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Abstract Let E be a type 2 UMD Banach space, H a Hilbert space and let p ∈ [1,∞).
Consider the following stochastic delay equation in E:

⎧
⎪⎨

⎪⎩

dX(t) = AX(t) + CXt + B(X(t),Xt )dWH (t), t > 0;
X(0) = x0;
X0 = f0,

(SDE)

where A : D(A) ⊂ E → E is the generator of a C0-semigroup. The operator
C ∈ L(W 1,p(−1,0;E),E) is given by a Riemann-Stieltjes integral, and B : E ×
Lp(−1,0;E) → γ (H,E) is a Lipschitz function. Moreover WH is an H -cylindrical
Brownian motion adapted to (Ft )t≥0 and x0∈L2(F0,E), f0∈L2(F0,L

p(−1,0;E)).
We prove that a solution to (SDE) is equivalent to a solution to the corresponding
stochastic Cauchy problem, and use this to prove the existence, uniqueness and con-
tinuity of a solution to (SDE).

Keywords Stochastic partial differential equations with finite delay · Stochastic
Cauchy problem · UMD Banach spaces · Type 2 Banach spaces
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1 Introduction

Let E be a type 2 UMD Banach space and let H be a Hilbert space. Consider the
following stochastic delay equation in E:

⎧
⎪⎨

⎪⎩

dX(t) = AX(t) + CXt + B(X(t),Xt )dWH (t), t > 0;
X(0) = x0;
X0 = f0,

(SDE)

where for a strongly measurable function x : [−1,∞) → E and t ≥ 0 we define
xt : [−1,0] → E by

xt (s) := x(t + s), s ∈ [−1,0].
We assume that A : D(A) ⊂ E → E is closed, densely defined and linear, and
generates a C0-semigroup. Define E p(E) := E × Lp(−1,0;E). We assume that
C ∈ L(W 1,p(−1,0;E),E) for some p ∈ [1,∞), and that B : E p(E) → γ (H,E)

is a Lipschitz function. Here γ (H,E) is the space of γ -radonifying operators from
H to E, see Sect. 2 below. Moreover, WH is an H -cylindrical Brownian motion on
a given probability space (�, (Ft )t≥0,F ,P). The initial value [x0, f0] is assumed to
be in L2(F0, E p(E)).

Recall that UMD stands for unconditional martingale difference sequences; the
class of UMD Banach spaces includes Hilbert spaces and Lp spaces for p ∈ (1,∞).
The type of a Banach space is defined in terms of randomized sequences; see Sect. 4
below. We note that Hilbert spaces have type 2 and Lp-spaces with p ∈ [1,∞) have
type min{p,2}.

We follow the semigroup approach to the delay equation as given in the mono-
graph of Batkai and Piazzera [2]. This forces us to assume in addition that C is given
by the Riemann-Stieltjes integral

Cf :=
∫ 0

−1
f dη,

where η : [−1,0] → L(E) is of bounded variation. This defines an element of
L(W 1,p(−1,0;E),E) by the Sobolev embedding. (One may allow for more gen-
eral C ∈ L(W 1,p(−1,0;E),E); it suffices for C to satisfy the conditions of Theo-
rem 3.26 in [2]. The Riemann-Stieltjes integral is the most important example of such
a C.)

One can define a closed operator A on E p(E) by

D(A) = {[x,f ] ∈ D(A) × W 1,p(−1,0;E) : f (0) = x};

A =
[
A C

0 d
dt

]

. (1)

This operator generates a C0-semigroup (T (t))t≥0 on E p(E) (see [2], Theorem 3.29)
and the stochastic delay equation can be rewritten as a stochastic Cauchy problem in
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E p(E) given by

{
dY (t) = AY(t)dt + B(Y (t))dWH (t), t ≥ 0;
Y(0) = [ x0

f0

]
,

(SDCP)

where B(Y (t)) := [B(Y (t)),0]T .
The approach we take is to prove existence, uniqueness and continuity of a so-

lution to the stochastic Cauchy problem (SDCP) and then translate these results to
corresponding results for the stochastic delay equation (SDE). The monograph by Da
Prato and Zabczyk [8] gives an extensive treatment of the stochastic Cauchy problem
in Hilbert spaces. The stochastic Cauchy problem in Banach spaces has been consid-
ered in the work by Brzeźniak [4] and Van Neerven, Veraar and Weis [24], however,
they both consider the case that A generates an analytic semigroup. Nevertheless
their approach is a valuable starting point for studying (SDCP).

Following the approach of the above mentioned authors we consider the following
variation of constants formula:

Y(t) = T (t)Y (0) +
∫ t

0
T (t − s)B(Y (s))dWH (s), (2)

where the precise definition of the stochastic integral above and the relevant theory
on vector-valued stochastic integrals will be given in Sect. 2. A process satisfying (2)
is usually referred to as a mild solution. The existence of a mild solution to (SDCP)
is proved by a fixed-point argument (see Sect. 4, Theorem 4.4). Using the factoriza-
tion method we prove the continuity of a mild solution to (SDCP) (Theorem 4.5). In
Sect. 3 we give general conditions under which a mild solution is equivalent to what
we call a generalized strong solution of the stochastic Cauchy problem. Finally, The-
orem 4.8 states that solutions to (SDCP) and (SDE) are equivalent, which is proved by
using the concept of a generalized strong solution. Combining all these results we ob-
tain existence, uniqueness and continuity of a solution to (SDE), see Corollaries 4.10
and 4.11.

An obvious consequence of our results is that one has the existence of a solution
for initial value f0 ∈ L2(F0,L

1(−1,0;E)). The L1-norm is a natural choice in pop-
ulation dynamics, see [2, Example 3.16]. The equivalence of solutions to (SDE) and
to (SDCP) is useful because the latter can be studied in the framework of the stochas-
tic abstract Cauchy problem; thus answering questions concerning e.g. regularity and
invariant measures of the solutions to (SDE) (see Theorem 4.5 and Remark 4.14). We
also have that the solution to (SDCP) is a Markov process, whereas the solution to
(SDE) is not.

For the theory of stochastic delay equations in the case that E is finite-dimen-
sional we refer to the monographs by Mohammed [16] and Mao [15] and references
therein. In particular we wish to mention [5], where equivalence of solutions to the
stochastic delay equation and the corresponding abstract Cauchy problem has been
shown by Chojnowska-Michalik for the Hilbert space case, i.e. the case that p = 2
and E is finite-dimensional. Similar results concerning the abstract Cauchy problem
arising from delay equations with state space C([0,1]) with additive noise are given
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by Van Neerven and Riedle [19]. For a general class of spaces including the E p-
spaces the variation of constants formula for finite-dimensional delay equations with
additive noise and a bounded delay operator is discussed in Riedle [17]. The latter
articles both consider the stochastic convolution as a stochastic integral in a locally
convex space. So far there is no suitable interpretation for the stochastic integral of a
stochastic process in a locally convex space, hence this approach fails for equations
with multiplicative noise.

