SHORT NOTE

A problem on generalized Cayley graphs of semigroups

Shou-Feng Wang

Received: 11 January 2012 / Accepted: 6 May 2012 / Published online: 17 May 2012 © Springer Science+Business Media, LLC 2012

Abstract Zhu (Semigroup Forum 84(3), 144–156, [2012\)](#page-2-0) investigated some combinatorial properties of generalized Cayley graphs of semigroups. In Remark 3.8 of (Zhu, Semigroup Forum 84(3), $144-156$, 2012), Zhu proposed the following question: It may be interesting to characterize semigroups *S* such that $Cay(S, \omega_l)$ = $Cay(S, \omega_r)$. In this short note, we prove that for any regular semigroup *S*, $Cay(S, \omega_l) = Cay(S, \omega_r)$ if and only if *S* is a Clifford semigroup.

Keywords Generalized Cayley graphs of semigroups · Clifford semigroups

1 Introduction and main theorem

Cayley graphs of semigroups have been studied by many authors and some important results have been obtained, Kelarev-Ryan-Yearwood [\[2](#page-2-1)] is a good survey in this aspect. Most recently, Zhu [\[3](#page-2-2)] generalized the usual *Cayley graphs* of semigroups to *generalized Cayley graphs* of them and in texts [\[3](#page-2-2)] and [\[4](#page-2-0)], Zhu investigated some algebraic and combinatorial properties for such graphs. In particular some results of the usual Cayley graphs of semigroups are generalized to generalized Cayley graphs of semigroups.

Let *S* be an ideal of a semigroup *T* and $\rho \subseteq T^1 \times T^1$. Following Zhu [\[3](#page-2-2)], the *generalized Cayley graph Cay* (S, ρ) of *S* relative to ρ is defined as the graph with vertex set *S* and edge set

$$
E\big(Cay(S,\rho)\big) = \big\{(a,b) \in S \times S \mid xay = b \text{ for some } (x,y) \in \rho\big\}.
$$

S.-F. Wang (\boxtimes)

Communicated by Marcel Jackson.

This research work is supported by a NSF grant of China (No. 11161058).

Department of Mathematics, Yunnan Normal University, Kunming, Yunnan 650092, P.R. China e-mail: wsf1004@163.com

In particular, generalized Cayley graphs $Cay(S, \omega_l)$, $Cay(S, \omega_r)$ and $Cay(S, \omega)$ are called *left universal, right universal* and *universal Cayley graphs of S*, respectively, where $\omega_l = S^1 \times \{1\}$, $\omega_r = \{1\} \times S^1$ and $\omega = S^1 \times S^1$.

Zhu [[3,](#page-2-2) [4\]](#page-2-0) mainly investigated universal Cayley graphs of a semigroup *S* and obtained some useful results. On the other hand, Remark 3.8 in Zhu [\[4](#page-2-0)] proposes the following.

Problem It may be interesting to characterize semigroups *S* such that $Cay(S, \omega_l)$ = *Cay(S,ωr)*.

Obviously, the above problem is trivial for commutative semigroups. As we have known, regular semigroups play a major role in the algebraic theory of semigroups. In this short note, we give an answer to this problem for regular semigroups. Recall that a semigroup is *regular* if there exists $x \in S$ such that $axa = a$ and $xax = x$ for any $a \in S$. A *Clifford semigroup* is a regular semigroup *S* in which $ae = ea$ for every idempotent *e* and every *a* in *S*. Here is our result.

Theorem *For any regular semigroup S*, $Cay(S, \omega_l) = Cay(S, \omega_r)$ *if and only if S is a Clifford semigroup*.

2 A proof

To give a proof of the theorem, we need to recall the following two well-known results. On one hand, from Chap. IV, Exercise 2 in Howie [\[1](#page-2-3)], we can obtain the following lemma.

Lemma 1 (See Howie [[1,](#page-2-3) p. 125]) *Let S be a regular semigroup*. *Then S is a Clifford semigroup if and only if* $\mathcal{L} = \mathcal{R}$.

On the other hand, from Chap. IV, Theorem 2.1 in Howie [[1\]](#page-2-3), we have another characterization of Clifford semigroups as follows. On the notion of *strong semilattice of semigroups*, the reader is referred to Chap. IV in Howie [\[1](#page-2-3)].

Lemma 2 (See Howie [\[1](#page-2-3), p. 94]) *A semigroup S is a Clifford semigroup if and only if* $S = (G_\alpha, Y, \phi_{\alpha,\beta})$ *is a strong semilattice of groups.*

Now we can give a proof of the Theorem.

