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Abstract The wealth of information that is available on the lattice of varieties of
bands, is used to illuminate the structure of the lattice of sub-pseudovarieties of DA,
a natural generalization of bands which plays an important role in language theory
and in logic. The main result describes a hierarchy of decidable sub-pseudovarieties
of DA in terms of iterated Mal’cev products with the pseudovarieties of definite and
reverse definite semigroups.

Keywords Lattice of pseudovarieties · Lattice of band varieties · Aperiodic
monoids · Monoids in DA · Malcev product

The complete elucidation of the structure of the lattice L B of band varieties is one
of the jewels of semigroup theory: this lattice turns out to be countable, with a sim-
ple structure (Birjukov [2], Fennemore [3, 4], Gerhard [6], see Sect. 2.2 below for
the main features of this structure). Moreover, each of its elements can be defined
by a small number of identities (at most 3), and we can efficiently solve the mem-
bership problem in each variety of bands, as well as the word problem in its free
object [7].

As bands are locally finite, the lattice L(B) of pseudovarieties of finite bands is
isomorphic to L B: a class of finite bands is a pseudovariety if and only if it is the
class of finite elements of a variety.
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In this paper, we discuss the structure of the lattice of sub-pseudovarieties of DA,
which is a natural generalization of the pseudovariety B of bands. Indeed, DA is the
maximum pseudovariety in which all regular elements are bands. This pseudovariety
actually has several other interesting algebraic characterizations, and also many other
characterizations in terms of formal languages and logic, see the survey by Tesson
and Thérien [17]. This only adds to the motivation to better understand the lattice
L(DA) of its sub-pseudovarieties.

In fact the authors’ initial motivation regards one of the logical characterizations
of DA by means of the 2-variable fragment of first-order theory of the linear order
[19], and the main result of this paper finds an application in a paper on the language-
theoretic characterizations of the quantifier alternation hierarchy within that logic
[11]. The characterization in [11] can be viewed as an algebraic counterpart of recent
results of Weis and Immerman’s description on the 2-variable fragment of first-order
logic [23], and the main result of the present paper gives a purely algebraic foundation
to the results in [23] and [11].

Trotter and Weil [20] initiated the study of the structure of L(DA) by considering
the map V �→ V∩B, from L(DA) to L(B). They showed that, for each pseudovariety
of bands Y, the inverse image of Y is an interval in L(DA), with minimum ele-
ment Y itself. They also showed how to effectively turn the identities defining Y as a
band pseudovariety, into pseudo-identities defining Y↑, the maximal element of that
interval. This result uncovers the interesting role played by the lattice of decidable
pseudovarieties given by the Y↑, Y ∈ L(B).

The missing element was an understanding of the fashion in which one can climb
in that lattice. The beautiful results on L(B) include a description of the different lev-
els of the hierarchy it forms, in terms of Mal’cev products with the pseudovarieties
RZ and LZ of right zero and left zero bands. In this paper, we elucidate the struc-
ture of the sublattice of L(DA) formed by the Y↑ (Y ∈ L(B)), in terms of Mal’cev
products as well, with definite and reverse definite semigroups. This helps establish
that the Y↑ form an infinite hierarchy, whose union is all of DA. It follows in par-
ticular that DA is the least pseudovariety containing semilattices, which is closed
under Mal’cev product with definite and reverse definite semigroups,—a fact with an
interesting interpretation in formal language theory.

Interestingly, this last result was recently proved, independently and by completely
different means (logical and language theoretical) by Lodaya, Pandya and Shah [12].

The paper is organized as follows: Sect. 1 summarizes what the reader needs to
know (for the purpose of this paper!) about pseudovarieties and Mal’cev products.
Section 2 discusses the known results on bands, DA and their respective lattice of
sub-pseudovarieties, and Sect. 3 gives our main result. Its consequences are discussed
in Sect. 4, in semigroup- and in language-theoretic terms.

