ S �ω T defined by s �→ (s, f ). As the next example demonstrates the existence
of an idempotent alone does not suffice for the conclusion of the lemma, not even if
there are other elements in T that act on S as the identity map.

Example 3.3 Let S = (0,1] × (0,∞) be equipped with multiplication and T = N ∪
{∞} be equipped with addition (here n+∞ = ∞+n = ∞ and ∞+∞ = ∞). Define
ω : T → End(S) by

ωn = idS for all n ∈ N,

ω∞(x, y) = (1, xy) for all (x, y) ∈ S.

So ∞ is an idempotent in T but ω∞ �= idS . The commutativity of multiplication in
(0,∞) ensures that ω∞ is an endomorphism of S. Obviously ω is a homomorphism.
Simple calculations show that for all (a, b) ∈ S and all n ∈ N we have

(S �ω T )1((a, b),∞) = (
(0,1] × (0,∞)

) × {∞},
(S �ω T )1((a, b), n

) = ((
(0, a] × (0,∞)

) × {n + 1, n + 2, . . .})

∪((
(0,1] × (0,∞)

) × {∞}) ∪ {(
(a, b), n

)}
,
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and
(
(a, b),∞)

(S �ω T )1 = ({a} × (0,∞)
) × {∞},

(
(a, b), n

)
(S �ω T )1 = ((

(0, a] × (0,∞)
) × {n + 1, n + 2, . . .})

∪ ((
(0, a] × (0,∞)

) × {∞}) ∪ {(
(a, b), n

)}
.

Suppose there is a strictly increasing chain of principal left or right ideals in S �ω T

generated by ((ak, bk), tk). Then tk = ∞ for at most one k and from this k on the
sequence tk must be decreasing and hence finite. So S �ω T satisfies ACCPL and
ACCPR (and so does T ). However S does not satisfy ACCPL nor ACCPR, since
(0,1] does not (see Theorem 3.13).

Lemma 3.4 If S �ω T satisfies ACCPL (ACCPR) and there exists e ∈ S such that
e2 = e then T satisfies ACCPL (ACCPR) as well.

Proof Let S �ω T be an ACCPL-semigroup. Let tn and un be elements of T such that
tn = untn+1 for all n ∈ N. Define xn = (ωtn(e), tn) ∈ S �ω T and yn = (ωtn(e), un) ∈
S �ω T . Then

ynxn+1 = (
ωtn(e), un

)(
ωtn+1(e), tn+1

) = (
ωtn(e)ωuntn+1(e), untn+1

)

= (
ωtn(e)

2, tn
) = (

ωtn(e), tn
) = xn

for all n ∈ N. Since S �ω T is an ACCPL-semigroup there exist N ∈ N and
(s, t) ∈ S �ω T such that xN+1 = (s, t)xN . In particular tN+1 = t tN . Therefore T

is an ACCPL-semigroup.
Now let S �ω T be an ACCPR-semigroup. Let tn and vn be elements of T

such that tn = tn+1vn for all n ∈ N. Define xn = (ωt1(e), tn) ∈ S �ω T and yn =
(ωvnvn−1...v1(e), vn) ∈ S �ω T . Then

xn+1yn = (
ωt1(e), tn+1

)(
ωvnvn−1...v1(e), vn

)

= (
ωt1(e)ωtn+1vnvn−1...v1(e), tn+1vn

)

= (
ωt1(e)ωt1(e), tn

) = (
ωt1(e), tn

) = xn

for all n ∈ N. As above this implies tN+1 = tN t for some N ∈ N and t ∈ T . Hence T

is an ACCPR-semigroup. �

The following example shows that the lemma does not hold if S has no idempotent.

Example 3.5 Let S = N be equipped with addition and T = (0,1] with multiplica-
tion. Let ω be trivial, so S �ω T = S × T . For all (n, t) ∈ S × T we have

(S × T )1(n, t) = (n, t)(S × T )1 = ({n + 1, n + 2, . . .} × (0, t]) ∪ {
(n, t)

}
.

From this it is obvious that S × T satisfies ACCPL and ACCPR (and so does S),
however T does not satisfy ACCPL nor ACCPR.
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Now we investigate when the semidirect product inherits the property of satisfy-
ing ACCPL and ACCPR from its factors. As it turns out these two conditions for
semidirect products are very different, so we treat them separately.