Stochastic delay equations where E is a Hilbert space and p = 2 have been con-
sidered by Taniguchi, Liu, and Truman [18], Liu [14] and Bierkens, Van Gaans and
Verduyn-Lunel [3]. Both [18] and [14] prove existence and uniqueness of solutions
to (SDE); in [18] it is assumed that A generates an analytic semigroup, whereas in
[14] the noise is assumed to be additive. In [3] the existence of an invariant measure
has been studied. Very recently, Crewe [7] has taken it upon himself to prove exis-
tence, uniqueness and regularity properties of (SDE) in UMD Banach spaces under
the assumption that A generates an analytic semigroup.

2 Preliminaries: stochastic integration in Banach spaces

In this section we briefly recall some theory for stochastic integration in Banach
spaces as introduced in [23]. Throughout this section let H, H denote Hilbert spaces
and let F denote a Banach space. By L0(�;F) we denote the complete metric space
of strongly measurable functions on � with values in F equipped with the topology
of convergence in probability.

To build stochastic integrals of L(H,F )-valued processes we start by considering
finite rank adapted step processes, i.e. processes of the form

�(t,ω) =
N∑

n=1

1(tn−1,tn](t)
M∑

m=1

1Anm(ω)

K∑

k=1

hk ⊗ xnmk,

where 0 = t0 < t1 < · · · < tN , Anm ∈ Ftn−1 , xnmk ∈ F and (hk)k≥1 is an orthonormal
system in H . If WH is an H -cylindrical Brownian motion adapted to (Ft )t≥0, then
the integral of � with respect to WH is given by:

∫ tN

0
�dWH =

N∑

n=1

M∑

m=1

1Anm

K∑

k=1

(WH (tn)hk − WH (tn−1)hk)xnmk.

To extend this to general processes, we need some extra terminology:

Definition 2.1 Let (�,F ,P ) be a probability space with filtration (Ft )t≥0. A
process � : [0,∞) × � → L(H,F ) is called H -strongly measurable if for every
h ∈ H the process �h is strongly measurable. The process is called adapted if �h

is adapted for each h ∈ H and we say that � is scalarly in Lq(�;L2(0,∞;H)) for
some q ∈ [0,∞] if for all x∗ ∈ F ∗ one has �∗x∗ ∈ Lq(�;L2(0,∞;H)).

The stochastic integral for general L(H,F )-valued processes is defined as fol-
lows:
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Definition 2.2 Let WH be an H -cylindrical Brownian motion. An H -strongly mea-
surable adapted process � : [0, t] × � → L(H,F ) is called stochastically integrable
with respect to WH if there exists a sequence of finite rank adapted step processes
�n : [0, t] × � → L(H,F ) such that:

(i) for all h ∈ H and x∗ ∈ F ∗ we have limn→∞〈�nh,x∗〉 = 〈�h,x∗〉 in measure on
[0, t] × �;

(ii) there exists a process X ∈ L0(�;C([0, t];F)) such that

lim
n→∞

∫ ·

0
�ndWH = X in probability.

The stochastic integral of � is then defined as
∫ ·

0
�dWH := X.

A characterization of the processes which are stochastically integrable is obtained
by means of the γ -radonifying norm. Let (γj )j≥1 be a sequence of independent stan-
dard Gaussian random variables. A bounded operator R from H to F is called γ -
summing if

‖R‖2
γ∞(H,F ) := sup

h

E

∥
∥
∥
∥
∥

k∑

j=1

γjRhj

∥
∥
∥
∥
∥

2

F

is finite, where the supremum is taken over all finite orthonormal systems h =
(hj )

k
j=1 in H. It can be shown that ‖ · ‖γ∞(H,F ) is indeed a norm under which the

space of γ -summing operators is complete. We will later take H = L2(0, t;H).
The space γ (H,F ) of γ -radonifying operators is defined to be the closure of the

finite rank operators under the norm ‖ · ‖γ∞ ; it is a closed subspace of γ∞(H,F ).
Thus if R ∈ γ (H,F ) then range(R) is separable and there exists a separable subspace
H0 ⊂ H such that R|H⊥

0
≡ 0.

A celebrated result of Kwapień and Hoffmann-Jørgensen [10, 12] implies that if
F does not contain a closed subspace isomorphic to c0 then γ (H,F ) = γ∞(H,F ).
This is the case for the spaces Lp(−1,0;F) if p ∈ [1,∞) and F is a UMD Banach
space.

Note also that every γ -radonifying operator is compact and that the class of γ -
radonifying operators is a left- and right ideal in the set of bounded operators:

‖SRT ‖γ (H1,F2) ≤ ‖S‖L(F1,F2)‖R‖γ (H2,F1)‖T ‖L(H1,H2),

where H1, H2 are Hilbert spaces and F1,F2 are Banach spaces.
In what follows we will use the notation A �p B to express the fact that there

exists a constant C > 0, depending on p, such that A ≤ CB . We write A �p B if
A �p B �p A.

Theorem 5.9 and Theorem 5.12 in [23] state the relation between the γ -radoni-
fying norm and the stochastically integrable processes (see also [6] for relation (3)).
We summarize these results as follows:
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Theorem 2.3 Let F be a UMD space. For an H -strongly measurable adapted process
� : [0, t] × � → L(H,F ) belonging to L0(�;L2(0, t;H)) scalarly, the following
are equivalent:

(i) � is stochastically integrable;
(ii) there exists a process η ∈ L0(�;C([0, t];F)) such that for all x∗ ∈ F ∗ we have

〈η,x∗〉 =
∫ ·

0
�∗(s)x∗dWH (s) a.s.;

(iii) � represents an element R� ∈ L0(�;γ (L2(0, t;H),F )) which is defined as
follows:

R�(ω)f :=
∫ t

0
�(s,ω)f (s) ds

(f ∈ L2(0, t;H)).

In this situation one has η = ∫ ·
0 �dWH and for all p ∈ (0,∞)

E sup
0≤s≤t

∥
∥
∥

∫ s

0
�(u)dWH (u)

∥
∥
∥

p

F
�p E‖R�‖p

γ (L2(0,t;H),F )
. (3)

Remark 2.4 If � is H -strongly measurable and R� ∈ γ (L2(0, t;H),F ) a.s. then
by [23, Lemma 2.5, 2.7 and Remark 2.8] one automatically obtains that R� ∈
L0(�;γ (L2(0, t;H);F)). Thus in this situation one may assume without loss of
generality that H and F are separable.

From now on we shall simply write ‖�‖γ (0,t;H,F) to denote the γ (L2(0, t;H),F )-
norm of the operator R� associated with �.

Remark 2.5 One checks that if (iii) in the theorem above holds, then � must be
scalarly in L0(�;L2(0, t;H)). Moreover, the implication (i)⇒(ii) holds for arbitrary
Banach spaces. This follows from the Burkholder-Davis-Gundy inequalities (see the
proof of Theorem 3.6 in [23]).