1 Preliminaries on pseudovarieties

1.1 Pseudovarieties

Recall that a pseudovariety of semigroups (resp. monoids) is a class of finite semi-
groups (resp. monoids) closed under taking quotients, finite direct products and sub-
semigroups (resp. submonoids). If V is a pseudovariety of semigroups, we denote by
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VM the pseudovariety of monoids which consists of the monoids in V. The pseudova-
riety V is called monoidal if it is generated by the monoids it contains.

If W is a pseudovariety of monoids, we denote by LW the class of semigroups S

such that, for each idempotent e, the monoid eSe ∈ W: LW forms a pseudovariety,
the largest one such that (LW)M ⊆ W.

There is a vast literature on pseudovarieties, and on their definition by pseudo-
identities, see [1, 22]. For our purpose, it is enough to consider so-called ω-pseudo-
identities of the form u = v, where u and v are obtained from a countable alphabet
of symbols X using the operation of concatenation and formal (ω − 1)-power. For
instance, we will consider in the sequel identities like (xy)ωx(xy)ω = (xy)ω—where
zω stands for zω−1z. A finite semigroup S satisfies the ω-pseudo-identity u = v if,
for every map ϕ:X → S, we have ϕ̂(u) = ϕ̂(v), where ϕ̂ extends ϕ to a monoid
morphism such that ϕ̂(tω) is the (unique) idempotent power of ϕ̂(t) and ϕ̂(tω−1)

is the inverse of the element ϕ̂(tω)ϕ̂(t) in the minimal ideal of the subsemigroup
generated by ϕ̂(t), which is a group [1, 13]. By a common abuse of notation, we also
denote by sω (s ∈ S) the idempotent power of s, and by sω−1 the inverse of sωs in
the minimal ideal of the subsemigroup generated by s.

If (ui = vi)i∈I is a family of ω-pseudo-identities, we denote by [[(ui = vi)i∈I ]] the
class of finite semigroups which satisfy each ω-pseudo-identity ui = vi . Such a class
is always a pseudovariety.1

1.2 Mal’cev products

Let V be a pseudovariety of semigroups, W a pseudovariety of semigroups (resp.
monoids) and M a finite semigroup (resp. monoid). We say that M ∈ V m©W (the
Mal’cev product of V and W) if there exists a finite monoid T and onto mor-
phisms α:T → M and β:T → N such that N ∈ W and, for each idempotent e of
N , β−1(e) ∈ V (we say that β is a V-morphism). Then V m©W is a pseudovariety of
semigroups (resp. monoids), see [1, 13, 14].

In the sequel, we will consider Mal’cev products where the first component is one
of the pseudovarieties Nil, LZ, RZ, K, D and LI, which are defined as follows:

K = [[xωy = xω]], D = [[yxω = xω]],
Nil = K ∩ D = [[xωy = yxω = zω]],
LI = K ∨ D = [[xωyxω = xω]],
LZ = K ∩ [[x2 = x]] = [[xy = x, x2 = x]],
RZ = D ∩ [[x2 = x]] = [[yx = x, x2 = x]]

We will use the following fact, due to Krohn, Rhodes and Tilson [10], see [8, Corol-
lary 4.3]. The J -quasi-order on M is defined as follows: x ≤J y if and only if
x = uyv for some u,v ∈ M ∪ {1}. We write x <J y if x ≤J y but not y ≤J x;

1Not all pseudovarieties are obtained this way; for a more rigorous discussion of pseudidentities, and in
particular for a converse statement (involving a much larger set of pseudo-identities), see [1, 22].



246 M. Kufleitner, P. Weil

that is, if the 2-sided ideal of M generated by x is properly contained in the 2-sided
ideal generated by y.

Proposition 1.1 Let M be a finite semigroup and let ∼K and ∼D be the equivalence
relations ∼K and ∼D on M given, for s, t ∈ M , by

s ∼K t if and only if, for all e ∈ E(M), es, et <J e or es = et

s ∼D t if and only if, for all e ∈ E(M), se, te <J e or es = et.

These two relations are congruences and M/∼K (resp. M/∼D) is the least quotient
of M such that the projection is a K- (resp. a D-) morphism.