Lemma 3.6 If S and T satisfy ACCPL and for all t, u ∈ T with ut = t there exists
v ∈ T with vt = t such that ωvωu = ωuωv = idS then S �ω T satisfies ACCPL as
well.

Proof Suppose sn, rn ∈ S and tn, un ∈ T are such that we have (sn, tn) =
(rn, un)(sn+1, tn+1) in S �ω T for all n ∈ N. So sn = rnωun(sn+1) and tn = untn+1 for
all n ∈ N. Since T is an ACCPL-semigroup there exists m ∈ N such that tn+1 = vntn
for some vn ∈ T for all n ≥ m. For n > m define s′

n = ωumum+1...un−1(sn) ∈ S. Then

s′
n = ωumum+1...un−1

(
rnωun(sn+1)

) = ωumum+1...un−1(rn)s
′
n+1

and since S is an ACCPL-semigroup there exists k > m and s ∈ S such that s′
k+1 =

ss′
k . Since tn+1 = vnuntn+1 for all n ≥ m by assumption there exist wn ∈ T with

wntn+1 = tn+1 such that ωwnωvnun = idS for all n ≥ m. If we denote zn = wnvn then
ωzn is a left inverse of ωun for all n ≥ m. Hence

sk+1 = ωzkzk−1...zm

(
s′
k+1

) = ωzkzk−1...zm(s)ωzkzk−1...zm

(
s′
k

) = s′ωzk
(sk),

where s′ = ωzkzk−1...zm(s). In addition zktk = wkvktk = wktk+1 = tk+1, so
(sk+1, tk+1) = (s′, zk)(sk, tk). This shows that S �ω T is an ACCPL-semigroup. �

Without additional assumptions about elements of T the conclusion of the lemma
may not hold. In fact even if we only exclude the assumption vt = t the semidirect
product may not satisfy ACCPL.

Example 3.7 Let S = 〈. . . , x−2, x−1, x0, x1, x2 . . .〉 be the free monoid over the set
{. . . , x−2, x−1, x0, x1, x2, . . .}, 〈v〉 the free monoid over {v} and T1 a monoid with
representation T1 = 〈t, u | tu = ut = t〉. Define the monoid T by T = T1 × 〈v〉 =
〈t, u, v | tu = ut = t, tv = vt, uv = vu〉. First note that T1 = {1, u,u2, u3, . . .} ∪
{t, t2, t3, . . .} and

T 1
1 un = {

un,un+1, un+2, . . .
} ∪ {

t, t2, t3, . . .
}

for all n ∈ N ∪ {0},
T 1

1 tn = {
tn, tn+1, tn+2, . . .

}
for all n ∈ N.

So it is obvious that T1 satisfies ACCPL. Since any free monoid satisfies ACCPL,
both S and T (by Theorem 3.13) satisfy ACCPL. Now define endomorphisms of S

by

ω1 = idS,

ωt (s) = 1 for all s ∈ S,

ωu(1) = 1, ωu(xn) = xn−1 for all n ∈ Z,

ωv(1) = 1, ωv(xn) = xn+1 for all n ∈ Z.
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Since ωtωu = ωuωt = ωt , ωtωv = ωvωt and ωuωv = ωvωu = idS , these endomor-
phisms induce a homomorphism ω : T → End(S). If ut = t in T then u = un for
some n ∈ N ∪ {0} and for v = vn we have ωvωu = ωuωv = idS . The semigroup
S �ω T does not satisfy ACCPL since the sequence of principal left ideals generated
by elements (xn, t) is an infinite strictly increasing chain. This is because (xn, t) =
(1, u)(xn+1, t) for all n ∈ Z. However if (xn+1, t) = (s, a)(xn, t) = (sωa(xn), at)

then at = t implies a = uk for some k ∈ N ∪ {0} and hence sωa(xn) = sxn−k �= xn+1
which is a contradiction.

Lemma 3.8 If S and T satisfy ACCPR and for all p, r, s ∈ S and t, u ∈ T srωt (p) =
s and t = tu imply r ∈ Imωt then S �ω T satisfies ACCPR as well.