Necessity. Assume that *S* is a regular semigroup and $Cay(S, \omega_l) = Cay(S, \omega_r)$. If $a, b \in S$ and $a \mathcal{L}b$, then $a = xb$ and $b = ya$ for some $x, y \in S^1$. This implies that $(a, b), (b, a) \in E(Cay(S, \omega_l))$. By hypothesis, $(a, b), (b, a) \in E(Cay(S, \omega_r))$. Therefore, there exist x' , $y' \in S^1$ such that $b = ax'$ and $a = by'$. This yields that $a \mathcal{R} b$. We have shown that $\mathcal{L} \subseteq \mathcal{R}$. By a dual argument, we can obtain $\mathcal{R} \subseteq \mathcal{L}$. Thus $\mathcal{L} = \mathcal{R}$. Since *S* is regular, it follows that *S* is a Clifford semigroup from Lemma [1.](#page-1-0)

Sufficiency. Assume that $S = (G_{\alpha}, Y, \phi_{\alpha, \beta})$ is a Clifford semigroup by Lemma [2](#page-1-1) and let $a, b \in S$. Suppose that $(a, b) \in E(Cay(S, \omega_l))$. Then $xa = b$ for some

 $x \in S^1$. If $x = 1$, then $ax = b$ and so $(a, b) \in E(Cay(S, \omega_r))$. Now, let $x \in$ *G_α* and *a* ∈ *G_β*. Then *b* ∈ *G_{αβ}* and *b* = *xa* = (*xφ_{α,αβ}*)(*aφ_{β,αβ}*). Denote *y* = $(a\phi_{\beta,\alpha\beta})^{-1}(x\phi_{\alpha,\alpha\beta})(a\phi_{\beta,\alpha\beta})$, where $(a\phi_{\beta,\alpha\beta})^{-1}$ is the inverse of $a\phi_{\beta,\alpha\beta}$ in the group $G_{\alpha\beta}$. Then $y \in G_{\alpha\beta}$, and

$$
ay = (a\phi_{\beta,\beta(\alpha\beta)})(y\phi_{\alpha\beta,\beta(\alpha\beta)}) = (a\phi_{\beta,\alpha\beta})(y\phi_{\alpha\beta,\alpha\beta})
$$

= $(a\phi_{\beta,\alpha\beta})y = (a\phi_{\beta,\alpha\beta})(a\phi_{\beta,\alpha\beta})^{-1}(x\phi_{\alpha,\alpha\beta})(a\phi_{\beta,\alpha\beta})$
= $(x\phi_{\alpha,\alpha\beta})(a\phi_{\beta,\alpha\beta}) = xa = b.$

This implies that $(a, b) \in E(Cay(S, \omega_r))$. Therefore $E(Cay(S, \omega_l)) \subseteq E(Cay(S, \omega_r))$. By a dual argument, we can obtain $E(Cay(S, \omega_r)) \subseteq E(Cay(S, \omega_l))$. This completes our proof.

Remark 1 From the proof of "necessity" part above, we can see that $\mathcal{L} = \mathcal{R}$ for any semigroup *S* with $Cay(S, \omega_l) = Cay(S, \omega_r)$. The following example illustrates that there exists a semigroup *S* with $\mathcal{L} = \mathcal{R}$ which does not satisfy $Cay(S, \omega_l) =$ $Cay(S, \omega_r)$. In fact, let *S* be the free monoid generated by the two symbols 0 and 1. Then Green's relations $\mathcal L$ and $\mathcal R$ are equal on *S* (both of them are identity relation on *S*). Obviously, $(0, 10) \in E(Cav(S, \omega_l))$. However, $(0, 10) \notin E(Cav(S, \omega_r))$.

Remark 2 Necessary and sufficient conditions for $Cay(S, \omega_l)$ and $Cay(S, \omega_r)$ to be isomorphic are not known. The following example shows that this graph isomorphism may exist for a regular semigroup which is not a Clifford semigroup.

Example Consider the 4-element rectangular band {*e, f, g, h*} with $e\mathcal{R}f$, $e\mathcal{L}g$, *gRh* and $f \mathcal{L}h$. For this semigroup, $Cay(S, \omega_l)$ is the disjoint union of the complete directed graphs with vertex sets $\{e, g\}$ and $\{f, h\}$, with a loop at each vertex, while $Cav(S, \omega_r)$ is the disjoint union of the complete directed graphs with vertex sets ${e, f}$ and ${g, h}$ and with a loop at each vertex. So the two graphs are isomorphic.

Acknowledgements The author would like to thank the referee for their valuable suggestions which lead to a great improvement of this paper.

References

- 1. Howie, J.M.: An Introduction to Semigroup Theory. Academic Press, London (1976)
- 2. Kelarev, A.V., Ryan, J., Yearwood, J.L.: Cayley graphs as classifiers for datamining: the influence of asymmetries. Discrete Math. **309**, 5360–5369 (2009)
- 3. Zhu, Y.W.: Generalized Cayley graphs of semigroups I. Semigroup Forum **84**(3), 131–143 (2012)
- 4. Zhu, Y.W.: Generalized Cayley graphs of semigroups II. Semigroup Forum **84**(3), 144–156 (2012)