If V is a pseudovariety of semigroups (resp. monoids) and M is a finite semigroup
(resp. monoid), then M ∈ K m©V (resp. M ∈ D m©V) if and only if M/∼K∈ V (resp.
M/∼D∈ V).

In particular, if V is decidable, then so are K m©V and D m©V.

2 Preliminaries on bands and DA

2.1 Bands and DA

A band is a semigroup in which every element is idempotent. We denote by B the
pseudovariety of bands, that is, B = [[x2 = x]] = [[xω = x]].

Let DA = [[(xy)ωx(xy)ω = (xy)ω]]. The following result combines several known
results: we refer the reader to [17] for a synthesis on DA (see also [5, 16, 21]).

Proposition 2.1 If M is a finite semigroup, the following are equivalent.

(1) M ∈ DA,
(2) every regular element of M is idempotent,
(3) for every idempotent e ∈ E(M), we have eMee = e, where Me is the sub-

semigroup of M generated the elements x ≥J e,
(4) M ∈ LI m©SL, where SL = [[x2 = x, xy = yx]] is the pseudovariety of idempo-

tent and commutative semigroups.

Corollary 2.2 DA (resp. DAM) is the maximum pseudovariety of semigroups (resp.
monoids), in which every regular semigroup (resp. monoid) is a band.

Proof If M ∈ DA and a regular semigroup, then M is a band by Proposition 2.1(2).
Let now V be a pseudovariety of semigroups in which every regular element is a

band. Recall that an element s ∈ M is regular if there exists t ∈ M such that sts = s.
In particular, the regular elements of M are exactly the elements of the form (st)ωs

(s, t ∈ M). Therefore V satisfies the ω-pseudo-identity (xy)ωx(xy)ωx = (xy)ωx, and
by right multiplication by y(xy)ω−1, we find that V satisfies (xy)ωx(xy)ω = (xy)ω,
that is, V is contained in DA. �

Many more characterizations of DA can be found in the literature, see [17, 18].
In this paper, we will encounter one more, in Sect. 4.2 below, in relation with formal
language theory.
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2.2 The lattice L(B)

Since the free band over a finite alphabet is finite (see [9]), the lattice L(B) of sub-
pseudovarieties of B is isomorphic with the lattice L B of all band varieties. The
structure of that lattice was elucidated around 1970 (Birjukov [2], Fennemore [3, 4],
Gerhard [6]). The lattice L(B) turns out to be countable, with a simple structure. We
summarize below the main results concerning this lattice that will be useful to us.

We define the pseudovarieties BRm, BR′
m+1, BLm and BL′

m+1 (m ≥ 1) by letting2

BR1 = BL1 = SL,

BRm+1 = LZ m©BLm, BLm+1 = RZ m©BRm,

BR′
2 = [[xyz = xzy, x2 = x]], BL′

2 = [[xyz = yxz, x2 = x]],
BR′

m+2 = LZ m©BL′
m+1, BL′

m+2 = RZ m©BR′
m+1.

The following statement describes the structure of the lattice L(B), as discussed by
Gerhard and Petrich [7] (the last item is due to Wismath [24]).

Theorem 2.3

(1) The lattice L(B) consists of the trivial pseudovariety I, the pseudovariety B, the
BRm, BR′

m+1, BLm, BL′
m+1 (m ≥ 1) and their intersections. It is depicted in

Fig. 1 (omitting its top element B).
(2) The monoidal band pseudovarieties are the trivial pseudovariety I, B, and the

BRm, BLm and BRm ∩ BLm (m ≥ 1).
(3) For each m ≥ 1, we have BRm ∨ BLm = BRm+1 ∩ BLm+1.
(4) For each m ≥ 2, BR′

m+1 = LBRm ∩ B and BL′
m+1 = LBLm ∩ B.

(5) For each m ≥ 2, the m-generated free band lies in BR′
m ∨ BL′

m = BR′
m+1 ∩

BL′
m+1.

