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Abstract We introduce the concept of generalized Cayley graphs of semigroups and
discuss their fundamental properties, and then study a special case, the universal Cay-
ley graphs of semigroups so that some general results are given and the universal
Cayley graph of a J -partial order of complete graphs with loops is described.

Keywords Generalized Cayley graph · Semigroup · J -partial order of complete
graphs with loops

1 Introduction and preliminaries

The investigation and characterization of digraphs that are Cayley graphs of certain
algebraic structures have a long history, documented for example in Maschke’s The-
orem from 1896 about groups of genus zero, that is, groups G which possess systems
A of generating elements, such that the Cayley graphs Cay(G,A) are planar. A mod-
ern presentation of this can be found in [16]. Stimulated by the rich results of research
on the Cayley graphs of groups, the Cayley graphs of semigroups have also been con-
sidered by many authors, see, for example, [1, 5–8, 13, 14, 18]. Some of the earliest
references on this subject are [2, 19, pp. 93–101]. The Cayley graphs of semigroups
are closely related to the finite state automata and have many valuable applications
(see the survey [11] and Sect. 2.4 of the book [4]). In addition, similar questions
concerning divisibility graphs and power graphs of semigroups were considered in
[9, 10], respectively.

If S is a semigroup, and T is a nonempty subset of S, the so-called connection set,
then the Cayley graph Cay(S,T ) of S relative to T is usually defined as the graph
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with vertex set S and edge set E(Cay(S,T )) consisting of those ordered pairs (x, y),
where xt = y for some t ∈ T , see [1, 5, 8, 12–14]. Note that in all of these articles
the Cayley graph is defined by right translations which is quite usual. But at the same
time, in some other articles, the Cayley graph is defined by left translations, see, for
example, [6, 7, 11, 18].

However, the reflection of algebraic properties of S may depend strongly on the
choice of left actions or right actions. Evidently, for a given semigroup S and a fixed
subset T of S, the Cayley graphs Cay(S,T ) defined by left actions and by right
actions may not be the same. In order to unify these two cases, and to get more
applications, we shall generalize the definition of Cayley graphs of semigroups in the
present paper.

As we can see in [1, 5–8, 11–14, 18], when studying Cayley graphs of semigroups,
at least the following three basic aspects are of significance: (1) to describe the Cayley
graph of a given semigroup; (2) given a Cayley graph of a semigroup, to determine
the structure or study the properties of this semigroup; and (3) to find or construct
a semigroup whose Cayley graph is a given graph. Our work on generalized Cayley
graphs of semigroups will follow a similar line.

In Sect. 1 of the present paper, we introduce the notion of generalized Cayley
graphs of semigroups. Some fundamental properties of generalized Cayley graphs
are discussed in Sect. 2. At last, in Sect. 3, we focus on a special case, the universal
Cayley graphs of semigroups so that some general results are given. Here we give
some fundamental concepts and simple facts for preliminaries. As Example 1.4 be-
low shows, the generalized Cayley graphs of a given semigroup may include more
universal classes of graphs than the usual Cayley graphs.

Recall that if S is an ideal of a semigroup T , then we call T an ideal extension
of S. For any semigroup T , let

T 1 =
{

T if T has the identity
T ∪ {1} otherwise.

Now we present the main definition of this paper, which generalizes the Cayley graph
of a semigroup S relative to a subset of S to that relative to a relation on T 1 with T

an ideal extension of S.

Definition 1.1 Let T be an ideal extension of a semigroup S and ρ ⊆ T 1 × T 1. The
Cayley graph Cay(S,ρ) of S relative to ρ is defined as the graph with vertex set S

and edge set E(Cay(S,ρ)) consisting of those ordered pairs (a, b), where xay = b

for some (x, y) ∈ ρ.

We also call the Cayley graphs defined in this way the generalized Cayley graphs,
in order to distinguish them from the usual ones. Some examples are displayed below.

Example 1.2 If T is a nonempty subset of a semigroup S, then generalized Cayley
graph Cay(S,T × {1}) is actually the usual Cayley graph Cay(S,T ) of S relative
to T defined by the left actions, while generalized Cayley graph Cay(S, {1} × T ) is
precisely the usual Cayley graph Cay(S,T ) of S relative to T defined by the right
actions.
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Example 1.3 Assume that S is a semigroup. Let ωl = S1 × {1} (the left universal re-
lation on S1), ωr = {1}×S1 (the right universal relation on S1) and ω = S1 ×S1 (the
universal relation on S1). Then the generalized Cayley graphs Cay(S,ωl), Cay(S,ωr)

and Cay(S,ω) are called left universal, right universal and universal Cayley graphs
of S, respectively.

Example 1.4 Let N be the semigroup of all natural numbers with the usual multipli-
cation, and S the ideal of N consisting of all nonnegative even integers. Then on the
one hand, for any subset T of S, the usual Cayley graph Cay(S,T ) can not contain
any edge (a, b) such that b is not divided by 4. But on the other hand, there are indeed
such edges in the generalized Cayley graph Cay(S,N × N).

In what follows, we give some simple facts for preliminaries. Assume that S is a
semigroup and a ∈ S. Then L(a) = S1a, R(a) = aS1 and J (a) = S1aS1 is the prin-
cipal left ideal, principal right ideal and principal ideal generated by a, respectively.
The next lemma is a direct consequence of Definition 1.1.

Lemma 1.5 Let T be an ideal extension of a regular semigroup S and ρ ⊆ T 1 × T 1.
Then the following statements hold:

(1) if a, b ∈ S such that (a, b) ∈ E(Cay(S,ρ)), then J (a) ⊇ J (b);
(2) there is a relation ρ0 ⊆ S × S such that Cay(S,ρ) is a subgraph of Cay(S,ρ0).

Throughout the paper, graphs are directed graphs without multiple edges, but pos-
sibly with loops, or digraphs in terms of [1, 14]. For a graph Γ , denote by V (Γ ) and
E(Γ ) its vertex set and edge set, respectively. For any a ∈ V (Γ ), Let

−→
a = {b ∈ V (Γ )|(a, b) ∈ E(Γ )}, ←−

a = {b ∈ V (Γ )|(b, a) ∈ E(Γ )}. (1.1)

Let T be an ideal extension of a semigroup S and ρ ⊆ T 1 × T 1. If a, b ∈ S such
that (a, b) ∈ E(Cay(S,ρ)), then by Definition 1.1, there exists (x, y) ∈ ρ such that
xay = b. Let

ρ(a) = {xay|(x, y) ∈ ρ}, (1.2)

and set

ρ(a)1 = ρ(a) ∪ {a}. (1.3)

We call ρ(a)1 the ρ-class of a. It is evident that (a, b) ∈ E(Cay(S,ρ)) if and only if
b ∈ ρ(a). So by (1.1), we obtain

ρ(a) = −→
a . (1.4)

The next lemma will be used repeatedly later.

Lemma 1.6 Let T be an ideal extension of a semigroup S, ρ ⊆ T 1 ×T 1 and a, b ∈ S.
If ρ1(a) ⊇ ρ1(b) and a �= b, then (a, b) ∈ E(Cay(S,ρ)).
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Proof Assume that ρ1(a) ⊇ ρ1(b) and a �= b. By (1.3), b ∈ ρ1(b) ⊆ ρ1(a) = ρ(a) ∪
{a}. Since a �= b, we have that b ∈ ρ(a). By (1.2), there exists (x, y) ∈ ρ such that
xay = b. Hence by Definition 1.1, (a, b) ∈ E(Cay(S,ρ)) as required. �

As usual, a directed graph without loops and multiple edges is called simple. Note
that although generalized Cayley graphs defined in the present paper have no multiple
edges, they may have loops, and so they don’t have to be simple. Sometimes, we shall
equate two graphs each of which is isomorphic to the other one. That is, if Γ1 � Γ2,
then we may identify Γ1 with Γ2.

We use standard terminology of graph theory following, for example, [17]. For
semigroup theory, we refer the reader to [3, 15, 20].

2 Fundamental properties of generalized Cayley graphs of semigroups

The aim of this section is to discuss in general the fundamental properties of gen-
eralized Cayley graphs of semigroups by introducing some new concepts such as
‘I-compatible’ and ‘stable’. A necessary and sufficient condition is given in Theo-
rem 2.2 for a relation on a semigroup to be I-compatible, and the semigroup whose
generalized Cayley graph is a chain of complete graphs with loops is characterized
in Theorem 2.10.

Let us begin by introducing the first new notion of this section.

Definition 2.1 Let T be a semigroup and ρ ⊆ T × T . If that (a, b), (c, d) ∈ ρ for
any a, b, c, d ∈ T always implies (ca, bd) ∈ ρ, then we call ρ inversely compatible,
or briefly, I-compatible.

For example, if T is a semigroup with A and B subsemigroups of T , then it is
clear that ρ = A × B is I-compatible. Particularly, if S is a semigroup, then S × {1},
S1 × {1}, {1} × S, {1} × S1, S × S and S1 × S1 are all I-compatible.

Suppose that S and T are semigroups. A mapping φ : S −→ T is called an anti-
homomorphism if φ(ab) = φ(b)φ(a) for all a, b ∈ S. Furthermore, if φ is a bijection,
then we call φ an anti-isomorphism, or say that S is anti-isomorphic to T .