Proof Let sn, rn ∈ S and tn, un ∈ T be such that (sn, tn) = (sn+1, tn+1)(rn, un) for
all n ∈ N. So sn = sn+1ωtn+1(rn) and tn = tn+1un for all n ∈ N. Since S and T are
ACCPR-semigroups there exist k ∈ N, s ∈ S and t ∈ T such that sk+1 = sks and
tk+1 = tkt . Then sk = sksωtk+1(rk) and tk+1 = tk+1ukt , hence by assumption there
exists r ∈ S such that s = ωtk+1(r). This implies

(sk+1, tk+1) = (
skωtk+1(r), tk+1

) = (
skωtkt (r), tkt

) = (sk, tk)
(
ωt(r), t

)
,

which means that S �ω T satisfies ACCPR. �

We will say that a subset M of a semigroup S is closed for complete inverses if
r ∈ M whenever r is a complete inverse of some element of M . In the main theorem
the above lemma will be used in the following way. Let S and T satisfy ACCPR and
suppose in addition that for all p, r, s ∈ S and t, u ∈ T srωt (p) = s and t = tu imply
that r is a complete inverse of ωt(p). If Imωt is closed for complete inverses for all
t ∈ T with t = tu for some u ∈ T then by the above lemma S �ω T satisfies ACCPR.
The next lemma shows that the inverse implication holds as well.

Lemma 3.9 If S �ω T satisfies ACCPR and for all p, r, s ∈ S and t, u ∈ T srωt (p) =
s and t = tu imply that r is a complete inverse of ωt(p) then Imωt is closed for
complete inverses for all t ∈ T with t = tu for some u ∈ T .

Proof Let t = tu in T and let r ∈ S be a complete inverse of ωt(p) for some p ∈ S.
Define xn = (rn, t) ∈ S �ω T and y = (p,u) ∈ S �ω T . Then

xn+1y = (
rn+1, t

)
(p,u) = (

rn+1ωt(p), tu
) = (

rnωt (p)r, t
) = (

rn, t
) = xn

for all n ∈ N and since S �ω T is an ACCPR-semigroup there exists k ∈ N, q ∈ S and
v ∈ T such that xk+1 = xk · (q, v) in S �ω T . The first component of this equation
gives us rk+1 = rkωt (q). If we multiply this by ωt(p) from the right side and use the
fact that r is a complete inverse of ωt(p) we get

rkωt (q)ωt (p) = rk+1ωt(p) = rk.

By assumption this means that ωt(q) in a complete inverse of ωt(p). So r = ωt(q),
since complete inverses are unique. �
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Observe that in the paragraph before this lemma we could exchange the term
“complete inverse” with term “unique inverse” or even “inverse” and the implica-
tions would still hold. However in this case the inverse implication would fail to
hold. Namely, the following example shows that we can not replace “complete in-
verse” with “unique inverse” in the above lemma. Since the proof of the example is
rather technical we will present it in the last section.

Example 3.10 Let S = S1 × S2 where S1 and S2 are semigroups with representations
S1 = 〈z,w | w2 = w〉 and S2 = 〈x, y | xyx = x, yxy = y〉. Let T = {0,1,2} be a
submonoid of the multiplicative monoid (Z4, ·). Define a homomorphism ω : T →
End(S) by

ω0(s1, s2) = (w,xy) for all (s1, s2) ∈ S,

ω1 = idS,

ω2(z, s2) = (w,x), ω2(w, s2) = (w,xy) for all s2 ∈ S2.

It is clear that the above induces an endomorphism ω2. It is easy to check that ω

is indeed a homomorphism. As it turns out (see last section) the semigroup S �ω T

satisfies ACCPR and for all s, r,p ∈ S srp = s implies that r is a unique inverse of
p (in particular all inverses in S are unique). However even though 2 = 2 · 1 in T ,
Imω2 is not closed for unique inverses since (w,y) /∈ Imω2 is a unique inverse of
(w,x) ∈ Imω2.

Now we assemble everything into our main theorem.

Theorem 3.11 Let S and T be semigroups with idempotents e and f respectively
and ω : T → EndS a semigroup homomorphism.

(1) Suppose that for all t, u ∈ T with ut = t there exists v ∈ T with vt = t such that
ωvωu = ωuωv = idS . Then S �ω T satisfies ACCPL if and only if S and T satisfy
ACCPL.