(6) L(BM) is isomorphic to the lattice of monoidal band pseudovarieties, with the
isomorphism given by V �→ VM (V ∈ L(B), monoidal).

Gerhard and Petrich [7] also give identities defining the band pseudovarieties. Let
x1, x2, . . . be a sequence of variables. If u is a word on that alphabet, we let ū be the
mirror image of u, that is, the word obtained from reading u from right to left. We let

G2 = x2x1, I2 = x2x1x2

and for m ≥ 2 Gm+1 = xm+1Gm, Im+1 = Gm+1xm+1Im.

Theorem 2.4 For each m ≥ 2, we have BRm = [[x2 = x,Gm = Im]] and BLm =
[[x2 = x,Gm = Im]].

Note that Theorems 2.3 and 2.4 allow the computation of defining identities for
each band pseudovariety, and indeed to show that each can be defined by a set of at
most three identities.

2In the traditional terminology of bands, the elements of BR′
2 and BL′

2 are called right normal and left
normal bands respectively.
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Fig. 1 The lattice L(B); solid
lines and bullets denote the
monoidal pseudovarieties

2.3 The map V �→ V ∩ B

The map V �→ V ∩ B from L(DA) to L(B) can be used to derive information on
L(DA) from the information available on L(B). The following statement was proved
by Trotter and Weil [20] (and, independently, by Reilly and Zhang [15] for the first
item).

Theorem 2.5

(1) The map V �→ V ∩ B from L(DA) to L(B) is a complete lattice morphism, and
the inverse image of a band pseudovariety Y is an interval of the form [Y,Y↑].

(2) For each Y ∈ L(B), we have Y↑ = (LZ m©Y)↑ ∩ (RZ m©Y)↑.
(3) The mapping V �→ V ∩ BM from L(DAM) to L(BM) shares the properties from

statement (1). Moreover, if Y is a monoidal band pseudovariety, then (YM)↑ =
(Y↑)M.

(4) If Y is a monoidal pseudovariety of bands, then (LYM ∩ B)↑ = L(Y↑
M) ∩ DA.

(5) For each m ≥ 2, BR↑
m = DA ∩ [[ϕ(Gm) = ϕ(Im)]] and BL↑

m = DA ∩ [[ϕ(Gm) =
ϕ(Im)]], where ϕ is given by

ϕ(x1) = (xω
1 xω

2 xω
1 )ω, ϕ(x2) = xω

2

and, for m ≥ 2, ϕ(xm+1) = (xω
m+1ϕ(GmGm)ωxω

m+1)
ω.
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(6) Let m ≥ 1. Every m-generated semigroup in DA is in SL↑ if m = 1, in BR↑
3 ∩

BL↑
3 if m = 2, and in L(BR↑

m ∩ BL↑
m) if m ≥ 3. In every case, such a semigroup

is in BR↑
m+1 ∩ BL↑

m+1

It is elementary to verify [20] that I↑ = Nil, LZ↑ = K, RZ↑ = D and SL↑ = J,
and that BR↑

2 and BL↑
2 are equal, respectively, to the pseudovarieties R and L, of

R-trivial and L-trivial semigroups.
Then Theorem 2.5 suffices to compute defining pseudo-identities for all the Y↑

(Y ∈ L(B))—and hence to prove the decidability of each of these pseudovarieties.

Example 2.6 Theorem 2.5 shows that (BR′
2 ∨BL′

2)
↑ = LJ∩DA since BR′

2 ∨BL′
2 =

BR′
3 ∩ BL′

3 = L(BR2 ∩ BL2) ∩ B = LSL ∩ B and SL↑ = J.

It also shows that BR′
2
↑ = R ∩ LJ, since BR′

2 = BR2 ∩ (BR′
2 ∨ BL′

2).