For characterizing the I-compatibility, suppose that T is a semigroup and ρ ⊆
T × T , and let

lρ = {a|(a, b) ∈ ρ}, rρ = {b|(a, b) ∈ ρ}, (2.1)

If a, b ∈ lρ , then exist c, d ∈ T such that (a, c), (b, d) ∈ ρ. If ρ is I-compatible, then
(ba, cd) ∈ ρ which means that ba ∈ lρ and cd ∈ rρ . Thus both lρ and rρ are subsemi-
groups of T .

Now ρ ⊆ lρ × rρ . It is evident that the mapping ρ −→ lρ , (a, b) 	−→ a is an onto
anti-homomorphism. Let l∗ρ = lρ . For any a, b ∈ l∗ρ , define a ∗ b = ba. Then (l∗ρ,∗)

is a semigroup anti-isomorphic to lρ . We call (l∗ρ,∗) the anti-semigroup of lρ . The
anti-semigroup of a subsemigroup of a semigroup T is called a anti-subsemigroup
of T . Thus (l∗ρ,∗) is a anti-subsemigroup of T . Now, ρ −→ l∗ρ , (a, b) 	−→ a is an
onto homomorphism. Of course, the mapping ρ −→ rρ , (a, b) 	−→ b is also an onto
homomorphism. So ρ is a subdirect product of l∗ρ and rρ .
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Conversely, assume that ρ is a subdirect product of (l∗ρ,∗), an anti-subsemigroup
of T , and lρ , a subsemigroup of T . Then ρ is a subsemigroup of the direct prod-
uct l∗ρ × rρ . Thus for any (a, b), (c, d) ∈ ρ, we have that (ca, bd) = (a ∗ c, bd) =
(a, b)(c, d) ∈ ρ. It follows that ρ is I-compatible.

Summarizing the above arguments, we obtain

Theorem 2.2 Assume that T is a semigroup and ρ ⊆ T × T . Then ρ is I-compatible
if and only if there exist an anti-subsemigroup A and a subsemigroup B such that ρ

is the subdirect product of A and B .

Let us turn our attention to the second new notion of this section.

Definition 2.3 Let Γ be a graph. If that (a, b), (b, c) ∈ E(Γ ) for a, b, c ∈ V (Γ )

always implies that (a, c) ∈ E(Γ ), then Γ is said to be edge-transitive.

The relation of the above two notions is indicated in

Proposition 2.4 Assume that T is an ideal extension of a semigroup S. If ρ ⊆ T 1 ×
T 1 is I-compatible, then Cay(S,ρ) is edge-transitive.

Proof Assume that T is an ideal extension of a semigroup S and ρ ⊆ T 1 × T 1 is
I-compatible. If (a, b), (b, c) ∈ E(Cay(S,ρ)), then there exist (x, y), (x0, y0) ∈ ρ

such that b = xay and c = x0by0. Thus

c = x0by0 = x0(xay)y0 = (x0x)a(yy0),

where (x0x, yy0) ∈ ρ by the assumption that ρ is I-compatible. It follows that (a, c) ∈
E(Cay(S,ρ)). Therefore, Cay(S,ρ) is edge-transitive and the proof is complete. �

Corollary 2.5 Assume that T is an ideal extension of a semigroup S and ρ ⊆ T 1 ×
T 1 is I-compatible. If (a, b) ∈ E(Cay(S,ρ)), then ρ(a) ⊇ ρ(b) and ρ1(a) ⊇ ρ1(b).

Proof Suppose that (a, b) ∈ E(Cay(S,ρ)) and that ρ is I-compatible. Together with
(1.2) and Definition 1.1, we obtain that b ∈ ρ(a). According to Proposition 2.4,
Cay(S,ρ) is edge-transitive. Now, for any c ∈ ρ(b), (b, c) ∈ E(Cay(S,ρ)). It fol-
lows that (a, c) ∈ E(Cay(S,ρ)), that is, c ∈ ρ(a). Therefore, ρ(a) ⊇ ρ(b). By (1.3),
ρ1(b) = ρ(b) ∪ {b}. It follows that ρ(a) ⊇ ρ1(b). Hence ρ1(a) ⊇ ρ(a) ⊇ ρ1(b) and
the proof is complete. �

To obtain the converse implication of Corollary 2.5, we introduce the third new
concept of this section as follows.