(2) Suppose that ωf = idS and that for all p, r, s ∈ S and t, u ∈ T srωt (p) = s and
t = tu imply that r is a complete inverse of ωt(p). Then S �ω T satisfies ACCPR
if and only if S and T satisfy ACCPR and Imωt is closed for complete inverses
for all t ∈ T with t = tu for some u ∈ T .

Proof (1): Since f 2 = f by assumption ωf is invertible. But ωf ωf = ωf , hence
ωf = idS . The rest follows directly from Lemmas 3.2, 3.4 and 3.6.

(2): This follows from Lemmas 3.2, 3.4, 3.8 and 3.9. �

Assuming some cancellativity simplifies the formulation of the above theorem.

Corollary 3.12 Let S be a left cancellative semigroup with a unique idempotent e

and T a right cancellative semigroup with an idempotent f such that ωf = idS .
Then the following holds.

(1) S �ω T satisfies ACCPL if and only if S and T satisfy ACCPL.
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(2) S �ω T satisfies ACCPR if and only if S and T satisfy ACCPR and Imωt is closed
for complete inverses for all t in T .

Proof (1): If ut = t in T then f ut = f t and right cancellativity implies f u = f .
Using ω on this we get ωu = idS . Now apply Theorem 3.11.

(2): Proposition 2.3 ensures that the assumptions of Theorem 3.11 are satisfied.
Since T is right cancellative the idempotent f is a right identity. So t = tf for all
t ∈ T . Now apply Theorem 3.11. �

For a semigroup S we will denote by SEnd(S) the monoid of all surjective endo-
morphisms of S.

Theorem 3.13 Let S and T be semigroups with idempotents and let ω : T →
SEnd(S) be a semigroup homomorphism. Then S �ω T satisfies ACCPL (ACCPR)
if and only if S and T satisfy ACCPL (ACCPR).

Proof If ut = t in T then ωu = idS since ωt is surjective. In particular ωf = ids for
any idempotent f ∈ T . Also Imωt = S for all t ∈ T . Now the theorem follows from
Lemmas 3.2, 3.4, 3.6 and 3.8. �

In particular the theorem states that for semigroups S and T with idempotents
S × T satisfies ACCPL (ACCPR) if and only if S and T satisfy ACCPL (ACCPR).

In [4] the ring of skew generalized power series was introduced. The construction
is as follows. Let (S, ·,≤) be a strictly ordered monoid, R a ring with identity and
ω : S → EndR a monoid homomorphism where End(R) is the monoid of all ring
endomorphisms of R that preserve the identity. Let R[[S,ω,≤]] be the set of all maps
f : S → R whose support supp(f ) = {s ∈ S; f (s) �= 0} is artinian and narrow (for
details see [4]). For two such maps f and g the set Xs(f,g) = {(x, y) ∈ S ×S; xy =
s, f (x) �= 0, g(y) �= 0} turns out to be finite for all s ∈ S. Thus one can define a
multiplication on R[[S,ω,≤]] by

(fg)(s) =
∑

(x,y)∈Xs(f,g)

f (x)ωx

(
g(y)

)

if Xs(f,g) �= ∅ and (fg)(s) = 0 otherwise. Then R[[S,ω,≤]] together with point-
wise addition and above multiplication becomes a ring called the ring of skew gener-
alized power series with coefficients in R and exponents in S.

Conditions ACCPL and ACCPR can be defined for rings analogously to those
for semigroups. In fact a ring (R,+, ·) satisfies ACCPL (ACCPR) if and only if the
multiplicative monoid (R, ·) does. A domain R satisfies ACCPL (ACCPR) if and only
if the cancellative monoid R∗ = (R\{0}, ·) does. In [5, Theorem 3.3] the authors have
characterized skew generalized power series rings with exponents in a strictly totally
ordered monoid that are domains satisfying ACCPL (resp. ACCPR). Now we show
how part of this result can be derived from the above. In fact this was the motivation
for our considerations (compare Corollary 3.12 with [5, Theorem 3.3]).