For R = BR↑
2 , Theorem 2.5 yields the pseudo-identity xω

2 (xω
1 xω

2 xω
1 )ω =

xω
2 (xω

1 xω
2 xω

1 )ωxω
2 . One can verify that, together with the pseudo-identity defining DA,

this is equivalent to the usual pseudo-identity describing R, namely (xy)ω = (xy)ωx.
The pseudo-identities for the BR↑

m, m ≥ 3, are naturally more complicated. For
instance, for m = 3, we get

ϕ(G3) = (
xω

3 ((xω
1 xω

2 xω
1 )ωxω

2 (xω
1 xω

2 xω
1 )ω)ωxω

3

)ω

ϕ(I3) = (
xω

3 ((xω
1 xω

2 xω
1 )ωxω

2 (xω
1 xω

2 xω
1 )ω)ωxω

3

)ω

(
xω

3 ((xω
1 xω

2 xω
1 )ωxω

2 (xω
1 xω

2 xω
1 )ω)ωxω

3

)ω
xω

2 (xω
1 xω

2 xω
1 )ωxω

2 .

3 Main result

Let m ≥ 1. It is not difficult to deduce from Theorems 2.3 and 2.5 that K m©BL↑
m ⊆

BR↑
m+1 (and it is done explicitly in the proof of Theorem 3.1 below). We prove that

the equality actually holds, showing that one can climb in the lattice L(DA) in a way
that directly mimics the steps in the countable lattice L(B).

Theorem 3.1 For each m ≥ 1, BR↑
m+1 = K m©BL↑

m and BL↑
m+1 = D m©BR↑

m

Proof If m = 1, the announced equalities are classical results, namely the facts that
R = K m©J and L = D m©J [13]. Let us now assume that m ≥ 2.

If M is a band in K m©BL↑
m, then Proposition 1.1 shows that M/∼K∈ BL↑

m. Since
M/∼K is a band as well, we have M/∼K∈ BLm. Moreover, each ∼K-class is a band,
and a semigroup in K. Therefore the projection M → M/∼K is an LZ-morphism, and
M ∈ LZ m©BLm = BRm+1. Thus (K m©BL↑

m)∩B ⊆ BRm+1, and hence K m©BL↑
m ⊆

BR↑
m+1.

Conversely, let us assume that M ∈ BR↑
m+1. By Theorem 2.5 (and with the no-

tation in that statement), M satisfies the pseudo-identity ϕ(Gm+1) = ϕ(Im+1). We
want to show that M/∼K∈ BL↑

m, that is, M/∼K satisfies ϕ(Gm) = ϕ(Im).
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It is easily verified by induction that the variables which occur in Gm are the
same that occur in Im, namely x1, . . . , xm. We need to verify that, for each morphism
ψ : {x1, . . . , xm}∗ → M , we have ψ(ϕ(Gm)) ∼K ψ(ϕ(Im)).

Let e ∈ M be an idempotent such that e ψ(ϕ(Gm)) J e. Then each ψ(xi) (1 ≤ i ≤
m) is in Me, the subsemigroup of M generated by the elements that are J -greater than
or equal to e.

Let us extend ψ to {x1, . . . , xm+1}∗ by letting ψ(xm+1) = e. Since ϕ(xm+1) =
(xω

m+1ϕ(GmGm)ωxω
m+1)

ω and eMee = e (Proposition 2.1), we find that
ψ(ϕ(xm+1)) = e. It follows:

eψ(ϕ(Gm)) = ψ(ϕ(xm+1Gm))

= ψ(ϕ(Gm+1))

= ψ(ϕ(Im+1)) since M satisfies ϕ(Gm+1) = ϕ(Im+1),

= ψ(ϕ(xm+1Gmxm+1Im))

= e ψ(ϕ(Gm)) e ψ(ϕ(Im)) since ψ(ϕ(xm+1)) = e,

= e ψ(ϕ(Im)) since eMee = e.

By symmetry, this shows that ψ(ϕ(Gm)) ∼K ψ(ϕ(Im)), which concludes the
proof. �

Consequences of this result are explored in the next section.