Definition 2.6 Assume that T is an ideal extension of a semigroup S and ρ ⊆ T 1 ×
T 1. An element a of S is called stable under ρ if a ∈ ρ(a). If all elements of S are
stable under ρ, then S is called stable under ρ.
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It is clear that a is stable under ρ if and only if ρ(a)1 = ρ(a). For example, it
is easy to show that if S is a regular semigroup or a monoid, then S is stable under
ωl , ωr and ω, respectively. Combining Lemma 1.6 and Corollary 2.5, one may easily
deduce

Proposition 2.7 Assume that T is an ideal extension of a semigroup S. If ρ ⊆
T 1 × T 1 is I-compatible and S is stable under ρ, then for any a, b ∈ S the following
conditions are equivalent:

(1) (a, b) ∈ E(Cay(S,ρ));
(2) ρ(a) ⊇ ρ(b);
(3) ρ1(a) ⊇ ρ1(b).

In what follows, we shall characterize semigroups whose generalized Cayley
graphs are some special graphs.

Let (Y,≥) be a partially ordered set. For any a ∈ Y , set

a ↓= {b ∈ Y |a ≥ b}, a ↑= {b ∈ Y |b ≥ a}. (2.2)

Recall that for any a, b ∈ Y , a, b are called comparable if a ≥ b or b ≥ a. We call
(Y,≥) a totally ordered set if a, b are comparable for all a, b ∈ Y . Also we call the
total order ≥ a linear order. The relation graph of a linear order is called a linear
graph. It is easily seen that a graph Γ is a linear graph if and only if the following
conditions are satisfied: (1) Γ does not contain multiple edges; (2) for any a ∈ V (Γ ),
(a, a) ∈ E(Γ ); (3) for any a, b ∈ V (Γ ), (a, b) ∈ E(Γ ) or (b, a) ∈ E(Γ ); (4) if a �=
b ∈ V (Γ ) and (a, b) ∈ E(Γ ), then (b, a) ∈̄ E(Γ ); (5) Γ is edge-transitive. The next
lemma characterizes semigroups whose Cayley graphs are linear graphs.

Lemma 2.8 Assume that T is an ideal extension of a semigroup S and that ρ ⊆
T 1 × T 1 is I-compatible such that S is stable under ρ. Then the following conditions
are equivalent:

(1) Cay(S,ρ) is a linear graph;
(2) There exists a linear order ≥ on S such that for any a ∈ S, ρ(a) = a ↓;
(3) There exists a linear order ≥ on S such that for any a ∈ S, ρ1(a) = a ↓.

Proof Assume that T is an ideal extension of a semigroup S and ρ ⊇ T 1 × T 1

is I-compatible such that S is stable under ρ. Then by Proposition 2.4 and (1.4)
Cay(S,ρ) is edge-transitive and for any a ∈ S, ρ1(a) = ρ(a) = −→

a .
(1) ⇒ (2). Suppose that Cay(S,ρ) is a linear graph. Then define an order ≥ on

S by that a ≥ b if and only ρ(a) ⊇ ρ(b). It is clear that ≥ is reflexive and tran-
sitive. Assume that a ≥ b and b ≥ a. Then ρ(a) ⊇ ρ(b) and ρ(b) ⊇ ρ(a). Thus
ρ(a) = ρ(b). By Proposition 2.7, (b, a) ∈ E(Cay(S,ρ)) and (a, b) ∈ E(Cay(S,ρ)).
Since Cay(S,ρ) is a linear graph, we have a = b. Therefore ≥ is anti-symmetric and
furthermore it is a partial order. For any a, b ∈ S, (a, b) ∈ E(Cay(S,ρ)) or (b, a) ∈
E(Cay(S,ρ)). It follows from Proposition 2.7 that ρ(a) ⊇ ρ(b) or ρ(b) ⊇ ρ(a).
That is, a ≥ b or b ≥ a, which means that ≥ is a total order. By (2.2) and Proposi-
tion 2.7, for any a ∈ S, a ↓= {b ∈ S|a ≥ b} = {b ∈ S|ρ(a) ⊇ ρ(b)} = {b ∈ S|(a, b) ∈
E(Cay(S,ρ))} = −→

a = ρ(a), as required.
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(2) ⇒ (1). Assume that ≥ is a linear order on S such that for any a ∈ S, ρ(a) =
a ↓. Then for any a ∈ S, a ≥ a. It follows that a ∈ a ↓= ρ(a) which means that
(a, a) ∈ E(Cay(S,ρ)). For any a, b ∈ S, a ≥ b or b ≥ a. It follows that b ∈ a ↓=
ρ(a) or a ∈ b ↓= ρ(b). That is, (a, b) ∈ E(Cay(S,ρ)) or (b, a) ∈ E(Cay(S,ρ)).
Thus by Proposition 2.7, ρ(a) = ρ(b) which deduce that a ↓= b ↓. Hence a ≥ b and
b ≥ a. Since ≥ is anti-symmetric, we have a = b. Therefore, Cay(S,ρ) is a linear
graph.