For 1 < p < ∞ one has that if F is a UMD space then so is E p(F ). However,
L1 is not a UMD space so neither is E 1(−1,0;F). Fortunately, L1 does have the
(weaker) decoupling property as introduced by Kwapień and Woyczyński in [13]. If
F has the decoupling property then E p(F ) is Banach space satisfying the decoupling
inequality (by a Fubini argument, see [6]). It was proved in [6] that for spaces with
the decoupling property implication (iii)⇒(i) remains valid. The two-sided estimate
as given in (3) need not hold in such spaces, but it is shown in [6] that in spaces with
the decoupling property the following one-sided estimate holds for all p ∈ (0,∞):

E sup
0≤s≤t

∥
∥
∥

∫ s

0
�(u)dWH (u)

∥
∥
∥

p

F
�p E ‖�‖p

γ (0,t;H,F)
. (4)

Note that in particular the integral process t �→ ∫ t

0 �(s)dWH (s) is continuous.
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For γ -radonifying operators with values in an Lp-space we have the following
isomorphism (see [24], Proposition 2.6):

Lemma 2.6 Let (S, S,μ) be a σ -finite measure space, let H be a Hilbert space and
let p ∈ [1,∞). Then the mapping U : Lp(S;γ (H,F )) → L(H,Lp(S;F)) defined
by

((Uf )h)(ξ) := f (ξ)h, ξ ∈ S,h ∈ H,

defines an isomorphism U of Lp(S;γ (H,F )) onto γ (H,Lp(S;F)).

The following stochastic Fubini theorem is based on [20, Theorem 3.5].

Lemma 2.7 Let (S, S,μ) be a σ -finite measure space and let F be a Banach space
satisfying the decoupling property. Let � : S × [0, t] × � → L(H,F ) and for s ∈ S

define �s : [0, t] × � → L(H,F ) by �s(u,ω) = �(s,u,ω). Assume the following is
satisfied:

(i) � is H -strongly measurable;
(ii) For all s ∈ S and all h ∈ H the section �sh is progressive;

(iii) For almost all u ∈ [0, t] and almost all ω ∈ � one has �(·, u,ω)h ∈ L1(S;F)

for all h ∈ H and the operator
∫

S
�dμ : H → F defined by

∫

S
�dμh :=∫

S
�hdμ is in L(H,F );

(iv) The process u �→ ∫

S
�(s,u)dμ(s) represents an element of γ (0, t;H,F) a.s.;

(v) The function s �→ �s represents an element of L1(S;γ (0, t;H,F)) a.s.

Then the function s �→ ∫ t

0 �(s,u)dWH (u) belongs to L1(S;F) a.s. and

∫

S

∫ t

0
�dWH dμ =

∫ t

0

∫

S

�dμdWH a.s. (5)

Proof Due to condition (v) and the Fubini isomorphism in Lemma 2.6 one has that �

represents an element of γ (0, t;H,L1(S;F)) a.s. As � is assumed to be H -strongly
measurable we may assume H and F to be separable by Remark 2.4. This implies
that �∗x∗ is strongly measurable for all x∗ ∈ F ∗ by Pettis’s measurability theorem,
and that �∗

s x
∗ is progressive for all x∗ ∈ F ∗, all s ∈ S and all h ∈ H .

Moreover, because � represents an element of γ (0, t;H,L1(S;F)) a.s., the
process 	 : [0, t] × � → L(H,L1(S;F)) defined by

	(u,ω)(s) := �(s,u,ω)

is stochastically integrable, and by arguments similar to those in the proof of [20,
Theorem 3.5] it follows that

∫ t

0
�(s,u)dWH (u) =

(∫ t

0
	(u)dWH (u)

)
(s) a.s. for almost all s ∈ S.

This proves that the integral with respect to μ on the left-hand side of (5) is well-
defined.
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Condition (iii) implies that the process in condition (iv) is well-defined, and this
condition in combination with Theorem 2.3 and Remark 2.5 implies that the stochas-
tic integral on the right-hand side of (5) is well-defined.

Fix x∗ ∈ F ∗, then �∗x∗ : S × [0, t] × � → H satisfies conditions (i)–(iii) of [20,
Theorem 3.5] and hence by that theorem we have:

∫

S

∫ t

0
�∗x∗dWH dμ =

∫ t

0

∫

S

�∗x∗dμdWH a.s.

Although the null-set on which the above fails may depend on x∗, this suffices due to
the fact that F ∗ is weak∗-separable. �

In the next section we will need the following lemma which shows that as in
the case of the Bochner integral, a closed operator can be taken out of a stochastic
integral.

Lemma 2.8 Let F be a Banach space satisfying the decoupling property and let
A : D(A) ⊂ F → F be a closed, densely defined operator. Suppose � : [0, t] × � →
L(H,F ) is an H -strongly measurable adapted process that represents an element of
γ (0, t;H,F) a.s. Suppose that one has �(s)h ∈ D(A) for all s ∈ (0, t) and all h ∈ H

a.s., where the null sets are independent of h. Suppose moreover that A� is again an
H -strongly measurable adapted process that represents an element of γ (0, t;H,F)

a.s. Then
∫ t

0 �dWH ∈ D(A) a.s. and

A

∫ t

0
�dWH =

∫ t

0
A�dWH a.s.

Proof Define random variables η := ∫ t

0 �dWH and ζ := ∫ t

0 A�dWH and observe
that by implication (iii) =⇒ (ii) in Theorem 2.3, which holds for Banach spaces with
decoupling property, one has that for all x∗ ∈ F ∗:

〈η,x∗〉 =
∫ t

0
�∗(s)x∗dWH (s) a.s.,

〈ζ, x∗〉 =
∫ t

0
(A�(s))∗x∗dWH (s) a.s.

In particular for x∗ ∈ D(A∗) one has (A�(s))∗x∗ = �∗(s)A∗x∗, and thus for such
x∗ one has:

〈(η, ζ ), (−Ax∗, x∗)〉 = 〈η,−A∗x∗〉 + 〈ζ, x∗〉 = 0 a.s. (6)

Note that the null-set on which the equation above fails to hold may depend
on x∗. However, as � and A� are assumed to be H -strongly measurable and
in γ (0, t;H,F) a.s. we may assume F to be separable by Remark 2.4. Hence
(F ×F)/G(A) is separable, where G(A) is the graph of A, and thus by Hahn-Banach
there exists a countable subset of ((F ×F)/G(A))∗ = G(A)⊥ that separates the points
of (F × F)/G(A).
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Moreover, one checks that if (x∗
1 , x∗

2 ) ∈ G(A)⊥ then x∗
2 ∈ D(A∗) and x∗

1 =
−A∗x∗

2 . Thus there exists a sequence (−Ax∗
n, x∗

n)n∈N that separates points in (F ×
F)/G(A). As (6) holds for arbitrary x∗ ∈ D(A∗), it holds simultaneously for all x∗

n ,
on a set of measure one. Therefore (η, ζ ) ∈ G(A), i.e. η ∈ D(A) and Aη = ζ a.s. �

3 The stochastic Cauchy problem

In the introduction we mentioned that the stochastic delay equation (SDE) can be
rewritten as a stochastic Cauchy problem. In this section we briefly consider the sto-
chastic Cauchy problem in general. Let F be a Banach space with the decoupling
property and H a Hilbert space, and let A : D(A) ⊂ F → F be the generator of a
C0-semigroup (T (t))t≥0 on F . Let WH be an H -cylindrical Brownian motion and
let B : F → L(H,F ) be continuous (where L(H,F ) is endowed with the strong
operator topology). We consider the following problem:

{
dY (t) = AY(t)dt + B(Y (t))dWH (t), t ≥ 0;
Y(0) = Y0.