4 Applications

4.1 Semigroup-theoretic consequences

An immediate consequence of Theorem 3.1 we want to point out is that we now
have explicit pseudo-identities for a number of natural pseudovarieties. For instance,
no pseudo-identity was known in the literature for K m©L = BR↑

3 (even though [14]
gives general tools to compute this type of pseudo-identities). We get

K m©L = [[ϕ(G3) = ϕ(I3), (xy)ωx(xy)ω = (xy)ω]],
where ϕ(G3) and ϕ(I3) were computed in Example 2.6.

For convenience, in the rest of this paper, we write Rm and Lm for BR↑
m and

BL↑
m respectively. As indicated in Sect. 2.3, R1 = L1 is the pseudovariety of J -

trivial semigroups, R2 is the pseudovariety of R-trivial semigroups and L2 is the
pseudovariety of L-trivial semigroups.

We note the following elementary remark (where the case m = 2 is well-known,
see [13]).

Proposition 4.1 For each m ≥ 2, Rm ∩ Lm = Nil m©(Rm ∩ Lm).
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Proof Observe that the operation V �→ K m©V is idempotent. In particular,
K m©(Rm ∩ Lm) ⊆ K m©Rm = Rm. Similarly, D m©(Rm ∩ Lm) ⊆ Lm, and hence

(
K m©(Rm ∩ Lm)

) ∩ (
D m©(Rm ∩ Lm)

) ⊆ Rm ∩ Lm.

The result follows because (K m©V) ∩ (D m©V) = (K ∩ D) m©V [14, Corollary 3.2],
and K ∩ D = Nil. �

We now consider the sequences of pseudovarieties (Rm)m and (Lm)m. It is clear
from Theorem 3.1 that Rm ⊆ Rm+2, but we have a stronger result.

Proposition 4.2 For each m ≥ 1, we have Rm ⊆ Rm+1 and Lm ⊆ Lm+1. Moreover,
both these hierarchies are infinite.

Proof By Theorem 2.3, we have

Rm ∩ B = BRm ⊆ BRm ∨ BLm = BRm+1 ∩ BLm+1 ⊆ BRm+1

and hence Rm ⊆ BR↑
m+1 = Rm+1. The dual inclusion, namely Lm ⊆ Lm+1 is proved

in the same way.
The infinity of either hierarchy is verified by considering the sequences (Rm ∩

B)m = (BRm)m and (Lm ∩ B)m = (BLm)m: both these hierarchies are known to be
infinite. �

Remark 4.3 With the same reasoning, one can show that, if V is a pseudovariety con-
taining SL and not containing all of B, then the sequence of pseudovarieties starting at
V and obtained by applying alternately the operations X �→ K m©X and X �→ D m©X
are infinite.

Proposition 4.4 We have
⋃

m Rm = ⋃
Lm = DA. In particular, DA is the least

pseudovariety of semigroups containing SL and closed under the operations X �→
K m©X and X �→ D m©X. In addition, if M ∈ DA is m-generated (m ≥ 2), then M is
in the pseudovariety obtained from SL by m alternated applications of these opera-
tions, starting with a Mal’cev product with K (resp. D).

Proof It is immediate that each Rm and each Lm is contained in DA. Conversely,
let M ∈ DA and let m ≥ 1 be such that M is m-generated. By Theorem 2.5(6), M ∈
Rm+1 ∩ Lm+1. This concludes the proof. �

Remark 4.5 Thérien’s and Wilke’s work [19] implicitly contains a version of the
part of the statement concerning m-generated elements of DA, as their proof of the
equivalence between DA-recognizability and the 2-variable fragment of first-order
logic relies on an induction on the cardinality of the alphabet.

Remark 4.6 It is well known that DA = LI m©SL [1, 13, 16], and that LI = K ∨ D.
So Proposition 4.4 states the natural-sounding fact that the closure of SL under the
repeated application of the (idempotent) operations X �→ K m©X and X �→ D m©X is
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the same as its closure under the (idempotent as well) operation X �→ LI m©X. Yet
our proof is very specific for DA. It is an interesting question whether this result
is in fact more general. We suspect that if V ⊆ DS and V = K m©V = D m©V, then
V = LI m©V, but that DS is the maximal pseudovariety in which this holds.