(2) ⇔ (3). This is trivial because ρ1(a) = ρ(a) for every a ∈ S by the assumption
that S is stable under ρ, and so the lemma is proved. �

A complete graph with loops are defined as a graph Γ with the edge set E(Γ ) =
{(x, y)|x, y ∈ V (Γ )}. Assume that T is an ideal extension of a semigroup S and
ρ ⊆ T 1 × T 1. If ρ1(a) = ρ1(b) for all a, b ∈ S, then S is called ρ-simple. It is easy
to check that S is ρ-simple if and only if for every a ∈ S, ρ1(a) = S. For example,
if T is an ideal extension of a simple (rep. left simple, right simple) semigroup S,
then S is ω- (resp., ωl-, ωr -) simple. The next lemma uses the concept ‘ρ-simple’ to
characterize semigroups whose Cayley graphs are complete graphs with loops.

Lemma 2.9 Assume that T is an ideal extension of a semigroup S and ρ ⊆ T 1 ×
T 1 is an I-compatible relation such that S is stable under ρ. Then the following
conditions are equivalent:

(1) Cay(S,ρ) is a complete graph with loops;
(2) S is ρ-simple.

Proof Assume that T is an ideal extension of a semigroup S and ρ ⊆ T 1 × T 1 is
I-compatible such that S is stable under ρ. Then the conditions of Proposition 2.7 are
satisfied.

(1) ⇒ (2). Suppose that Cay(S,ρ) is a complete graph with loops. Then for any
a, b ∈ S, (a, b) ∈ E(Cay(S,ρ)) and (b, a) ∈ E(Cay(S,ρ)). According to Proposi-
tion 2.7, ρ1(a) = ρ1(b) which means that S is ρ-simple.

(2) ⇒ (1). Assume that S is ρ-simple. Then for any a, b ∈ S, ρ1(a) = ρ1(b).
Again, by Proposition 2.7, (a, b) ∈ E(Cay(S,ρ)) and (b, a) ∈ E(Cay(S,ρ)). It is
shown that Cay(S,ρ) is a complete graph with loops. �

Together with Proposition 2.7, Lemmas 2.8 and 2.9, we can easily prove the main
theorem of this section:

Theorem 2.10 Assume that T is an ideal extension of a semigroup S and ρ ⊆ T 1 ×
T 1 is an I-compatible relation such that S is stable under ρ. Then the following
conditions are equivalent:

(1) Cay(S,ρ) is a chain of complete graph with loops;
(2) S is a chain of ρ-simple semigroups.
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3 Universal Cayley graphs of semigroups

In this section, we concentrate on the special case ρ = ω, that is, we shall investigate
the universal Cayley graph Cay(S,ω) of a semigroup S, where ω is the universal re-
lation on S1. The main results of this section are Theorems 3.9 and 3.13. The former
establishes the connection between a completely regular semigroup and a semilattice
of complete graphs with loops, and the latter generalizes Theorem 3.9 and charac-
terizes the nonidempotent-trivial J -partial order of complete graphs with loops by
means of a new construction similar with Clifford semigroups, so called semigroup-
partially-ordered sets of semigroups which we define in Definition 3.11.

Observing that ω is I-compatible and S is stable under ω, and that for any a ∈ S,
ω1(a) = ω(a) = J (a), the principal ideal of a, according to Proposition 2.7, we get
the following result.

Lemma 3.1 For any semigroup S, the following conditions are equivalent:

(1) (a, b) ∈ E(Cay(S,ω));
(2) J (a) ⊇ J (b).

As a consequence of this lemma or Lemma 2.9, we have

Lemma 3.2 Assume that S is a semigroup. Then Cay(S,ω) is a complete graph with
loops if and only if S is simple.

Let us turn our attention to universal Cayley graphs of semilattices.
The relation graph of the inverse relation ≥ of the natural order ≤ on a semilattice

is called a semilattice graph. It is easily seen that a graph Γ is a semilattice graph
if and only if the following conditions are satisfied: (1) for any a ∈ V (Γ ), (a, a) ∈
E(Γ ); (2) for any a, b ∈ V (Γ ), −→

a ∩ −→
b �= ∅ and it has an initial element, that is to

say, there exists c ∈ −→
a ∩ −→

b such that (c, d) ∈ E(Γ ) for all d ∈ −→
a ∩ −→

b .

Lemma 3.3 If S is a semilattice, then Cay(S,ω) is a semilattice graph. Actually,
Cay(S,ω) is exactly the relation graph of inverse relation ≥ of the natural order ≤
on S.