Let R be a domain with identity, S a strictly totally ordered monoid and ω : S →
End(R) a monoid homomorphism such that ωs is injective for all s ∈ S. Then by [5,
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Proposition 3.1(ii)] R[[S,ω,≤]] is a domain, hence R[[S,ω,≤]]∗ is a cancellative
monoid. For any f ∈ R[[S,ω,≤]]∗ the set supp(f ) ⊆ S is well ordered and so it has
a smallest element that we denote by π(f ). By [5, Proposition 3.1(i)] the map

ψ : R[[S,ω,≤]]∗ → R∗
�ω S

f �→ (
f

(
π(f )

)
,π(f )

)

is a monoid homomorphism. Since S is strictly totally ordered, it is cancella-
tive. Lemma 3.1 then implies that R∗

�ω S is a cancellative monoid. If f is in
ψ−1(Reg(R∗

�ω S)) then (f (π(f )),π(f )) is invertible in R∗
�ω S. It is easy to see

that this implies that both π(f ) and f (π(f )) are invertible, so by [5, Proposition 3.2]
f is invertible in R[[S,ω,≤]]∗. Thus ψ−1(Reg(R∗

�ω S)) ⊆ Reg(R[[S,ω,≤]]∗). If
S and R satisfy ACCPL then by Corollary 3.12 so does R∗

�ω S. Similarly if S

and R satisfy ACCPR and ωs preserves nonunits of R for all s ∈ S (that is Imωs is
closed for complete inverses, since R∗ is cancellative monoid) then by Corollary 3.12
R∗

�ω S satisfies ACCPR as well. Corollary 2.5 now implies that R[[S,ω,≤]]∗ sat-
isfies ACCPL, respectively ACCPR, hence so does the ring R[[S,ω,≤]].

4 Some proofs

In this section we present the proofs needed for Example 3.10. Assume that all the no-
tations are as in the example. By definition S2 = F/∼, where F is the free semigroup
over the set {x, y} and ∼ is the least congruence relation on F such that xyx ∼ x and
yxy ∼ y. First we need a more explicit description of the relation ∼.

A word in F is called alternating if it does not contain xx or yy as a subword (u
is a subword of v if v ∈ F 1uF 1). For an alternating word a define

ā =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x; if a starts and ends with x,

y; if a starts and ends with y,

xy; if a starts with x and ends with y,

yx; if a starts with y and ends with x.

Note that ā is again an alternating word that starts and ends with the same letters as
a and ¯̄a = ā. An arbitrary word in F is a unique product of its maximal alternating
subwords. If u = u1u2 . . . un, where ui are the maximal alternating subwords of u

then define

ū = ū1ū2 . . . ūn.

Note that ūi are exactly the maximal alternating subwords of ū, since ¯ does not
change the beginning or the end of the word. So ¯̄u = ū.

Step 1 For u,v ∈ F we have u ∼ v if and only if ū = v̄.

For an arbitrary word u ∈ F assume the following notations
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b(u) the first letter of u,
e(u) the last letter of u,
B(u) the first maximal alternating subword of u,
E(u) the last maximal alternating subword of u,
|u| the length of u,
↼
u the word ū without the first letter,
⇀
u the word ū without the last letter,

where we allow
↼
u and

⇀
u to be empty. By considering all possible cases it can be seen

that for two alternating words a and c we have ac = āc̄. Since we only have four
possibilities for ā and c̄ it is easy to check that

āc̄ =
{

āc̄; if e(a) = b(c) or |ā| = |c̄| = 1,
⇀
a

↼
c; if e(a) �= b(c) and |ā||c̄| �= 1.

Let u = u1u2 . . . un and v = v1v2 . . . vm be arbitrary words in F , where ui and vi

are maximal alternating subwords. Then all ui and vi except perhaps un and v1 are
maximal alternating subwords of uv, thus

uv =
{

ū1 . . . ūnv̄1 . . . v̄m; if e(u) = b(v)

ū1 . . . ūn−1unv1v̄2 . . . v̄m; if e(u) �= b(v)

}
= ū1 . . . ūn−1ūnv̄1v̄2 . . . v̄m

and hence by the above

uv =
{

ūv̄; if e(u) = b(v) or |E(ū)| = |B(v̄)| = 1,
⇀
u

↼
v; if e(u) �= b(v) and |E(ū)||B(c̄)| �= 1.