4.2 Language-theoretic consequences

The language-theoretic corollary we want to record is a simple translation of Propo-
sition 4.4, but one worth noting.

Recall that if A is an alphabet (a finite, non-empty set), we denote by A∗ the
free monoid over A. A language L ⊆ A∗ is recognized by a monoid M if there ex-
ists a morphism ϕ:A∗ → M such that L = ϕ−1(ϕ(L)). A class of languages V is a
collection V = (V (A))A, indexed by all finite alphabets A, such that V (A) is a set
of languages in A∗. If V is a pseudovariety of monoids, we let V (A) be the set of
all languages of A∗ which are recognized by a monoid in V. The class V has im-
portant closure properties: each V (A) is closed under Boolean operations and under
taking residuals (if L ∈ V (A) and u ∈ A∗, then Lu−1 and u−1L are in V (A)); and if
ϕ:A∗ → B∗ is a morphism and L ∈ V (B), then ϕ−1(L) ∈ V (A). Classes of recogniz-
able languages with these properties are called varieties of languages, and Eilenberg’s
theorem (see [13]) states that the correspondence V �→ V , from pseudovarieties of
monoids to varieties of recognizable languages, is a lattice isomorphism. Moreover,
the decidability of membership in the pseudovariety V, implies the decidability of
the variety V : indeed, a language is in V if and only if its (effectively computable)
syntactic monoid is in V.

Let K,L be languages in A∗ and let a ∈ A. The product KaL is said to be de-
terministic if each word u ∈ KaL has a unique prefix in Ka. If k ≥ 1, L0, . . . ,Lk

are languages in A∗ and a1, . . . , ak ∈ A, the product L0a1L1 · · ·akLk is said to be
deterministic if the products Li−1ai(Li · · ·anLn) are deterministic, for 1 ≤ i ≤ n.

Dually, the product KaL is said to be co-deterministic if each word u ∈ KaL has
a unique suffix in aL. The product L0a1L1 · · ·akLk is said to be co-deterministic if
the products (L0a1 · · ·Li−1)aiLi are co-deterministic, for 1 ≤ i ≤ n.

Finally, the product L0a1L1 · · ·akLk is said to be unambiguous if every word u in
this language admits a unique decomposition in the form u = u0a1u1 · · ·anun with
each ui ∈ Li . It is easily verified that a deterministic or co-deterministic product is a
particular case of an unambiguous product.

These operations are extended to classes of languages: If V is a class of languages,
let V det (resp. V codet) denote the class of languages such that, for each alphabet A,
V det(A) (resp. V codet(A)) is the set of all Boolean combinations of languages of V (A)

and of deterministic (resp. co-deterministic) products of languages of V (A). Let also
V unamb be the class of languages such that, for each alphabet A, V unamb(A) is the set
of all finite unions of unambiguous products of languages of V (A).

Schützenberger [13, 16] gave algebraic characterizations of the closure opera-
tions V �−→ V det, V �−→ V codet and V �−→ V unamb for varieties of languages: he
showed that V det, V codet and V unamb are varieties of languages, and the corresponding
pseudovarieties are K m©V, D m©V and LI m©V, respectively.
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Proposition 4.4 now easily translates to the following statement.

Proposition 4.7 The least variety of languages containing the languages of the form
B∗ (B ⊆ A) and closed under deterministic and co-deterministic product, is the va-
riety corresponding to DAM.

More precisely, every unambiguous product of languages B∗
1 a1B

∗
2 · · ·akB

∗
k+1

where the Bi are subsets of alphabet A, can be expressed in terms of the B∗
i and

the ai using only Boolean operations and at most |A| alternated applications of the
deterministic and co-deterministic products—starting with a deterministic (resp. co-
deterministic) product.

Remark 4.8 As in Remark 4.6, it is interesting to note that, while this result (that un-
ambiguous products can be expressed by iterated deterministic and co-deterministic
products) sounds natural, its proof is very specific for SL and DA: does it hold in
general?
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