Proof If for a, b ∈ S, a ≥ b, then b ≤ a which implies that ab = b. Thus b ∈ J (a)

and J (b) ⊆ J (a). By Lemma 3.1, (a, b) ∈ E(Cay(S,ω)).
Conversely, if (a, b) ∈ E(Cay(S,ω)), then by Lemma 3.1 again, J (b) ⊆ J (a).

Thus we have b ∈ J (a) which implies that b = xay = xya for some x, y ∈ S1. Thus
b ≤ a, or equivalently, a ≥ b.

Now we have proved that a ≥ b if and only if (a, b) ∈ E(Cay(S,ω)). So,
Cay(S,ω) is exactly the relation graph of ≥ on S, and Cay(S,ω) is a semilattice
graph. �

Remark 3.4 The converse of Lemma 3.3 is not true. For example, we consider the
null semigroup with three elements 0, a, b. Evidently, J (0) = {0}, J (a) = {0, a} and
J (b) = {0, b}. So the Cay(S,ω) is a semilattice graph, but S is not a semilattice.
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Lemma 3.5 For a semilattice graph Γ , there is a semilattice S such that
Cay(S,ω) = Γ .

Proof Since Γ is a semilattice graph, then there is a semilattice (S,≤) such that Γ is
the relation graph of the inverse relation ≥ of the relation ≤. For any a, b ∈ S, define
multiplication by ab = a ∧ b, the greatest lower bound of a and b in (S,≤). Then S

becomes a semigroup which is a semilattice. By Lemma 3.3, Cay(S,ω) is exactly the
relation graph of ≥ on S, where ≥ is the inverse relation of the natural order ≤ on S.
That is, Cay(S,ω) = Γ , as required. �

To describe further the properties of universal Cayley graphs of semigroups, we
require some new concepts which we introduce as follows.

A partially ordered set (Y,≥) is called a strong partially ordered set if for any
α,β ∈ X, there is γ ∈ Y such that α ≥ γ and β ≥ γ . If (Y,≥) is a partially ordered
set, and Y is a semigroup such that for any α,β ∈ Y , α,β ≥ αβ , then we call the
semigroup Y a partially ordered semigroup, and we call the partially ordered set Y a
semigroup-partially-ordered set. If B is a partially ordered semigroup which is also a
band (i.e., an idempotent semigroup), then we call B a band-partially-ordered set or
a partially ordered band. If (Y,≥) is a partially ordered set, Y is a semigroup, T is an
ideal extension of Y and ρ ⊆ T 1 × T 1 such that for any α ∈ Y , ρ1(α) = α ↓ where
by α ↓ we denote the set {β|α ≥ β}, then we call the semigroup Y a ρ-semigroup,
and we call the partially ordered set Y a ρ-partially-ordered set. In particular, if
ρ = S1 × S1 (rep. S1 × {1}, {1} × S1), then a ρ-partially-ordered set or ρ-semigroup
is called a J -partially-ordered set or J -semigroup (rep. L -partially-ordered set
or L -semigroup, R-partially-ordered set or R-semigroup).

It is clear that a semilattice with its natural order is a J -partially-ordered set,
a J -partially-ordered set is a semigroup-partially-ordered set, and a semigroup-
partially-ordered set is a strong partially ordered set. The relation graph of a strong
partially ordered set (rep. semigroup-partially-ordered set, J -partially-ordered set,
etc.) is called a strong partially ordered graph (rep. semigroup-partially-ordered
graph, J -partially-ordered graph, etc.). From definitions, it is easy to deduce

Lemma 3.6 If Y is a J -semigroup, then Cay(Y,ω) is precisely the relation graph
of the partially ordered set Y . Conversely, if Y is a partially-ordered graph as the
universal Cayley graph of a semigroup, then Y is a J -partially-ordered graph.

Now we are ready to analyze the characteristics of the universal Cayley graph of
a semigroup.

According to Lemma 3.1, we know that (a, b) ∈ E(Cay(S,ω)) if and only if
J (a) ⊇ J (b), and that (a, b), (b, a) ∈ E(Cay(S,ω)) if and only if J (a) = J (b). De-
noted by Ja the J -class of a element a is S, as in [3]. Thus, (a, b) ∈ E(Cay(S,ω))

if and only if Jb ≤ Ja (see (2.1.3) of [3]), and (a, b), (b, a) ∈ E(Cay(S,ω)) if and
only if aJ b. Since J is an equivalence relation on S, S is decomposed into a union
of all distinguished J -classes each of which is in correspondence with a complete
subgraph with loops of Cay(S,ω). Suppose that Jb < Ja and that Γα,Γβ are the
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complete subgraphs with loops of Cay(S,ω), which correspond with Ja and Jb re-
spectively. Then for any a′ ∈ Γα and b′ ∈ Γβ , Jb′ = Jb < Ja = Ja′ . From this
and Lemma 3.1, it follows that (a′, b′) ∈ E(Cay(S,ω)) but (b′, a′)∈̄E(Cay(S,ω)).

