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Abstract We study a class of inverse monoids of the form M = Inv〈X | w = 1〉,
where the single relator w has a combinatorial property that we call sparse. For a
sparse word w, we prove that the word problem for M is decidable. We also show
that the set of words in (X ∪ X−1)∗ that represent the identity in M is a deterministic
context free language, and that the set of geodesics in the Schützenberger graph of
the identity of M is a regular language.

1 Introduction

In a seminal paper in 1974, Douglas Munn [8] introduced the notion of birooted edge
labeled trees (subsequently referred to as “Munn trees”) to solve the word problem for
the free inverse monoid. Munn’s work was extended by Stephen [9] who introduced
the notion of Schützenberger graphs to study presentations of inverse monoids. The
Schützenberger graphs of an inverse monoid presentation are the strongly connected
components of the Cayley graph of the presentation (or equivalently the restrictions
of the Cayley graph to the R-classes of the monoid). From a Schützenberger graph
for an inverse monoid presentation, the corresponding Schützenberger complex can
be defined as the 2-complex whose 1-skeleton is the Schützenberger graph and whose
faces have boundaries labeled by the sides of relations [11].
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One-relator inverse monoids of the form M = Inv〈X | w = 1〉, where w ∈ (X ∪
X−1)∗, have received some attention in the literature. Birget, Margolis, and Meakin
[1] proved that the word problem is solvable for inverse monoids of the form Inv〈X |
e = 1〉, where e is an idempotent in the free inverse monoid (i.e., reduces to 1 in the
free group). Stephen [10] observed that if the inverse monoid M = Inv〈X | w = 1〉 is
E-unitary, then the word problem for M is decidable if there is an algorithm to decide,
for any word u ∈ (X ∪ X−1)∗, whether or not u = 1 in M . Furthermore, Ivanov,
Margolis, and Meakin [3] proved that if w is cyclically reduced, then M = Inv〈X |
w = 1〉 is E-unitary. Thus the word problem for M = Inv〈X | w = 1〉, w cyclically
reduced, is reduced to understanding the Schützenberger graph of 1 in M . This has
been used to solve the word problem in several special cases (see for example the
paper by Margolis, Meakin and Šuniḱ [6]), but the problem remains open in general,
even if w is a cyclically reduced word.

The present paper is concerned with a class of one-relator inverse monoids of the
form M = Inv〈X | w = 1〉 where w ∈ (X ∪ X−1)∗ satisfies a combinatorial condi-
tion that enables us to understand the structure of the Schützenberger complex corre-
sponding to the identity of M .

Let w = a0 · · ·an−1 with each ai in X ∪ X−1. A cyclic subword q = w(i, j, ε)

of w is a nonempty word in (X ∪ X−1)∗ of length at most n − 1 of the form q =
aiai+1ai+2 · · ·aj−1 if ε = 1 and q = a−1

i−1a
−1
i−2a

−1
i−3 · · ·a−1

j if ε = −1, where i, j ∈
Z/nZ. The zone of the cyclic subword q = w(i, j, ε) is the subset of Z/nZ given by
zone(q) := {i, i + ε, i + 2ε, . . . , j}.

Definition 1.1 A word w ∈ (X ∪ X−1)∗ is sparse if w is freely reduced, l(w) > 1,
and whenever (qk, q

′
k) = (w(ik, jk, εk),w(i′k, j ′

k, ε
′
k)) are two pairs of cyclic sub-

words of w satisfying qk = q ′
k in (X ∪X−1)∗, zone(qk) �= zone(q ′

k) and 0 ∈ zone(q ′
k)

for k = 1,2, then

(sparse 1): zone(q1) ∩ zone(q ′
2) = ∅ = zone(q ′

1) ∩ zone(q2), and
(sparse 2): either zone(q1) ∩ zone(q2) = ∅ or both ε1ε

′
1 = ε2ε

′
2 and i1 − ε1ε

′
1i

′
1 ≡

i2 − ε2ε
′
2i

′
2 mod n.

For example one may see easily from this definition that the word w =
aba−1b−1cdc−1d−1 and all of its cyclic conjugates are sparse. However the word
w = aba−1b−1 is not sparse. To see this, note that if q1 = w(3,2,−1), q ′

1 =
w(0,1,1), q2 = w(1,2,1) and q ′

2 = w(0,3,−1), then q1 = q ′
1 = a in (X ∪ X−1)∗

(where X = {a, b, c, d}) and q2 = q ′
2 = b in (X∪X−1)∗, but 1 ∈ zone(q ′

1)∩zone(q2).
Roughly speaking, if w is a sparse word, then distinct occurrences of prefixes and

suffixes of w that occur elsewhere as cyclic subwords of w are separated by at least
one letter. This enables us to define a modified notion of a dual graph in the Schüt-
zenberger complex of 1 and to prove that this dual graph is a tree. Utilizing this we
show that the ball of any radius centered at 1 in the Schützenberger graph of 1 (with
respect to the path metric) is constructible from w, giving an effective algorithm for
the first theorem.

Theorem 1.2 If w ∈ (X ∪ X−1)∗ is sparse, then the word problem for M = Inv〈X |
w = 1〉 is solvable.
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Next we encode the information contained in the Schützenberger complex of 1 in
a deterministic pushdown automaton. We show that the faces of this Schützenberger
complex are of finitely many types and use this to analyze geodesics and cone types
in the Schützenberger graph of 1. Specifically, we can prove the following theorems.

Theorem 1.3 Let w be sparse and let M = Inv〈X | w = 1〉. Then:

(1) The language of words equal to 1 in M is deterministic context-free.
(2) The language of words related to 1 by Green’s relation R in M is deterministic

context-free.

Theorem 1.4 If w is a sparse word and M = Inv〈X | w = 1〉, then the language of
geodesics in the Schützenberger graph of 1 for M (i.e. the language of words labeling
geodesic paths starting at 1) is a regular language. That is, the Schützenberger graph
of 1 has finitely many cone types.

We note that our concept of a dual graph associated to the Schützenberger complex
of 1 can be applied to more general inverse monoids than those presented by sparse
words, and the techniques developed in this paper may be applied to solve the word
problem in other cases when this dual graph is a tree.

In Sect. 2 of the paper we study some properties of sparse words that enable us
to understand how n-gons whose boundaries are labeled by a sparse word may fold
together. Included in this are results (Lemmas 2.1 and 2.2) that w is cyclically re-
duced and primitive, and hence the inverse monoid M = Inv〈X | w = 1〉 is torsion-
free. Section 3 provides information about sequences of complexes that are used to
approximate the Schützenberger complex of 1 for an inverse monoid with sparse re-
lator. Section 4 introduces a notion of dual graph to the Schützenberger complex of
1 and this is exploited to provide a proof of Theorem 1.2. In Sect. 5 we introduce a
pushdown automaton that encodes the information contained in the Schützenberger
complex of 1 for a one-relator monoid corresponding to a sparse word, and we use
this to provide a proof of Theorem 1.3. We also make use of these results to construct
a finite state automaton that accepts the geodesics in the Schützenberger graph of 1
for our monoid, and thus provide a proof of Theorem 1.4.

We refer the reader to the book of Lawson [4] for much of the basic theory of in-
verse semigroups and to the paper by Stephen [9] for foundational ideas and notation
about presentations of inverse monoids.

2 Sparse words

Throughout this section, w = a0 · · ·an−1 will denote a fixed sparse word in (X ∪
X−1)∗ as defined in Definition 1.1 above.

Lemma 2.1 Every sparse word in (X ∪ X−1)∗ is cyclically reduced.

Proof Let w = a0 · · ·an−1 be a sparse word and suppose that a0 = a−1
n−1 = a. If

we let q1 = w(0,−1,−1), q ′
1 = w(0,1,1), q2 = w(0,−1,−1) and q ′

2 = w(0,1,1),
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then q1 = q ′
1 = q2 = q ′

2 = a, but 0 ∈ zone(q1) ∩ zone(q ′
2). This contradicts condition

(sparse 1) of Definition 1.1, so w must be cyclically reduced. �

Lemma 2.2 Every sparse word w ∈ (X ∪ X−1)∗ is primitive (i.e. w is not a proper
power in (X ∪ X−1)∗).

Proof Suppose that w = um in (X ∪ X−1)∗ for some m > 1. The word u has length
l(u) > 0 since l(w) > 0. If we let q1 = w(0, l(u),1) = q ′

2 and q ′
1 = w(−l(u),0,1) =

q2, we again immediately obtain a contradiction of (sparse 1). �

We will build 2-dimensional CW-complexes using information from the sparse
word w to define the attaching maps. To start, let P be a polygon with n sides; that is,
P is a CW -complex with n vertices, n edges and a single 2-cell. We designate a dis-
tinguished vertex σ(P ) of P . We orient the edges of P in a clockwise direction, and
label the edges of P so that w is read clockwise from σ(P ) to σ(P ) on the boundary
∂P . In addition, we label the vertices of P by the elements of Z/nZ, starting with 0
at σ(P ) and labeling in order also in the clockwise direction.

We will build finite 2-complexes iteratively from the n-gon P by successively
attaching new copies of P at existing vertices and applying certain edge foldings.
More specifically, given a finite collection of copies F1,F2, . . . ,Fm of P , first attach
the vertex σ(F2) to any vertex of F1 other than σ(F1). At the glued vertex v, if there
are two edges incident to v with either (1) the same orientation and edge label, or
(2) opposite orientation and edge labels that are inverse letters in X ∪ X−1, then we
identify those edges to a single 1-cell (and identify the vertices at the other ends to
a single vertex). Repeat this successively at all of the vertices of the complex until
no further edge identification according to rules (1)–(2) can be done, to obtain a new
CW-complex with two 2-cells. Denote the images of F1 and F2 in the quotient by
F̄1 and F̄2, respectively, and denote the image of σ(Fi) by σ̄ (Fi) for i = 1,2. At the
i-th step, we attach Fi to the complex F̄1 ∪ · · · ∪ F̄i−1 by identifying σ(Fi) with a
vertex v′ other than one of the σ̄ (Fj ) for j < i. We again glue edges according to
rules (1)–(2) (where the orientation and label of any edge incident to a face F̄j can
be considered to be that inherited from Fj ), to obtain a quotient CW-complex with
i faces. (Note that at each step, the complex is finite, so this process must stop.) We
say that the face Fi is folded onto F̄1 ∪ · · · ∪ F̄i−1 at v′, or that Fi is attached at v′.

This process is repeated to create a CW-complex with images F̄1, . . . , F̄m of the
original polygons as faces. For any index j and vertex v in F̄j , let i(Fj , v) denote the
index (or the set of indices) of the vertex (resp. vertices) in Fj that is sent to v via the
canonical map Fj → F̄1 ∪ · · · ∪ F̄m.

Note that as a consequence of Lemma 2.1, the two edges of a single face F inci-
dent to σ(F ) cannot be identified to a single edge in this procedure. The definition
of sparse also implies restrictions on edge gluings in complexes built from two or
three faces, as the following lemmas demonstrate. These lemmas will be applied to
determine the structure of the Schützenberger complex of 1 in Sect. 3.

Lemma 2.3 (The two-face lemma) Let F̄1 ∪ F̄2 be the CW-complex obtained by fold-
ing one face F2 onto another face F1 at a vertex v �= σ(F1). Then σ̄ (F1) /∈ F̄1 ∩ F̄2.
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Proof Suppose to the contrary that σ̄ (F1) ∈ F̄1 ∩ F̄2. Since F2 is folded onto the
single face F1, there must be a path in F̄1 ∩ F̄2 from σ̄ (F1) to v = σ̄ (F2). The preim-
age of this path under the map F1 → F̄1 ∪ F̄2 is a path in ∂F1 starting at the vertex
σ(F1), and so this path defines a cyclic subword q1 of w starting at vertex 0 when
w is viewed as a word labeling ∂F1. