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Abstract Following Zhu (Semigroup Forum, 2011, doi:10.1007/s00233-011-
9368-9), we study generalized Cayley graphs of semigroups. The Cayley D-saturated
property, a particular combinatorial property, of generalized Cayley graphs of semi-
groups is considered and most of the results in Kelarev and Quinn (Semigroup Forum
66:89–96, 2003), Yang and Gao (Semigroup Forum 80:174–180, 2010) are extended.
In addition, for some basic graphs and their complete fission graphs, we describe all
semigroups whose universal Cayley graphs are isomorphic to these graphs.

Keywords Cayley graph · Complete fission graph · D-saturated property ·
J -partial order of complete graphs with loops · Semigroup

1 Introduction

The Cayley graphs of semigroups have been investigated by many authors, see, for
example, [1, 4, 6, 7, 9, 12–14, 17]. Some of the earliest references on this subject
are [2] and [18]. The Cayley graphs of semigroups are closely related to finite state
automata and have many valuable applications (see [5, 11]). Combinatorial properties
of semigroups defined in terms of their Cayley graphs were considered in [8, 10].

The concept of generalized Cayley graphs of semigroups was first introduced by
the author in [19], where some fundamental properties of generalized Cayley graphs
of semigroups were studied.

Following [19], in the present paper, we continue discussion of generalized Cayley
graphs of semigroups. In Sect. 3, we describe the semigroups whose universal Cayley
graphs are some basic graphs or their complete fission graphs, and in Sect. 4, we study
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the D-saturated property, a particular combinatorial property, of generalized Cayley
graphs of semigroups. Some results of [19] are used in this paper.

2 Preliminaries

Recall that if S is an ideal of a semigroup T , then we call T an ideal extension of S.
Let T 1 be the semigroup T with an identity adjoined if necessary.

Definition 2.1 [19] Let T be an ideal extension of a semigroup S and ρ ⊆ T 1 × T 1.
The Cayley graph Cay(S,ρ) of S relative to ρ is defined as the graph with vertex set S

and edge set E(Cay(S,ρ)) consisting of those ordered pairs (a, b), where xay = b for
some (x, y) ∈ ρ. We also call the Cayley graphs defined in this way the generalized
Cayley graphs, in order to distinguish them from the usual ones.

Assume that S is a semigroup and a ∈ S. Then J (a) = S1aS1 (L(a) = S1a,
R(a) = aS1) is the principal (left, right) ideal generated by a. For other notations and
notions of semigroup theory, we refer the reader to [3, 15, 19, 20]. Let ωl = S1 × {1}
(the left universal relation on S1), ωr = {1} × S1 (the right universal relation on S1)
and ω = S1 × S1 (the universal relation on S1). Then the generalized Cayley graphs
Cay(S,ωl), Cay(S,ωr) and Cay(S,ω) are called left universal, right universal and
universal Cayley graphs of S, respectively.

We use standard terminology of graph theory following, e.g., [16]. Throughout the
paper, graphs are directed graphs without multiple edges, but possibly with loops, or
digraphs in terms of [1, 13]. A directed graph without loops and multiple edges is
called simple. We may equate two graphs each of which is isomorphic to the other
one. For a graph Γ , denote by V (Γ ) and E(Γ ) its vertex set and edge set, respec-
tively. For any a ∈ V (Γ ), Let

−→a = {b ∈ V (Γ )|(a, b) ∈ E(Γ )}, ←−a = {b ∈ V (Γ )|(b, a) ∈ E(Γ )}. (2.1)

Assume that T is an ideal extension of a semigroup S and ρ ⊆ T 1 × T 1. Let

ρ(a) = {xay|(x, y) ∈ ρ}, (2.2)

ρ(a)1 = ρ(a) ∪ {a}. (2.3)

We call ρ(a)1 the ρ-class of a. It is evident that (a, b) ∈ E(Cay(S,ρ)) if and only if
b ∈ ρ(a). So by (2.1), we obtain

ρ(a) = −→a . (2.4)

Lemma 2.2 [19] Let T be an ideal extension of a semigroup S, ρ ⊆ T 1 × T 1 and
a, b ∈ S. If ρ1(a) ⊇ ρ1(b) and a �= b, then (a, b) ∈ E(Cay(S,ρ)).

Definition 2.3 [19] Let T be a semigroup and ρ ⊆ T × T . If (a, b), (c, d) ∈ ρ for
any a, b, c, d ∈ T always implies (ca, bd) ∈ ρ, then we call ρ inversely compatible,
or briefly, I-compatible.
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Definition 2.4 [19] Let Γ be a graph. If (a, b), (b, c) ∈ E(Γ ) for a, b, c ∈ V (Γ )

always implies that (a, c) ∈ E(Γ ), then Γ is said to be edge-transitive.

Proposition 2.5 [19] Assume that T is an ideal extension of a semigroup S. If ρ ⊆
T 1 × T 1 is I-compatible, then Cay(S,ρ) is edge-transitive.

Corollary 2.6 [19] Assume that T is an ideal extension of a semigroup S and ρ ⊆
T 1 × T 1 is I-compatible. If (a, b) ∈ E(Cay(S,ρ)), then ρ(a) ⊇ ρ(b) and ρ1(a) ⊇
ρ1(b).

Definition 2.7 [19] Assume that T is an ideal extension of a semigroup S and ρ ⊆
T 1 × T 1. An element a of S is called stable under ρ if a ∈ ρ(a). If all elements of S

are stable under ρ, then S is called stable under ρ.

Let (Y,≥) be a partially ordered set. For any a ∈ Y , set

a ↓= {b ∈ Y |a ≥ b}, a ↑= {b ∈ Y |b ≥ a}. (2.5)

The relation graph of the inverse relation ≥ of the natural order ≤ on a semilattice
is called a semilattice graph. A complete graph with loops is defined as a graph Γ

with the edge set E(Γ ) = {(x, y)|x, y ∈ V (Γ )}. Assume that T is an ideal extension
of a semigroup S and ρ ⊆ T 1 ×T 1. If ρ1(a) = ρ1(b) for all a, b ∈ S, then S is called
ρ-simple.

Recall that a totally ordered set is also called a chain. The relation graph of a
chain is called a linear graph or chain graph. A finite chain graph of length n could
be indicated by the set Ln = {0,1, . . . , n} with edge set {(i, j)|i ≥ j}, where ≥ is the
usual order on natural numbers.

Theorem 2.8 [19] Assume that T is an ideal extension of a semigroup S and ρ ⊆
T 1 ×T 1 is an I-compatible relation such that S is stable under ρ. Then the following
conditions are equivalent:

(1) Cay(S,ρ) is a chain of complete graphs with loops;
(2) S is a chain of ρ-simple semigroups.

Lemma 2.9 [19] For any semigroup S, the following conditions are equivalent:

(1) (a, b) ∈ E(Cay(S,ω));
(2) J (a) ⊇ J (b).

A partially ordered set (Y,≥) is called a strong partially ordered set if for any
α,β ∈ X, there is γ ∈ Y such that α ≥ γ and β ≥ γ . If (Y,≥) is a partially ordered
set and Y is a semigroup such that for any α,β ∈ Y , α,β ≥ αβ , then we call the
semigroup Y a partially ordered semigroup, and we call the partially ordered set Y a
semigroup-partially-ordered set. If B is a partially ordered semigroup that is also a
band (i.e., an idempotent semigroup), then we call B a band-partially-ordered set or
a partially ordered band. If (Y,≥) is a partially ordered set, Y is a semigroup, T is an
ideal extension of Y and ρ ⊆ T 1 × T 1 such that for any α ∈ Y , ρ1(α) = α ↓ where
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by α ↓ we denote the set {β|α ≥ β}, then we call the semigroup Y a ρ-semigroup,
and we call the partially ordered set Y a ρ-partially-ordered set. For example, if ρ =
S1 × S1, a ρ-partially-ordered set or ρ-semigroup is called a J -partially-ordered set
or J -semigroup. The relation graph of a strong partially ordered set (rep. semigroup-
partially-ordered set, J -partially-ordered set, etc.) is called a strong partially ordered
graph (rep. semigroup-partially-ordered graph, J -partially-ordered graph, etc.)

For a graph Γ define a relation ∼ on V (Γ ) by setting a ∼ b if and only if
(a, b) ∈ V (Γ ) and (b, a) ∈ V (Γ ). If ∼ is an equivalence such that the quotient graph
Γ/ ∼ is a strong partially ordered graph (resp. semigroup-partially-ordered graph,
J -partially-ordered graph, semilattice graph, etc.), then we call Γ a strong partial
order (resp. semigroup-partial order, J -partial-order, semilattice, etc.) of complete
graphs with loops. A strong partial order Γ of complete graphs Γα (α ∈ Y ) with
loops is called nonidempotent-trivial if Γα is trivial (i.e., |V (Γα)| = 1) for every non-
idempotent α of Y . It is easy to show that Cay(S,ω)/ ∼ is a strong partially ordered
graph.

Lemma 2.10 [19] For any semigroup S, Cay(S,ω) is a strong partial order of com-
plete graphs with loops.

Theorem 2.11 [19] The following statements are valid:

(1) if S is a completely regular semigroup, then Cay(S,ω) is a semilattice of com-
plete graphs with loops;

(2) if Γ is a semilattice of complete graphs with loops, then there is a (commutative)
completely regular semigroup such that Cay(S,ω) = Γ .

Theorem 2.12 [19] The following statements hold:

(1) For any semigroup S, Cay(S,ω) is a strong partial order of complete graphs with
loops, and for each a ∈ S and all b ∈ J (a), (a, b) ∈ E(Cay(S,ω));

(2) Let Γ be a nonidempotent-trivial J -partial order Y of complete graphs with
loops. Then there is a semigroup S such that Cay(S,ω) = Γ . Moreover, if Y is a
commutative semigroup, then S can be chosen to be commutative.

3 Some basic graphs as universal Cayley graphs of semigroups

In this section, for some simple and important special kinds of graphs such as
k-partite complete chain graph with loops and their complete fission graphs, we con-
struct the corresponding semigroups whose generalized Cayley graphs are the given
ones. At last, we give a necessary and sufficient condition for the universal Cayley
graph of a semigroup to be a finite linear graph.

First, we introduce two new notions.

Definition 3.1 Assume that A1,A2, . . . ,Ak are some pairwise disjoint nonempty
sets. Let Γ be a graph with vertex set V (Γ ) = ⋃k

i=1 Ai and edge set

E(Γ ) = {(a, b)|a ∈ Ai, b ∈ Aj , and i < j} ∪ {(a, a)|a ∈ V (Γ )}.
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Table 1 Cayley table used to
prove Theorem 3.3 0 1 2 · · · n a1 · · · am

0 0 0 0 · · · 0 0 · · · 0

1 0 1 0 · · · 0 1 · · · 1

2 0 0 2 · · · 0 2 · · · 2
.
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.

.

.
.
.
.
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n 0 0 0 · · · n n · · · n

a1 0 1 2 · · · n 0 · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

am 0 1 2 · · · n 0 · · · 0

Then we call Γ a k-partite complete chain graph with loops, denoted by K(A1, . . . ,

Ak). If |Ai | = αi for i = 1, . . . , k, then K(A1,A2, . . . ,Ak) is also denoted by
K(α1, . . . , αk). For an arbitrary cardinality α, K(1, α) is also called a down-claw
with α toes, and K(α,1) is called an up-claw with α toes. For an infinite cardinality
α, we can define similarly α-partite complete chain graphs with loops.

Definition 3.2 Let Γ be a graph and A = {ai |i ∈ I } ⊆ V (Γ ), and {Ai}i∈I a class
of pairwise disjoint sets, each of which is disjoint with V (Γ ). A complete fission
graph by splitting Γ at points of A is defined as a graph Γ ∗ with the vertex set
V (Γ ∗) = (V (Γ ) \ A) ∪ (

⋃
i∈I Ai)}, and edge set

E(Γ ∗) = {(x, y)|x, y∈̄A, (x, y) ∈ E(Γ )}
∪ {(x, y)|x, y ∈ Ai for some i ∈ I }
∪ {(x, y)|x ∈ Ai, y ∈ Aj , (ai, aj ) ∈ E(Γ ) for some i, j ∈ I }
∪ {(x, y)|y ∈ Aj , (x, aj ) ∈ E(Γ ) for some j ∈ I }
∪ {(x, y)|x ∈ Ai, , (ai, y) ∈ E(Γ ) for some i ∈ I }.

Note that if |A|, |B| > 1, then K(A,B,C) is a partially ordered graph but not
a semilattice graph, so it is worth being considered. If K(A,B,C) is a generalized
Cayley graph of a semigroup, then by Lemma 2.10, it is a strong partially ordered
graph which implies that |C| = 1. Thus we may suppose that |C| = 1 when studying
K(A,B,C), as we do in the sequel.

Theorem 3.3 For any positive integers m and n, there is a commutative semigroup
S such that Cay(S,ω) = K(m,n,1). Moreover, if Γ is a fission graph of K(A,B,C)

with sets A,B,C and that |C| = 1 by splitting up at any points of B ∪ C, then there
exists a commutative semigroup T such that Cay(T ,ω) � Γ .

Proof Let S = {0,1,2, . . . , n, a1, a2, . . . , am}. Define the multiplication on S by the
Cayley table, Table 1.
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Table 2 Cayley table used to
prove Theorem 3.4 0 1 · · · n a1 a2 · · · an · · · am

0 0 0 · · · 0 0 0 · · · 0 · · · 0

1 0 0 · · · 0 0 0 · · · 0 · · · 0

2 0 0 · · · 0 0 0 · · · 0 · · · 0
.
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n 0 0 · · · 0 0 0 · · · 0 · · · 0

a1 0 0 · · · 0 1 2 · · · n · · · n
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am 0 0 · · · 0 1 2 · · · n · · · n

It is easy to verify that S is a semigroup. Since Table 1 is symmetric, S is commu-
tative. Simple computation shows that J (0) = {0}, J (k) = {0, k} for k = 1,2, . . . , n,
and J (ak) = {0,1, . . . , n, ak} for k = 1,2, . . . ,m. Thus by Lemma 2.9, Cay(S,ω) =
K(m,n,1).

Suppose without loss of generality that A = {a1, a2, . . . , am}, B = {1,2, . . . , n}
and C = {0}. Then K(A,B,C) = K(m,n,1) = S is a semigroup in view of the
above. According to Lemma 2.10, K(A,B,C) is a strong-partially-ordered graph.
Furthermore, a direct verification shows that K(A,B,C) is a J -partially-ordered
graph. Since Γ is a complete fission graph of K(A,B,C) by splitting up at the
idempotents {0,1,2, . . . , n} = B ∪ C, Γ is a nonidempotent-trivial J -partial order
of complete graphs with loops by Definition 3.2. In light of Theorem 2.12, there
exists a commutative semigroup T such that Cay(T ,ω) � Γ , which completes the
proof. �

Theorem 3.4 If m and n are positive integers such that m ≥ n ≥ 2, then there ex-
ists a noncommutative semigroup S with a zero 0 such that Cay(S,ω) = K(m,n,1).
Moreover, if Γ is a fission graph of K(A,B,C) with sets A,B,C and that C = {0}
by splitting up at 0, then there exists a noncommutative semigroup T such that
Cay(T ,ω) � Γ .

Proof The arguments are similar to those in the proof of Theorem 3.3, so we just give
the Cayley table, Table 2. �

Similarly, we have

Theorem 3.5 For any positive integer n, there is a noncommutative semigroup S

such that Cay(S,ω) = K(2, n,1). Moreover, if Γ is a fission graph of K(A,B,C)

with sets A,B,C and that |C| = 1 by splitting up at any points of A ∪ C, then there
exists a noncommutative semigroup T such that Cay(T ,ω) � Γ .

Recall that if {Sα}α∈I is a class of 0-subsemigroups of S satisfying that S =⋃
α∈I Sα and for α �= β , Sα ∩ Sβ = SαSβ = {0}, then we say that S is the 0-direct

union of Sα’s. If E is a semilattice, i.e., a commutative idempotent semigroup, then
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the natural order on E is defined by setting e ≤ f if and only if ef = f e = e.
A semilattice E with a zero 0 is called 0-primitive, if every nonzero element of E

is 0-primitive, that is, minimal in E \ {0}. Now we can characterize the up-claws
K(α,1) as follows.

Theorem 3.6 Let S be a semigroup whose cardinality is α + 1 with α > 1. Then
Cay(S,ω) = K(α,1) if and only if S is either a 0-primitive semilattice, or a null
semigroup, or a 0-direct union of both of them.

Proof Sufficiency: Without loss of generality, let S be a 0-direct union of a 0-primitive
semilattice and a null semigroup with zero 0. Then J (0) = {0}, and J (a) = {0, a} for
each a ∈ S \ {0}. Hence, by Lemma 2.9, Cay(S,ω) = K(α,1).

Necessity: Assume that Cay(S,ω) = K(α,1). Then Cay(S,ω) has a lower bound
which we denote by 0, i.e., (a,0) ∈ E(Cay(S,ω)) for all a ∈ S. By (2.4), J (a) = −→a
for every a ∈ S. It follows that J (0) = {0} which means that 0 is a zero of S. Also
J (a) = {0, a} for all a ∈ S \ {0}. Hence for all a �= b ∈ S, ab ∈ J (a) ∩ J (b) = {0}.
For any a ∈ S \ {0}, a2 ∈ J (a) = {0, a}. Thus a2 = 0 or a2 = a. If the first case occurs
for all a ∈ S, then S is null. Otherwise, there exists a ∈ S such that a2 = a �= 0. Let
E be the set of all idempotents of S and let F = (S \ E) ∪ {0}. Then F is a null
semigroup. Let e, f ∈ E such that e �= 0 and e �= f . Then e2 = e and ef = 0 = f e,
and so e is a 0-primitive idempotent. Furthermore, E is a 0-primitive semilattice. It is
clear that for all e ∈ E and n ∈ F , en = ne = 0. Thus S is a 0-direct union of E and
F . In particular, if F = {0}, then S = E is a 0-primitive semilattice. So the theorem
is proved. �

Theorem 3.7 For a semigroup S = Ln, Cay(S,ω) = Ln if and only if there exists a
total order ≥ on S such that the following conditions are satisfied:

(1) for any i, j ∈ Ln, min(i, j) ≥ ij ;
(2) for all i �= j , |J (i)| �= |J (j)|.

Proof Necessity: Assume that S = Ln is a semigroup such that Cay(S,ω) = Ln. The
natural order ≥ for natural numbers may be taken as the total order on S. Then for any
i ∈ Ln, J (i) = −→

i = i ↓= {0,1, . . . , i}. Thus that |J (i)| = |J (j)| implies that i = j ,
and (2) follows. For any i, j ∈ Ln, ij ∈ J (i) ∩ J (j) = J (min(i, j)) = min(i, j) ↓,
hence min(i, j) ≥ ij and (1) follows.

Sufficiency: Assume S = {0 < 1 < 2 < · · · < n} is a total set with the total order ≤
such that the two conditions presented in the theorem are satisfied. Then J (0) = {0},
J (1) = {0,1}, J (2) = {0,1,2}, and J (n) = {0,1,2, . . . , n}. Thus by Lemma 2.9,
Cay(S,ω) = Ln as desired. �

Remark 3.8

(1) The next question remains open: Is it true that the countably-infinite-partite com-
plete chain graph with loops

K({a1, a2}, . . . , {3}, {2}, {1}, {0}, {−1}, {−2}, {−3}, . . .)
is a J -partially-ordered graph, where {a1, a2} ∩ Z = ∅?
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(2) It may be interesting to characterize semigroups S such that Cay(S,ωl) =
Cay(S,ωr).

4 D-saturated property of the Cayley graphs of semigroups

The following combinatorial property was introduced in [9] and was investigated
further in [17] for the Cayley graphs of semigroups. A semigroup S is said to be
Cayley D-saturated with respect to a subset T of S if, for all infinite subsets V of S,
there exists a subgraph of Cay(S,T ) isomorphic to D with all vertices in V . In this
section, we study the Cayley D-saturated property of a generalized Cayley graph and
generalize the corresponding results of [9, 17].

Let N be the set of all natural numbers. An infinite ascending (resp. descending)
chain A∞ (resp. D∞) is the graph with the set N as its vertex set and with edges
(i, j) such that i < j (rep. i > j ). An infinite complete symmetric graph K∞ is the
graph with the set N as vertex set and with edges (i, j) for all distinct i, j ∈ N. The
null graph is a graph with no edges. Recall that a finite graph D has no cycles if and
only if D can be embedded in A∞ or D∞, and that any finite graph can be embedded
in K∞.

Lemma 4.1 [9] Every infinite graph contains an infinite set of vertices which induces
a null subgraph, A∞, D∞ or K∞.

If S is a finite semigroup, then it is vacuously true that S is Cayley D-saturated
with respect to all relations ρ on T 1, where T is an ideal extension of S. If D is null,
then all semigroups S are Cayley D-saturated with respect to all relations ρ on T 1. If
S is an infinite semigroup, ρ is the empty relation but D is not null, then it is obvious
that S is not Cayley D-saturated with respect to ρ. So in the sequel, we only need to
consider the case where S is an infinite semigroup, D is not a null graph and ρ is a
nonempty relation. We first consider the case where D has no cycles.

Theorem 4.2 Assume that D is a finite simple graph with no cycles, T is an ideal
extension of an infinite semigroup S and ρ ⊆ T 1 × T 1 is a nonempty relation. Then
the following conditions are equivalent:

(1) S is Cayley D-saturated with respect to ρ;
(2) every infinite subset of V (Cay(S,ρ)) induces a subgraph of Cay(S,ρ) which is

not null.

Proof (1) ⇒ (2): Suppose towards a contradiction that there is an infinite subset
V ⊆ S such that V induces a null subgraph in Cay(S,ρ). Then D is not embeddable
in the subgraph of Cay(S,ρ) induced by V , which contradicts the assumption that S

is Cayley D-saturated with respect to ρ.
(2) ⇒ (1): Let V be an infinite subset of S. Then V induces an infinite subgraph

Γ of Cay(S,ρ). By Lemma 4.1, there is an infinite subset U ⊆ V which induces
a subgraph of Γ that is either null, or isomorphic to D∞, A∞ or K∞. Since the
first case is excluded by condition (2) and D can be embedded in D∞, A∞ or K∞,
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the graph D can be embedded in the subgraph Γ induced by U . Thus D can be
embedded in the graph induced by V in Cay(S,ρ) and so S is D-saturated with
respect to ρ. �

Two sets are incomparable if neither one is contained in the other. As a conse-
quence of Theorem 4.2, we have the following

Corollary 4.3 Assume that D is a finite simple graph with no cycles, T is an ideal
extension of an infinite semigroup S and ρ ⊆ T 1 × T 1 is a nonempty I-compatible
relation. Then the following conditions are equivalent:

(1) S is Cayley D-saturated with respect to ρ;
(2) S does not have an infinite set {ρ1(si)|i ∈ N} such that ρ1(si) and ρ1(sj ) are

incomparable for all distinct i, j ∈ N.

Proof (1) ⇒ (2): Suppose by way of contradiction that there is an infinite set A =
{ρ1(si)|i ∈ N} such that ρ1(si) and ρ1(sj ) are incomparable for all distinct i, j ∈ N.
Then there is an infinite set V such that V induces a subgraph of Cay(S,ρ) which is
not null by (2) of Theorem 4.2, since S is Cayley D-saturated with respect to ρ. Thus
there are distinct i, j ∈ N such that (si , sj ) ∈ E(Cay(S,ρ)). Since ρ is I-compatible,
it follows from Corollary 2.6 that ρ1(si) ⊇ ρ1(sj ), which contradicts that ρ1(si) and
ρ1(sj ) are incomparable.

(2) ⇒ (1): Let V = {vi |i ∈ N} be an infinite subset of S. From (2), it follows
that there are i �= j ∈ N such that ρ1(vi) ⊇ ρ1(vj ). By Lemma 2.2, (vi, vj ) ∈
E(Cay(S,ρ)) since vi �= vj . Thus V does not induce a null subgraph of Cay(S,ρ)

and so S is Cayley D-saturated with respect to ρ by (2) of Theorem 4.2. �

Corollary 4.4 Let D be a finite simple graph with no cycles, S an infinite semigroup.
Then the following conditions are equivalent:

(1) S is Cayley D-saturated with respect to S × S (resp. S × {1}, {1} × S);
(2) S is Cayley D-saturated with respect to S1 × S1 (resp. S1 × {1}, {1} × S1);
(3) S does not have an infinite set of pairwise incomparable principal ideals (resp.

principal left ideals, principal right ideals).

Remark 4.5 The corresponding results remain correct if S1 ×S1 is replaced by S1 ×S

or by S × S1 in Corollary 4.4.

Next we consider the case where the graph D has a cycle.

Theorem 4.6 Assume that D is a finite simple graph which has a cycle, T is an ideal
extension of an infinite semigroup S and ρ ⊆ T 1 × T 1 is a nonempty relation. Then
the following conditions are equivalent:

(1) S is Cayley D-saturated with respect to ρ;
(2) every subgraph of Cay(S,ρ) induced by an infinite subset of S contains a sub-

graph isomorphic to K∞;
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(3) for any infinite subset U ⊆ S, there is an infinite subset W ⊆ U such that W ⊆
ρ(a) for any a ∈ W .

Proof (1) ⇒ (2): Let V be an infinite subset of S. Then V induces an infinite sub-
graph Γ of Cay(S,ρ). By Lemma 4.1, there is an infinite subset U ⊆ V such that
U induces a subgraph of Γ that is a null graph, D∞, A∞, or K∞. Since D has a
cycle and S is Cayley D-saturated with respect to ρ, the first, second and third cases
are excluded. Thus U induces K∞ in Cay(S,ρ) and so the subgraph of Cay(S,ρ)

induced by V contains K∞.
(2) ⇒ (3): Let U be an infinite subset of S. Then by (2) there is an infi-

nite subset W ⊆ U such that W induces K∞ in Cay(S,ρ). Let a, b ∈ W . Then
(a, b) ∈ E(Cay(S,ρ)) and so b ∈ ρ(a). Thus W ⊆ ρ(a), as required.

(3) ⇒ (1): Let V be an infinite subset of S. Then by (3), there is an infinite subset
W ⊆ V such that W ⊆ ρ(a) for any a ∈ W . Thus (a, b) ∈ E(Cay(S,ρ)) for any
b ∈ W and so W induces K∞ in Cay(S,ρ). Since D can be embedded in K∞, D

can be embedded in the subgraph of K∞ induced by V . Therefore, S is Cayley D-
saturated with respect to ρ and the theorem is proved. �

Corollary 4.7 Let D be a finite simple graph which has a cycle, T an ideal extension
of an infinite semigroup S and ρ ⊆ T 1 × T 1 a nonempty relation. If S is Cayley
D-saturated with respect to ρ, then there exist elements s0, s1, . . . , sn ∈ S such that
S = ρ1(s0) ∪ ρ1(s1) ∪ · · · ∪ ρ1(sn).