(SCP)

Definition 3.1 An H -strongly measurable adapted process Y is called a generalized
strong solution to (SCP) if Y is a.s. locally Bochner integrable and for all t > 0:

(i)
∫ t

0 Y(s)ds ∈ D(A) a.s.,
(ii) B(Y ) is stochastically integrable on [0, t],
and

Y(t) − Y0 = A

∫ t

0
Y(s)ds +

∫ t

0
B(Y (s))dWH (s) a.s.

We use the term ‘generalized strong solution’ to distinguish this solution concept
from the conventional definition of a ‘strong solution’, which concerns a process
satisfying Y(t) ∈ D(A) a.s. for all t ≥ 0 (see [8]). This assumption is not suitable for
our situation, see Remark 4.12 below.

Theorem 3.2 Let Y be an F -valued H -strongly measurable adapted process. For
t ≥ 0 define

∫ t

0 T (s)B(Y (u))ds ∈ L(H,F ) by

(∫ t

0
T (s)B(Y (u))ds

)
h :=

∫ t

0
T (s)B(Y (u))hds.

Assume that for all t > 0 the following processes are in γ (0, t;H,F) a.s.:

(a) B(Y );
(b) u �→ T (t − u)B(Y (u));
(c) u �→ ∫ t−u

0 T (s)B(Y (u))ds;

and that for all t > 0
∫ t

0
‖T (s − ·)B(Y (·))‖γ (0,s,H ;F)ds < ∞. (7)
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Then Y is a generalized strong solution to (SCP) if and only if Y satisfies, for all
t ≥ 0,

Y(t) = T (t)Y0 +
∫ t

0
T (t − s)B(Y (s))dWH (s) a.s. (8)

Remark 3.3 (1) If Y is strongly measurable and adapted then the processes in (a), (b)
and (c) are H -strongly measurable and adapted.

(2) If B : F → γ (H,F ) then for all u ∈ [0, t] almost all paths s �→ T (s)B(Y (u))

are locally Bochner integrable in γ (H,F ) because B(Y (u)) is the limit of finite-rank
operators in γ (H,F ).

(3) If F is a UMD space and (T (s))0≤s≤t is γ -bounded for all t > 0 then (b) and
(c) follow from (a). For definition and details on γ -boundedness see [24], analytic
semigroups are a typical example of γ -bounded semigroups.

Proof of Theorem 3.2 Step 1. We apply Lemmas 2.7 and 2.8 to obtain the key equa-
tions for the proof of Theorem 3.2, equations (11) and (12) below. As every adapted
and measurable process with values in Polish space has a progressive version we may
assume that Y is progressive. Consider the following process:

� : [0, t] × [0, t] × � → L(H,F ); �(s,u,ω) := 1u≤s≤t T (t − s)B(Y (u)).

Because Y is strongly measurable, and because B : F → L(H,F ) is continuous with
respect to the strong operator topology and the semigroup T (s) is strongly contin-
uous it follows that � is H -strongly measurable. Similarly, it follows from the fact
that Y is progressive that for all s ∈ [0, t] and all h ∈ H the section �sh is pro-
gressive. Thus conditions (i) and (ii) of Lemma 2.7 are satisfied. One easily checks
that condition (iii) of Lemma 2.7 is satisfied by �. Condition (iv) in Lemma 2.7 fol-
lows from assumption (c). Condition (v) in Lemma 2.7 follows from the definition of
γ (0, t;H,F), assumption (a) and the exponential boundedness of the semigroup: let
(hk)

n
k=1 be an arbitrary orthonormal sequence in L2(0, t;H), then

∫ t

0

(

E

∥
∥
∥
∥
∥

n∑

k=1

γk

∫ t

0
T (t − s)B(Y (u))hk(u)1[0,s](u)du

∥
∥
∥
∥
∥

2

F

) 1
2

ds

≤
∫ t

0
‖T (t − s)‖L(F )

(

E

∥
∥
∥
∥
∥

n∑

k=1

γk

∫ t

0
B(Y (u))hk(u)1[0,s](u)du

∥
∥
∥
∥
∥

2

F

) 1
2

ds

≤ Mt

∫ t

0
‖B(Y )1[0,s]‖γ (0,t;H,F)ds ≤ tMt‖B(Y )‖γ (0,t;H,F) < ∞,

where Mt := sup0≤s≤t ‖T (s)‖L(F ) and we used the domination principle for
Gaussian random variables to see that ‖B(Y )1[0,s]‖γ (0,t;H,F) ≤ ‖B(Y )‖γ (0,t;H,F).

Thus � satisfies all the conditions of the stochastic Fubini Lemma and we obtain:
∫ t

0
T (t − s)

∫ s

0
B(Y (u))dWH (u)ds =

∫ t

0

∫ t

u

T (t − s)B(Y (u))dsdWH (u) a.s.

(9)
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Observe that for all h ∈ H one has
∫ t

u
T (t − s)B(Y (u))hds ∈ D(A). Hence by as-

sumptions (a) and (b) we can apply Lemma 2.8 to obtain that the stochastic integral
on the right-hand side of (9) above is in D(A) a.s., and we have:

A

∫ t

0

∫ t

u

T (t − s)B(Y (u))dsdWH (u) =
∫ t

0
A

∫ t−u

0
T (s)B(Y (u))dsdWH (u)

=
∫ t

0
(T (t − u) − I )B(Y (u))dWH (u) a.s.

(10)

Combining (9) and (10) we obtain:

A

∫ t

0
T (t − s)

∫ s

0
B(Y (u))dWH (u)ds =

∫ t

0
(T (t − u) − I )B(Y (u))dWH (u) a.s.

(11)

Similarly using assumption (7) one can prove that for 0 ≤ s ≤ t the stochastic
integrals in the equation below are well-defined and one has the following identity:

A

∫ t

0

∫ s

0
T (s − u)B(Y (u))dWH (u)ds =

∫ t

0
(T (t − u) − I )B(Y (u))dWH (u).

(12)

Step 2. Assume Y is a generalized strong solution to (SCP), we prove that (8)
holds. By (11) and by the definition of a generalized strong solution we have:

Y(t) − Y0 − A

∫ t

0
Y(s)ds

=
∫ t

0
B(Y (s))dWH (s)

=
∫ t

0
T (t − s)B(Y (s))dWH (s) − A

∫ t

0
T (t − s)

∫ s

0
B(Y (u))dWH (u)ds.

Let us consider the final term above without the A. By assumption and by Fubini’s
theorem one has:

∫ t

0
T (t − s)

∫ s

0
B(Y (u))dWH (u)ds

=
∫ t

0
T (t − s)

[

Y(s) − Y0 − A

∫ s

0
Y(u)du

]

ds

=
∫ t

0
T (t − s)Y (s)ds −

∫ t

0
T (t − s)Y0ds − A

∫ t

0

∫ t

u

T (t − s)Y (u)dsdu

= −
∫ t

0
T (t − s)Y0ds +

∫ t

0
Y(s)ds,
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which, when substituted to the earlier equation, gives:

Y(t) − Y0 − A

∫ t

0
Y(s)ds

=
∫ t

0
T (t − s)B(Y (s))dWH (s) + T (t)Y0 − Y0 − A

∫ t

0
Y(s)ds.

On the other hand, if Y satisfies (8), then
∫ t

0 Y(s)ds exists and is in D(A) a.s. by (12),
and therefore using this equation we obtain:

A

∫ t

0
Y(s)ds = A

∫ t

0
T (s)Y0ds + A

∫ t

0

∫ s

0
T (s − u)B(Y (u))dWH (u)ds

= T (t)Y0 − Y0 +
∫ t

0
[T (t − u) − 1]B(Y (u))dWH (u)

= Y(t) − Y0 −
∫ t

0
B(Y (u))dWH (u). �

Continuity of a process satisfying (8) can be proved by means of the factorization
method as introduced in Sect. 2 of [9]. We give the proof below; it is a straightforward
adaptation of the proof of Theorem 3.3 in [25].

Theorem 3.4 Let (T (t))t≥0 be a semigroup on a Banach space F with the decou-
pling property. Let Z : [0, t] × � → L(H,F ) be an H -strongly measurable adapted
process. Suppose that there exists α,p > 0, 1

p
< α < 1

2 and M > 0 such that

sup
0≤s≤t

‖u �→ (s − u)−αT (s − u)Z(u)‖Lp(�;γ (0,s,H ;F)) ≤ M. (13)

Then the process

s �→
∫ s

0
T (s − u)Z(u)dWH (u)

is well-defined and has a version with continuous paths. Moreover we have

E sup
0≤s≤t

∥
∥
∥

∫ s

0
T (s − u)Z(u)dWH (u)

∥
∥
∥

p

F
< ∞.

Before giving the proof of this theorem we mention the following corollary:

Corollary 3.5 Consider the stochastic Cauchy problem (SCP) set in a Banach space
F that satisfies the decoupling property. The process Y : [0, t] × � → F satisfying
the variation of constants formula (8) belongs to Lp(�;C([0, t];F)) if there exists
α,p > 0, 1

p
< α < 1

2 such that

sup
0≤s≤t

‖u �→ (s − u)−αT (s − u)Y (u)‖Lp(�;γ (0,s,H ;F)) < ∞.
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Proof of Theorem 3.4 By assumption (13) and Theorem 2.3 it follows that for all
s ∈ [0, t] we can define

	1(s) :=
∫ s

0
(s − u)−αT (s − u)Z(u)dWH (u).

By Proposition A.1 in [24] the process �1 has a version which is adapted and strongly
measurable. Moreover, by assumption and inequality (4) one has, for all s ∈ [0, t],

E ‖	1(s)‖p
F ≤ M, (14)

whence 	1 ∈ Lp(0, t;Lp(�;F)), and thus, by Fubini, 	1 ∈ Lp(�;Lp(0, t;F)). Let
�0 ⊂ � denote the set on which 	1 ∈ Lp(0, t;F); we have P(�0) = 1.

By the domination principle for Gaussian random variables (see also [21, Corol-
lary 4.4]) it follows that for all s ∈ [0, t] one has, almost surely,

‖u �→ T (s − u)Z(u,ω)‖γ (0,s,H ;F)

≤ ‖u �→ tα(s − u)−αT (s − u)Z(u,ω)‖γ (0,s,H ;F) a.s.

Thus by assumption we can define, for all s ∈ [0, t],

	2(s) :=
∫ s

0
T (s − u)Z(u)dWH (u),

which again has a version that is adapted and strongly measurable.
It is proved in [9] that one may define a bounded operator Rα : Lp(0, t;F) →

C([0, t];F) by setting

(Rαf )(s) :=
∫ s

0
(s − u)α−1T (s − u)f (u)du.

Thus it remains to show that for almost all ω ∈ �0 one has that for all s ∈ [0, t] that

	2(s) = sinπα

π
(Rα	1)(s), (15)

i.e. that for all x∗ ∈ F ∗ one has

〈	2(s), x
∗〉 = sinπα

π

∫ s

0
(s − u)α−1〈T (s − u)	1(u), x∗〉du a.s.

This follows from a Fubini argument, see [20, Theorem 3.5] and [9]. The conditions
necessary to apply the Fubini Theorem follow from the assumption (13). By (15) and
(14) one has

E sup
0≤s≤t

‖	2(s)‖p
F ≤ CE

∫ t

0
‖	1(s)‖p

F ds ≤ tCM,

where C is independent of Z. Thus the final estimate follows. �
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4 The stochastic delay equation

4.1 The variation of constants formula

We now turn to the stochastic delay equation (SDE) as presented in the introduction
and the related stochastic Cauchy problem (SDCP) on p. 391. Recall that we assumed
that (SDE) is set in a type 2 UMD Banach space E and that the related Cauchy prob-
lem is set in E p(E) = E × Lp(−1,0;E) for some p ∈ [1,∞). (The results in this
article are also valid if E is a type 2 Banach space with the decoupling property but
we do not know of any such spaces that are not in fact UMD spaces.)

Recall that a Banach space F is said to have type p ∈ [1,2] if there exists a con-
stant C ≥ 0 such that for all finite choices x1, . . . , xk ∈ F we have

(

E

∥
∥
∥
∥
∥

k∑

j=1

γjxj

∥
∥
∥
∥
∥

2

F

) 1
2

≤ C

(
k∑

j=1

‖xj‖p
F

) 1
p

,

where (γj )j≥1 is a sequence of independent standard Gaussians. Hilbert spaces have
type 2 and Lp-spaces with p ∈ [1,∞) have type min{p,2}. We refer to [1] for more
information, for our purposes we only need that in Banach spaces with type 2 the
following embedding holds, see p. 1460 in [23]:

L2(0, t;γ (H,F )) ↪→ γ (0, t;H,F). (16)

Let (T (t))t≥0 denote the semigroup generated by A, where A is the operator in
(SDCP) defined by (1) in the introduction. We define the projections π1 : E p(E) → E

and π2 : E p(E) → Lp(−1,0;E) as follows:

π1

[
x

f

]

= x; π2

[
x

f

]

= f.

The following property of (T (t))t≥0 is intuitively obvious and useful in the follow-
ing:

(

π2 T (t)

[
x

f

])

(u) = π1 T (t + u)

[
x

f

]

(17)

for f ∈ E p(E),u ∈ [−1,0], t > −u (for a proof see [2], Proposition 3.11).
The proof of the following lemma is straightforward and thus left to the reader:

Lemma 4.1 Let t > 0, p ∈ [1,∞) and x ∈ Lp(−1, t;E). Then the function y :
[0, t] → Lp(−1,0;E), y(s) := xs is (Bochner) integrable and

∫ t

0
y(s)ds ∈ W 1,p(−1,0;E);

(∫ t

0
y(s)ds

)

(u) =
∫ t

0
x(s + u)ds a.s.;

(∫ t

0
y(s)ds

)′
= y(t) − y(0) a.s.
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Generalized strong solutions to (SDCP) are equivalent to mild solutions:

Theorem 4.2 Let E be a type 2 UMD Banach space and let p ∈ [1,∞). Con-
sider (SDCP); i.e. let A defined by (1) be the generator of the C0-semigroup
(T (t))t≥0 on E p(E) = E × Lp(−1,0;E). Let B : E p(E) → γ (H, E p(E)) be given
by B([x,f ]T ) = [B([x,f ]),0]T , where B : E p(E) → γ (H,E) is Lipschitz continu-
ous. Finally, let WH be an H -cylindrical Brownian motion adapted to (Fs)s≥0.