Define a relation on V (Cay(S,ω)) by setting a ∼ b if and only if

(a, b) ∈ E(Cay(S,ω)) and (b, a) ∈ E(Cay(S,ω)).

It is clear that a ∼ b if and only if aJ b. Thus ∼ is an equivalence on V (Cay(S,ω)),
and for every a ∈ S, the ∼-class [a] of a is exactly Ja , the J -class of a. Now we
define the quotient graph Cay(S,ω)/ ∼ of Cay(S,ω) as the graph with vertex set
V (Cay(S,ω))/ ∼ and the edge set

{([a], [b])|(a, b) ∈ E(Cay(S,ω))}.
Immediately, we have that V (Cay(S,ω)/ ∼) = S/J , and that E(Cay(S,ω)/ ∼) =
{(Ja, Jb)|Jb ≤ Ja)}. It is trivial that for any a, b ∈ S, J (ab) ⊆ J (a) and J (ab) ⊆
J (b). Thus ([a], [ab]) ∈ E(Cay(S,ω)/ ∼) and ([b], [ab]) ∈ E(Cay(S,ω)/ ∼). It fol-
lows that Cay(S,ω)/ ∼ is a strong partially ordered graph.

If the quotient graph Γ/ ∼ of a graph Γ respective to ∼ is a strong partially
ordered graph (resp. semigroup-partially-ordered graph, J -partially-ordered graph,
semilattice graph, etc.), then we call Γ a strong partial order (resp. semigroup-partial
order, J -partial-order, semilattice, etc.) of complete graphs with loops. A strong
partial order Γ of complete graphs Γα with loops is called nonidempotent-trivial if Γα

is trivial (i.e., |V (Γα)| = 1) for every nonidempotent α of Y . In terms of these termi-
nologies and in light of the above arguments, we obtain the following lemma, which
characterizes the fundamental property of the universal Cayley graph of a semigroup.

Lemma 3.7 For any semigroup S, Cay(S,ω) is a strong partial order of complete
graphs with loops.

For further discussion, we need the following lemma.

Lemma 3.8 For any completely regular semigroup S, Cay(S,ω) is a semilattice of
complete graphs with loops.

Proof Assume that S is a completely regular semigroup S. By Lemma 3.7, Cay(S,ω)

is a strong partial order of complete graphs with loops. In light of [3], S is a semilat-
tice Y of completely simple semigroups Sα , that is S = ⋃

α∈Y Sα . Each Sα is actually
a J -class of S. The quotient graph Cay(S,ω)/ ∼ is exactly the relation graph of the
inverse relation ≥ of the semilattice (Y,≤), thus it is a semilattice graph. Therefore,
Cay(S,ω) is a semilattice of complete graphs with loops. �

Based on Lemma 3.8, the next theorem characterizes completely the universal
Cayley graphs of completely regular semigroups:

Theorem 3.9 The following statements are valid:
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(1) if S is a completely regular semigroup, then Cay(S,ω) is a semilattice of com-
plete graphs with loops;

(2) if Γ is a semilattice of complete graphs with loops, then there is a (commutative)
completely regular semigroup such that Cay(S,ω) = Γ .

Proof First, (1) follows from Lemma 3.8 directly.
Second, to prove (2), suppose that Γ is a semilattice Y of complete graphs Γα

with loops. It is obvious that for any α ∈ Y , there is an (Abelian) group Gα such that
|Gα| = |V (Γα)|. The identity element of Gα is denoted by 1α . Obviously, Gα is a
simple semigroup. So from Lemma 3.2, it follows that Cay(Gα,ω) = Γα .

For any α ∈ Y , define a mapping as follows: φα,α : Gα −→ Gα,a 	−→ a; and
for any α > β ∈ Y , define a mapping as follows: φα,β : Gα −→ Gβ,a 	−→ 1β . It is
verified that for α ≥ β ≥ γ , φα,β ◦φβ,γ = φα,γ . Consequently, ({Gα}α∈Y , {φα,β}α≥β)

is a strong semilattice of all groups Gα’s.
Let S = ⋃̇

α∈Y Gα , the disjoint union of Gα . Define a composition on S as fol-
lows: for a ∈ Gα,b ∈ Gβ , ab = (a)φα,αβ(b)φβ,αβ . Then S is a (commutative) Clif-
ford semigroup which is of course completely regular. For any a ∈ Gα , J (a) = Gα .
For any a ∈ Gα,b ∈ Gβ , J (a) and J (b) are comparable if and only if α and β are
comparable. Furthermore, J (a) ⊇ J (b) if and only if α ≥ β . Thus by Lemma 3.1,
Cay(S,ω) = Γ , as required. �

To generalize the result of Theorem 3.9, we need

Lemma 3.10 Let Γ be the relation graph of a partially ordered set (Y,≥). Then
there is a composition on Y such that Y becomes a semigroup and Cay(Y,ω) = Γ if
and only if (Y,≥) is a J -partially-ordered set.