(3)

Now define a relation ≈ in F by u1 ≈ u2 if and only if ū1 = ū2. Clearly this is an
equivalence relation. If u1 ≈ u2 then b(u1) = b(u2), e(u1) = e(u2), B(ū1) = B(ū2)

and E(ū1) = E(ū2). So u1v and u2v (resp. vu1 and vu2) will calculate in the same
way. Hence u1v ≈ u2v (resp. vu1 ≈ vu2). Thus ≈ is in fact a congruence. For ar-
bitrary u ∈ F we have ū ∼ u (for alternating words this is clear, for arbitrary words
this is a consequences of ∼ being a congruence), so the relation ≈ is contained in the
relation ∼. Since xyx ≈ x and yxy ≈ y, the minimality of ∼ implies that relations ∼
and ≈ are the same.

Step 2 If srp ∼ s in F then one of the following holds: (r ∼ x and p ∼ y) or (r ∼ y

and p ∼ x) or (r ∼ xy ∼ p) or (r ∼ yx ∼ p).

If we denote e = rp then se = s̄. Since se = s̄ē would lead to a contradiction
e = ∅ we must have se = ⇀

s
↼
e = s̄. This means that

↼
e = e(s), hence ē = b(e) e(s),

where b(e) �= e(s) by (3). This implies e ∼ xy or e ∼ yx. By symmetry we may
assume e ∼ xy, so rp = xy. If rp = r̄ p̄ then r̄ = x and p̄ = y. Now let rp = ⇀

r
↼
p,

hence by (3) e(r) �= b(p) and |E(r̄)||B(p̄)| �= 1. If
⇀
r = ∅ and

↼
p = xy then |E(r̄)| = 1,

which implies |B(p̄)| > 1 and so p̄ = yxy. This leads to a contradiction p̄ = ¯̄p = y.
Similarly

⇀
r = xy and

↼
p = ∅ would lead to a contradiction. Thus

⇀
r = x and

↼
p = y.

Now r̄ = xx and p̄ = yy would imply |E(r̄)||B(p̄)| = 1, which is not true. Therefore
r̄ = xy and p̄ = xy, since e(r) �= b(p).
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Step 3 If srp = s in S then r is a unique inverse of p.

Suppose (s1, s2)(r1, r2)(p1,p2) = (s1, s2) is S. Then s1r1p1 = s1 in S1 and
s2r2p2 = s2 in S2. By Step 2 clearly r2 is an inverse of p2 in S2. Step 2 also shows
that inverses in S2 are unique, so r2 is a unique inverse of p2. Since in S1 length in z

(the number of letters z occurring in the element) is clearly well defined, r1 and p1
can not contain any z, so r1 = p1 = w. Since w is a unique inverse of w in S1, (r1, r2)

is a unique inverse of (p1,p2) in S.

Step 4 Semigroup S �ω T satisfies ACCPR.

Suppose sn = sn+1qn in S2, that is s̄n = sn+1qn in F . Closer examination of (3)
shows that we have the following possible cases:

(1) s̄n = s̄n+1q̄n, hence |s̄n+1| < |s̄n|,
(2) s̄n = ⇀

sn+1
↼
qn and |q̄n| ≥ 3, hence |s̄n+1| < |s̄n|,

(3) s̄n = ⇀
sn+1

↼
qn and |q̄n| = 2, hence |s̄n+1| = |s̄n| and one of the following holds:

(3.1) q̄n = xx, s̄n+1 = axy, s̄n = axx for some a ∈ F 1,
(3.2) q̄n = yy, s̄n+1 = ayx, s̄n = ayy for some a ∈ F 1,
(3.3) q̄n = xy, s̄n+1 = ay, s̄n = ay for some a ∈ F 1,
(3.4) q̄n = yx, s̄n+1 = ax, s̄n = ax for some a ∈ F 1,

(4) s̄n = ⇀
sn+1

↼
qn and |q̄n| = 1 and one of the following holds:

(4.1) q̄n = x, s̄n+1 = axy, s̄n = ax for some a ∈ F 1,
(4.2) q̄n = y, s̄n+1 = ayx, s̄n = ay for some a ∈ F 1.