Proof Let s0 ∈ S and consider the set S \ ρ1(s0). If the set S \ ρ1(s0) is finite, then
the result is true. If the set S \ ρ1(s0) is infinite, let s1 ∈ S \ ρ1(s0) and consider the
set S \ (ρ1(s0) ∪ ρ1(s1)). Repeating the same process, if the process terminates af-
ter some finite steps, then the result follows. Otherwise, we can get an infinite set
{ρ1(si)|i ∈ N} such that si ∈ S \ ⋃

0≤j<i ρ
1(sj ) for all i > 0. Let V = {si |i ∈ N}.

Since S is Cayley D-saturated with respect to ρ, the subgraph induced by V in
Cay(S,ρ) contains a subgraph K isomorphic to K∞ by (2) of Theorem 4.6. Without
loss of generality, let s0 ∈ V (K). Then there is a positive i such that si ∈ V (K). It
follows that (s0, si) ∈ E(Cay(S,ρ)), and so si ∈ ρ(s0). Therefore, si ∈ ρ1(s0) which
contradicts the choice of si . �

Corollary 4.8 Let D be a finite simple graph which has a cycle, T an ideal extension
of an infinite semigroup S and ρ ⊆ T 1 × T 1 a nonempty relation. If S is Cayley D-
saturated with respect to ρ, then the following statements hold:

(1) the set ρ is infinite;
(2) if ρ is I-compatible, then the set of ρ-classes of S is finite;
(3) if ρ is I-compatible, then the set {ρ(a)|a ∈ S} is finite.

Proof Let U be an infinite subset of S. Since S is Cayley D-saturated with respect
to ρ, there is an infinite subset W ⊆ U such that W ⊆ ρ(a) for any a ∈ W by (3) of
Theorem 4.6. Thus ρ must be infinite and (1) holds.

To show (2), suppose toward a contradiction that the set A of ρ-classes of S is
infinite. Let A = {ρ1(si)|i ∈ N} be an infinite set, and set V = {si |i ∈ N}. Then V
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induces an infinite subgraph of Cay(S,ρ), and so there is an infinite subset U ⊆ V

such that U induces a subgraph in Cay(S,ρ) which is isomorphic to K∞ by (2) of
Theorem 4.6. Thus there are si �= sj ∈ U such that (si , sj ), (sj , si) ∈ E(Cay(S,ρ)).
Hence by Corollary 2.6, ρ1(si) = ρ1(sj ), which contradicts that si and sj are in
different ρ-classes. Therefore (2) holds. Similarly, we can prove (3). �

Recall that the union of two graphs Γ1 and Γ2, denoted by Γ1 ∪ Γ2, is the graph
with the vertex set V (Γ1) ∪ V (Γ2) and the edge set E(Γ1) ∪ E(Γ2). Furthermore, if
V (Γ1) ∩ V (Γ2) = ∅, we call Γ1 ∪ Γ2 the disjoint union of Γ1 and Γ2.

Theorem 4.9 Let D be a finite simple graph which has a cycle, T an ideal extension
of an infinite semigroup S and ρ ⊆ T 1 × T 1 a nonempty I-compatible relation. Then
the following conditions are equivalent:

(1) S is Cayley D-saturated with respect to ρ;
(2) Cay(S,ρ) is the finite disjoint union of complete symmetric graphs;
(3) the set {ρ1(s)|s ∈ S} is finite.

Proof (1) ⇒ (2): Since S is Cayley D-saturated with respect to ρ, every subgraph
of Cay(S,ρ) induced by an infinite subset of S contains a subgraph isomorphic to
K∞ by (2) of Theorem 4.6. Let A0 be the set of complete symmetric subgraphs of
Cay(S,ρ). For Γ1,Γ2 ∈ A0, define a partial order ≤ on A0 by setting Γ1 ≤ Γ2 if and
only if V (Γ1) ⊆ V (Γ2). Suppose that Γ1 ≤ Γ2 ≤ · · · is a chain of A0. Then

⋃
i∈N

Γi

is an upper bound of the chain in A0. So by Zorn’s Lemma, there is a maximal ele-
ment H0 ∈ A0. Now we consider the set S \V (H0). If the set S \V (H0) is finite, then
the result is true. If the set S \ V (H0) is infinite, let A1 be the set of complete sym-
metric subgraphs of the subgraph induced by S \ V (H0) in Cay(S,ρ). With a similar
argument, there is a maximal element H1 in A1. Repeating the same process, if the
process terminates after some finite steps, then the result follows. Otherwise, we can
obtain an infinite set {Hi |i ∈ N}, where each Hi is maximal in the set of complete
symmetric subgraphs of the subgraph induced by S \ ⋃

1≤j<i V (Hj ) in Cay(S,ρ).
Let vi ∈ Hi and V = {vi |i ∈ N}. Since S is Cayley D-saturated with respect to ρ,
V contains an infinite complete symmetric subgraph K by (2) of Theorem 4.6. Let
I = {i|vi ∈ V (K)}. Without loss of generality, let 0 ∈ I . Then there is a positive inte-
ger j ∈ I , which means that vj ∈ V (K) and (v0, vj ), (vj , v0) ∈ E(Cay(S,ρ)). Since
ρ ⊆ T 1 ×T 1 is I-compatible, then Cay(S,ρ) is edge-transitive according to Proposi-
tion 2.5. Now for any v ∈ V (H0) \ {v0}, we have (v, v0), (v0, v) ∈ E(Cay(S,ρ)) and
thus (v, vj ), (vj , v) ∈ E(Cay(S,ρ)). It follows that V (H0)∪{vj } induces a complete
symmetric subgraph in Cay(S,ρ), which contradicts that H0 is maximal in A0 since
vj ∈̄H0.

(2) ⇒ (3): Let Cay(S,ρ) = K0 ∪ K1 ∪ · · · ∪ Kn where n is finite and all Ki ’s
are complete symmetric subgraphs. Let u,v ∈ Ki and u �= v. Then (u, v), (v,u) ∈
E(Cay(S,ρ)). In light of Corollary 2.6, we have ρ1(u) ⊇ ρ1(v) and ρ1(v) ⊇ ρ1(u).
Immediately, ρ1(u) = ρ1(v), which implies that the cardinality of the set {ρ1(s)|s ∈
S} is at most n. Thus the set {ρ1(s)|s ∈ S} is finite.

(3) ⇒ (1): Let V be an infinite subset of S. Since the set {ρ1(s)|s ∈ S} is fi-
nite, there is an infinite subset U ⊆ V such that ρ1(u) = ρ1(v) for any u �= v ∈ U .
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By Lemma 2.2, (u, v), (v,u) ∈ E(Cay(S,ρ)). So U induces a complete symmetric
subgraph K in Cay(S,ρ). Consequently, V contains K and D can be embedded in
the subgraph of Cay(S,ρ) induced by V . Therefore, S is Cayley D-saturated with
respect to ρ. �

Remark 4.10 If we drop the assumption that ρ is I-compatible from the above theo-
rem, then the implication (3) ⇒ (1) remains true.

Corollary 4.11 Let D be a finite simple graph which has a cycle, T an ideal exten-
sion of an infinite semigroup S and ρ ⊆ T 1 × T 1 a nonempty I-compatible relation.
Then the following conditions are equivalent:

(1) S is Cayley D-saturated with respect to S × S (rep. S × {1}, {1} × S);
(2) S is Cayley D-saturated with respect to S1 × S1 (rep. S1 × {1}, {1} × S1);
(3) the number of principal ideals (rep. principal left ideals, principal right ideals)

of S is finite.

Remark 4.12 The corresponding results remain correct if S1 × S1 is replaced by
S1 × S or by S × S1 in the Corollary 4.11.

Corollary 4.13 Let T be an ideal extension of an infinite semigroup S and let ρ ⊆
T 1 × T 1 be a nonempty I-compatible relation. If for a finite simple graph D1 with a
cycle, S is Cayley D1-saturated with respect to ρ, then for any finite simple graph D,
S is Cayley D-saturated with respect to ρ.

Proof Since D1 has a cycle and S is Cayley D1-saturated with respect to ρ, Cay(S,ρ)

is a finite disjoint union of complete symmetric graphs by (2) of Theorem 4.9. Let D

be a finite graph and V an infinite subset of S. Then there is an infinite subset U ⊆ V

such that the elements of U lie in a same complete symmetric subgraph, and so U

induces a subgraph in Cay(S,ρ) which is isomorphic to K∞. This implies that D

can be embedded in the subgraph of Cay(S,ρ) induced by U . Therefore D can be
embedded in the subgraph of Cay(S,ρ) induced by V and so S is Cayley D-saturated
with respect to ρ. �
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