Proof Necessity. If Y is a semigroup such that Cay(Y,ω) = Γ , then for any a ∈ Y ,
J (a) = ω1(a) = ω(a) = −→

a = a ↓. Thus (Y,≥) is a J -partially-ordered set.
Sufficiency. Assume that (Y,≥) is J -partially-ordered set. Then Y is a semigroup

and for any a ∈ Y , J (a) = a ↓= −→
a . Thus for any a, b ∈ Y , (a, b) ∈ E(Cay(Y,ω)) if

and only if J (a) ⊇ J (b), if and only if a ↓⊇ b ↓, if and only if a ≥ b. Then Cay(Y,ω)

is just the relation graph of ≥, that is, Cay(Y,ω) = Γ . �

Also, we need the following construction, which is similar to that of Clifford semi-
groups.

Definition 3.11 Let (Y,≥) be a semigroup-partially-ordered set, {Sα}α∈Y a class of
semigroups. If for any α ≥ β ∈ Y , there is a homomorphism φα,β : Sα −→ Sβ satis-
fying the following conditions:

(1) φα,α = iSα , the identity mapping;
(2) φα,β ◦ φβ,γ = φα,γ (with mapping notations on the right of the variables).

then ({Gα}α∈Y , {φα,β}α≥β) is called a semigroup-partially-ordered set Y of semi-
groups Sα’s.

It is routine to verify the next lemma.
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Lemma 3.12 With the same notations as in Definition 3.11, let S = ⋃̇
α∈Y Sα , the

disjoint union of Gα , and define a composition on S as follows: for a ∈ Sα, b ∈ Sβ ,
a ∗ b = (a)φα,αβ(b)φβ,αβ . Then (S,∗) is a semigroup.

Evidently, the composition ∗ in Definition 3.12 restricted to Sα coincides with the
original one of Sα if and only if α is an idempotent of the semigroup Y . If Y and Sα’s
are all commutative semigroups, then so is S.

Now we are ready to prove the following theorem, which generalizes Theorem 3.9,
describes the basic properties of the universal Cayley graph of an arbitrary semigroup
and characterizes the J -partial order of complete graphs with loops.

Theorem 3.13 The following statements hold:

(1) For any semigroup S, Cay(S,ω) is a strong partial order of complete graphs with
loops, and for each a ∈ S and all b ∈ J (a), (a, b) ∈ E(Cay(S,ω));

(2) Let Γ be a nonidempotent-trivial J -partial order Y of complete graphs with
loops. Then there is a semigroup S such that Cay(S,ω) = Γ . Moreover, if Y is a
commutative semigroup, then S can be chosen to be commutative.

Proof From Lemmas 3.7 and 3.1, (1) follows. To prove (2), let Γ be a J -partial
order (Y,≥) of complete graphs Γα’s with loops. For any α ∈ Y , it cleat that there
is a simple monoid (in fact, an Abelian group) Sα such that |Sα| = |V (Γα)|, and
by Lemma 3.2, Cay(Sα,ω) = Γα . In light of Lemma 3.12, we obtain a semigroup
(S = ⋃̇

α∈Y Sα,∗). If Y is a commutative semigroup, then S can be chosen to be
commutative since all Sα’s can be chosen to be commutative.

Denote by X the set of all idempotents of Y . For any a ∈ S, there exists a unique
α ∈ Y such that a ∈ Sα . If α ∈ X, then the composition ∗ restricted in Sα coin-
cides with the original one of Sα . Since Sα is a simple monoid, Sα ∗ a ∗ Sα = Sα

by Corollary 3.1.2 of [3]. If α ∈ Y \ X, then Γα is trivial by the assumption. Thus
Sα is trivial, in effect, Sα = {1α} = {a}. So whether α is in X or not, we have
Sα ⊆ J (a). Since Y is a J -partially-ordered set, J (α) = α ↓= {β|α ≥ β}. It fol-
lows that J (a) = ⋃

α≥β Sβ = {b|(a, b) ∈ E(Γ )} = −→
a . Thus we have Cay(S,ω) = Γ

as required. �
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