To prove that S �ω T satisfies ACCPR let (rn)n, (pn)n ⊆ S1, (sn)n, (qn)n ⊆ S2 and
(tn)n, (un)n ⊆ T be sequences such that

(
(rn, sn), tn

) = (
(rn+1, sn+1), tn+1

)(
(pn, qn), un

)

for all n ∈ N. Then (rn, sn) = (rn+1, sn+1)ωtn+1(pn, qn) and tn = tn+1un. If 1 appears
in (tn)n then all consequent terms must be 1. If 1 does not appear in (tn)n but 2 does
then all consequent terms must be 2. If 1 and 2 do not appear in (tn)n then all terms
are 0. So tn must be constant from some term on.

Let first tn = 0 for all n ∈ N big enough. Then for these n we get (rn, sn) =
(rn+1, sn+1)(w,xy). But (w,xy) is an idempotent in S, so (rn+1, sn+1) =
(rn+2, sn+2)(w,xy) = (rn+2, sn+2)(w,xy)3 = (rn, sn)(w,xy). This implies

(
(rn+1, sn+1), tn+1

) = (
(rn, sn), tn

)(
(w,x),1

)

for all n big enough.
Now let tn = 1 for all n ∈ N big enough. Then for these n we have (rn, sn) =

(rn+1, sn+1)(pn, qn) = (rn+1pn, sn+1qn). For a ∈ S1 let |a|z denote the number of
letters z in a (this is well defined). Then for n big enough |rn|z = |rn+1pn|z =
|rn+1|z + |pn|z ≥ |rn+1|z. Thus the sequence |rn|z is nonincreasing, hence it must
be constant from some n on. Therefore |pn|z = 0 and so pn = w for n big enough.
Then rn = rn+1w and as above (w is an idempotent in S1) this implies rn+1 = rnw

for n big enough. Now for these n consider what can happen with sn = sn+1qn (see
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the cases above). If (3.3), (3.4), (4.1) and (4.2) never happen then the sequence |s̄n|
is nonincreasing and hence constant from some n on. So for n big enough only (3.1)

and (3.2) can happen, but this is impossible since on one hand all sn should end with
two equal letters on the other hand all sn should end with two different letters. So
for some n one of the (3.3), (3.4), (4.1) and (4.2) happens. In any case there exists
s ∈ S2 such that sn+1 = sns (s = xy in case (3.3), s = yx in case (3.4), s = y in case
(4.1) and s = x in case (4.2)). For this n we have (rn+1, sn+1) = (rn, sn)(w, s), thus

(
(rn+1, sn+1), tn+1

) = (
(rn, sn), tn

)(
(w, s),1

)
.

Now let tn = 2 for all n ∈ N big enough. Then for these n we have (rn, sn) =
(rn+1, sn+1)(w,an), where ān is of the form xm or xmy for some m ∈ N (see the
definition of ω2). As above rn = rn+1w implies rn+1 = rnw for n big enough. Now
as above consider what can happen with sn = sn+1an for these n (an takes the place
of qn). Since an starts with x, cases (3.2), (3.4) and (4.2) can never happen. Suppose
that (3.3) never happens. For u ∈ F let |u|x denote the number of letters x in u. In
case (1) we have |s̄n+1|x < |s̄n|x , since ān contains at least one x. In case (2) element
↼
an contains at least one x and since ā starts with x, s̄n+1 has to end with y. Hence in
this case we also have |s̄n+1|x < |s̄n|x . In case (3.1) we also have |s̄n+1|x < |s̄n|x and
in case (4.1) we have |s̄n+1|x = |s̄n|x . Thus the sequence |s̄n|x is nonincreasing, so it
must be constant from some term on. So for n big enough only (4.1) can happen, but
this is impossible since on one hand all sn should end with x on the other hand all sn
should end with y. So for some n big enough (3.3) must happen. For this n we have
sn+1 = snxy and (rn+1, sn+1) = (rn, sn)(w,xy), thus

(
(rn+1, sn+1), tn+1

) = (
(rn, sn), tn

)(
(w,x),1

)
.

We have shown that in any case there exists n ∈ N and ((r, s), t) ∈ S �ω T such
that ((rn+1, sn+1), tn+1) = ((rn, sn), tn)((r, s), t). So S �ω T satisfies ACCPR.
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