Let Y : [0,∞)×� → E p(E) be a strongly measurable, adapted process satisfying

∫ t

0
‖Y(s)‖2

E p(E)ds < ∞ a.s. for all t > 0;

Then Y is a generalized strong solution to (SDCP) if and only if Y is a solution to:

Y(t) = T (t)

[
x0
f0

]

+
∫ t

0
T (t − s)B(Y (s))dWH (s) a.s. for all t ≥ 0. (18)

Proof We apply Theorem 3.2 to obtain the above assertion, for which we need to
check condition (7) and that the processes given by (a), (b) and (c) in that theorem
are elements of γ (0, t;H, E p(E)) a.s. for all t > 0. Let t > 0 be fixed.

Process (a) in Theorem 3.2. By the embedding (16) and the Lipschitz-continuity
of B we have:

‖s �→ B(Y (s))‖γ (0,t;H,E p(E)) = ‖s �→ B(Y (s))‖γ (0,t;H,E)

� ‖s �→ B(Y (s))‖L2(0,t;γ (H,E))

� t
1
2 ‖B(0)‖γ (H,E) + K‖Y‖L2(0,t;E p(E)),

where K is the Lipschitz-constant of B .
Process (b) in Theorem 3.2. By Lemma 2.6 and embedding (16) we have:

‖u �→ T (t − u)B(Y (u))‖γ (0,t;H,E p(E))

�p ‖u �→ π1 T (t − u)B(Y (u))‖γ (0,t;H,E)

+ ‖u �→ π2 T (t − u)B(Y (u))‖Lp(−1,0;γ (0,t;H,E))

≤ ‖u �→ π1 T (t − u)B(Y (u))‖L2(0,t;γ (H,E))

+ ‖u �→ π2 T (t − u)B(Y (u))‖Lp(−1,0;L2(0,t;γ (H,E))).

Set Mt := supu∈[0,t] ‖T (u)‖L(E p(E)). By the ideal property of the γ -radonifying op-
erators and the Lipschitz-continuity of B we have:

‖u �→ π1 T (t − u)B(Y (u))‖L2(0,t;γ (H,E))

≤ Mt

[
t

1
2 ‖B(0)‖γ (H,E) + K‖Y‖L2(0,t;E p(E))

]
,
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where K is the Lipschitz-constant of B , and, by equality (17),

‖u �→ π2 T (t − u)B(Y (u))‖Lp(−1,0;L2(0,t;γ (H,E)))

=
(∫ 0

−1
‖π1 T (t − u + s)B(Y (u))‖p

L2(0,t+s;γ (H,E))
ds

) 1
p

≤ Mt

[
t

1
2 ‖B(0)‖γ (H,E) + K‖Y‖L2(0,t;E p(E))

]
.

Process (c) in Theorem 3.2. Note that by Remark 3.3 we may interpret
∫ t−u

0
T (s)B(Y (u))ds

as a γ (H, E p(E))-valued Bochner integral. To prove that the process

u �→
∫ t−u

0
T (s)B(Y (u))ds ∈ γ (0, t;H, E p(E)) a.s.,

observe that by Lemma 2.6 and embedding (16) we have:

∥
∥
∥u �→

∫ t−u

0
T (s)B(Y (u))ds

∥
∥
∥

γ (0,t;H,E p(E))

�p

∥
∥
∥u �→ π1

∫ t−u

0
T (s)B(Y (u))ds

∥
∥
∥

L2(0,t;γ (H,E))

+
∥
∥
∥u �→ π2

∫ t−u

0
T (s)B(Y (u))ds

∥
∥
∥

Lp(−1,0;L2(0,t;γ (H,E)))
.

By Minkowski’s integral inequality, the ideal property of the γ -radonifying operators
and the Lipschitz-continuity of B we have:

∥
∥
∥u �→ π1

∫ t−u

0
T (s)B(Y (u))ds

∥
∥
∥

L2(0,t;γ (H,E))

≤ tMt

[
t

1
2 ‖B(0)‖γ (H,E) + K‖Y‖L2(0,t;E p(E))

]
,

and by (17) and Lemma 4.1 we have:

∥
∥
∥u �→ π2

∫ t−u

0
T (s)B(Y (u))ds

∥
∥
∥

Lp(−1,0;L2(0,t;γ (H,E)))

=
(∫ 0

−1

∥
∥
∥u �→ π1

∫ t−u+r

0
T (s + r)B(Y (u))ds

∥
∥
∥

p

L2(0,t;γ (H,E))
dr

) 1
p

≤ tMt

[
t

1
2 ‖B(0)‖γ (H,E) + K‖Y‖L2(0,t;E p(E))

]
.

Condition (7) in Theorem 3.2. From the estimates for process (c) above we obtain:
∫ t

0
‖u �→ T (s − u)B(Y (u))‖γ (0,s;H,E p(E))ds
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�p 2tMt

[
t

1
2 ‖B(0)‖γ (H,E) + K‖Y‖L2(0,t;E p(E))

]
.

Having checked condition (7) and that all processes are in γ (0, t;H,E) a.s. we may
apply Theorem 3.2 to obtain the desired result. �

Remark 4.3 Let p′ be such that 1
p

+ 1
p′ = 1. By testing the stochastic convolution

in (18) against elements of E∗ × Lp′
(−1,0;E∗), which is norming for E p(E), and

applying equality (17) one shows that

∫ t

0
π2 T (t − s)B(Y (s))dWH (s) = u �→

∫ t+u

0
π1 T (t − s + u)B(Y (s))dWH (s) a.s.

It thus follows from the variation of constants formula (2) that if Y is a generalized
strong solution to (SDCP) then π2Y(t)(u) = π1Y(t + u); in particular it follows that
π1Y ∈ L

p
loc(0,∞;E) a.s.

4.2 Existence and uniqueness of the solution to (SDCP)

We continue consider (SDCP) on p. 391. Recall that (Fs)s≥0 is a filtration to which
WH is adapted. For t > 0, q ∈ [1,∞) and r ∈ [1,∞] let Lr

F (0, t;Lq(�; E p(E))) be
the Banach space of (Fs)s≥0 adapted processes in Lr(0, t;Lq(�; E p(E))). In partic-
ular, L∞

F (0, t;Lq(�; E p(E))) is the Banach space of (Fs)s≥0 adapted processes Y

such that

‖Y‖L∞
F (0,t;Lq(�;E p(E))) = sup

0≤s≤t

(
E ‖Y(s)‖q

E p(E)

) 1
q < ∞.

Theorem 4.4 Let the assumptions of Theorem 4.2 hold. In addition, assume that
Y0 := [x0, f0]T ∈ Lq(F0, E p(E)) for some q ∈ [2,∞). Then for every t > 0 and
every r ∈ [2,∞] there exists a unique process Y ∈ Lr

F (0, t;Lq(�; E p(E))) for which
(18) holds. In particular, this process is in L∞

F (0, t;Lq(�; E p(E))).

Proof The final remark in the theorem follows from the existence of a solution
in L∞

F (0, t;Lq(�; E p(E))) and the uniqueness of the solution in Lr
F (0, t;Lq(�;

E p(E))).
Fix r ∈ (2,∞] and let t > 0. Define

L : Lr
F (0, t;Lq(�; E p(E))) → Lr

F (0, t;Lq(�; E p(E)))

as follows:

L(Z)(s) := T (s)Y0 +
∫ s

0
T (s − u)B(Z(u))dWH (u),

where s ∈ [0, t]. Set Mt := sup0≤u≤t ‖T (u)‖L(E p(E)). To prove that L(Z) is indeed
in Lr

F (0, t;Lq(�; E p(E))), first observe that by inequality (4) and the proof of The-
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orem 4.2, we have:

(E ‖L(Z)(s)‖q

E p(E)
)

1
q

�q (E‖T (s)Y0‖q

E p(E)
)

1
q + ‖u �→ T (s − u)B(Z(s))‖Lq(�,γ (0,s;H,E p(E)))

≤ Mt

[
(E‖Y0‖q

E p(E)
)

1
q +

(
E

[
s

1
2 ‖B(0)‖γ (H,E)

+ K
(∫ s

0
‖Z(u)‖2

E p(E)du
) 1

2
]q) 1

q
]
,

and thus from Minkowski’s integral inequality, the Hölder inequality and the fact that
r ≥ q ≥ 2 we obtain:

(E ‖L(Z)(s)‖q

E p(E)
)

1
q

≤ Mt

[
(E ‖Y0‖q

E p(E)
)

1
q + t

1
2 ‖B(0)‖γ (H,E) + K

(∫ s

0

[
E ‖Z(u)‖q

E p(E)

] 2
q du

) 1
2
]

≤ Mt

[
(E ‖Y0‖q

E p(E)
)

1
q + t

1
2 ‖B(0)‖γ (H,E) + Ks

1
2 − 1

r ‖Z‖Lr(0,t;Lq(�;E p(E)))

]
,

for every s ∈ [0, t], where K is the Lipschitz constant of B . (In the case r = ∞ we
interpret 1

r
= 0.) Taking r th powers in the above and integrating with respect to s

gives that L(Z) ∈ Lr
F (0, t;Lq(�; E p(E))). In the same way as the above estimate,

one has for Z1,Z2 ∈ Lr
F (0, t;Lq(�; E p(E))):

‖L(Z1) − L(Z2)‖Lr
F (0,t;Lq(�;E p(E))) �q Kt

1
2 Mt‖Z1 − Z2‖Lr

F (0,t;Lq(�;E p(E))),

so this is a strict contraction for t sufficiently small. Hence by the Banach fixed-
point theorem there exists a unique Y ∈ Lr

F (0, t;Lq(�; E p(E))) that satisfies (2).
By repeating this argument one obtains a solution for arbitrary t > 0. �

4.3 Continuity of the Solution to (SDCP)

Theorem 4.5 Let the assumptions of Theorem 4.2 hold. In addition, assume that
Y0 := [x0, f0]T ∈ Lq(F0, E p(E)) for some q ∈ (2,∞). Let t > 0. Then the so-
lution Y ∈ L∞

F (0, t;Lq(�; E p(E))) to (SDCP) as given by Theorem 4.4 satisfies
Y ∈ Lq(�;C([0, t]; E p(E))).

Proof The statement follows from Corollary 3.5 if it holds that for some α ∈ ( 1
q
, 1

2 )

we have:

sup
0≤s≤t

‖u �→ (s − u)−α T (s − u)B(Y (u))‖Lq(�,γ (0,s;E p(E))) < ∞. (19)

Fix α ∈ ( 1
q
, 1

2 ) and s ∈ [0, t]. By Lemma 2.6 and embedding (16) we have:

‖u �→ (s − u)−α T (s − u)B(Y (u))‖γ (0,s;E p(E))
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�p ‖u �→ π1(s − u)−α T (s − u)B(Y (u))‖L2(0,s;γ (H,E))

+ ‖u �→ (s − u)−απ2 T (s − u)B(Y (u))‖Lp(−1,0;L2(0,s;γ (H,E))), (20)

where Mt := supu∈[0,t] ‖T (u)‖L(E p(E)). Concerning the final term in (20); by (17)
and by the ideal property of the γ -radonifying operators we have:

‖u �→ (s − u)−απ2 T (s − u)B(Y (u))‖Lp(−1,0;L2(0,s;γ (H,E)))

=
[∫ 0

−1

(∫ s+r

0
(s − u)−2α‖π1 T (s − u + r)B(Y (u))‖2

γ (H,E)du
) p

2
dr

] 1
p

≤ Mt

[∫ 0

−1

(∫ s

0
(s − u)−2α‖B(Y (u))‖2

γ (H,E)du
) p

2
dr

] 1
p

= Mt

(∫ s

0
(s − u)−2α‖B(Y (u))‖2

γ (H,E)du
) 1

2
.

As q > 2, and using in addition the Lipschitz-continuity of B , it follows that:

‖u �→ (s − u)−απ2 T (s − u)B(Y (u))‖Lq(�;Lp(−1,0;L2(0,s;γ (H,E))))

≤ Mt

(∫ s

0
(s − u)−2α

[
E‖B(Y (u))‖q

γ (H,E)

] 2
q du

) 1
2

≤ (1 − 2α)−
1
2 Mts

1
2 −α

[‖B(0)‖γ (H,E) + K sup
u∈[0,s]

(E ‖Y(u)‖q

E p(E)
)

1
q
]
< ∞,

where K is the Lipschitz constant of B . The estimate for the first term on the right-
hand side of (20) is similar, but slightly simpler; one obtains:

‖u �→ (s − u)−απ1 T (s − u)B(Y (u))‖Lq(�;L2(0,s;γ (H,E)))

≤ (1 − 2α)−
1
2 Mts

1
2 −α

[‖B(0)‖γ (H,E) + K sup
u∈[0,s]

(E ‖Y(u)‖q

E p(E)
)

1
q
]
< ∞.

From the above estimates and the fact that s
1
2 −α ≤ t

1
2 −α because α < 1

2 , we conclude
that (19) holds. �

4.4 Equivalence of solutions to (SDE) and (SDCP)

Consider the problem (SDE) as given in the introduction with a fixed p ∈ [1,∞).

Definition 4.6 A process X : [−1,∞) × � → E is called a strong solution to (SDE)
if it is measurable and adapted to (Ft )t≥0 and for all t ≥ 0 one has:

(i)
∫ t

0 |X(s)|2∨pds < ∞ a.s.;
(ii) X|[−1,0) = f0,

(iii)
∫ t

0 X(s)ds ∈ D(A) for all t > 0 a.s.;
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and

X(t) − x0 = A

∫ t

0
X(s)ds + C

∫ t

0
Xsds +

∫ t

0
B(X(s),Xs)dWH (s) a.s. (21)

Remark 4.7 Note that by condition (i) and Lemma 4.1 one has
∫ t

0 Xsds ∈
W 1,p(−1,0;E) a.s. Moreover, for any t > 0; by Minkowski’s integral inequality

(∫ t

0
‖Xs‖2

Lp(E)ds
) 1

2 =
(∫ t

0

[∫ s

s−1
‖X(u)‖p

Edu
] 2

p
ds

) 1
2

≤ ‖f0‖Lp +
(∫ t

0

[∫ t

0
‖X(u)‖p∨2

E du
] p∧2

p∨2
ds

) 1
p∧2

= ‖f0‖Lp + t
1

p∧2

[∫ t

0
‖X(u)‖p∨2

E du
] 1

p∨2
< ∞ a.s.

Hence by condition (i) the stochastic integral on right hand side of (21) is well de-
fined.

Theorem 4.8

(i) Let X be a strong solution to (SDE), then the process Y defined by Y(t) :=
[X(t),Xt ]T is a generalized strong solution to (SDCP).

(ii) On the other hand, if Y is a generalized strong solution to (SDCP) then the
process defined by X|[−1,0) = f0, X(t) := π1(Y (t)) for t ≥ 0 is a strong solution
to (SDE).

Proof Part (i). In the proof of Theorem 4.2 we saw that s �→ B(Y (s)) is stochasti-
cally integrable if Y ∈ L2(0, t; E p(E)) a.s., which follows from Definition 4.6, by
Remark 4.7. From Lemma 4.1 above it follows that Y is integrable a.s.:

∫ t

0
Y(s)ds =

[∫ t

0 X(s)ds
∫ t

0 Xsds

]

a.s.

and that
∫ t

0 Xsds ∈ W 1,p(−1,0;E) a.s. and
∫ t

0 Xsds(0) = ∫ t

0 X(s)ds ∈ D(A). Hence
∫ t

0 Y(s)ds ∈ D(A) a.s. and again by Lemma 4.1 and by assumption we have, a.s.:

A
∫ t

0
Y(s)ds =

[
A

∫ t

0 X(s)ds + C
∫ t

0 Xsds

Xt − f0

]

=
[
X(t) − x0 − ∫ t

0 B(X(s))dWH (s)

Xt − f0

]

.

Combining this equality with the following:
∫ t

0
B(Y (s))dWH (s) =

∫ t

0

[
B(Y (s), Ys)

0

]

dWH (s) =
[∫ t

0 B(X(s),Xs)dWH (s)

0

]

we see Y satisfies Definition 3.1.
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Part (ii). Let Y be a generalized strong solution to (SDCP) and define X|[−1,0) =
f0, X(t) := π1(Y (t)) for t ≥ 0. Recall from Remark 4.3 that π2Y(t) = u �→ π1Y(s +
u) = Xs . Thus from the definitions of a generalized strong solution and from the
generator A we obtain

X(s) − x0 = A

∫ t

0
X(s)ds + C

∫ t

0
Xsds +

∫ t

0
B(X(s),Xs)dWH (s) a.s. �

Corollary 4.9 X is a strong solution to (SDE) if and only if X satisfies

X(t) = π1 T (t)

[
x0
f0

]

+
∫ t

0
π1 T (t − s)B(X(s))dWH (s) a.s.

From Theorem 4.4 and Theorem 4.8 we obtain:

Corollary 4.10 Consider (SDE). Assume x0 ∈ Lq(F0;E) and f0 ∈ Lq(F0;Lp)

for some p ∈ [1,∞), q ∈ [2,∞). Then (SDE) has a unique strong solution in
Lr(0, t;Lq(�;E)) for every r ∈ [2,∞] and every t > 0.

Combining Theorem 4.5 and Theorem 4.8 we obtain:

Corollary 4.11 Consider (SDE). Assume x0 ∈ Lq(F0;E) and f0 ∈ Lq(F0;Lp) for
some p ∈ [1,∞), q ∈ (2,∞). The strong solution X ∈ L∞(0, t;Lq(�;E)) to (SDE)
given by Corollary 4.10 satisfies X ∈ Lq(�;C([0, t];E)).

Remark 4.12 One cannot hope to obtain a strong solution to (SDCP) as defined in
the monograph of Da Prato and Zabczyk [8], i.e. a process Y such that Y(t) ∈ D(A)

a.s. for all t ≥ 0 and

Y(t) −
[

x0
f0

]

=
∫ t

0
AY(s)ds +

∫ t

0
B(Y (s))dWH (s) a.s. for all t ≥ 0,

unless the problem is deterministic, because of the following:

Proposition 4.13 Let E = R. If a generalized strong solution Y to (SDCP) satis-
fies Y(s) ∈ D(A) a.s. for all s ∈ [0, t] then T (s)[x0, f0]T ∈ Null(B) and Y(s) =
T (s)[x0, f0]T a.s. for almost all s ∈ [0, t], i.e. (SDCP) is deterministic.

Proof Define X := π1(Y ), then X is a generalized strong solution to (SDE) by
Theorem 4.8. If Y(s) ∈ D(A) for all s ∈ [0, t] a.s. then X ∈ W 1,p(0, t) a.s., i.e.
by Lemma 4.1 the process I (B(Y )) : [0, t] × � → R defined by I (B(Y ))(s) =∫ s

0 B(Y (u))dWH (u) is in W 1,p(0, t) a.s. Recall that the quadratic variation of
I (B(Y )) is given by

V 2
t (I (B(Y ))) =

∫ t

0
B2(Y (s))ds,
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and hence by Problem 1.5.11 in [11] the process I (B(Y )) can only be of bounded
variation (and hence only possibly in W 1,p(0, t)) on the set

{

ω ∈ � :
∫ t

0
B2(Y (s,ω))ds = 0

}

= {ω ∈ � : Y(s,ω) ∈ Null(B) for almost all s ∈ [0, t]} .

Thus if I (B2(Y (s))) is to be in W 1,p(0, t) a.s. then one has

Y(s) −
[

x0
f0

]

= A
∫ s

0
Y(u)du a.s. for all s ∈ [0, t],

which implies that Y(s) = T (s)[x0, f0]T and T (s)[x0, f0]T ∈ Null(B) a.s. for all
s ∈ [0, t]. �

Remark 4.14 We can use Theorem 4.8 to find a stationary solution to (SDE) with
additive noise, i.e. B(Y (s)) = b ∈ γ (H,E). It follows from Proposition 4.4 in [22]
that in this case (SDCP) admits invariant measure if and only if the function

t �→ T (t)[b,0]T

represents an element of γ (0,∞;H, E p(E)). By Lemma 2.6, embedding (16) and
equality (17) this is the case if π1 T (t)[b,0]T ∈ L2(0,∞;γ (H,E)), i.e. in particular
if (T (t))t≥0 is exponentially stable.
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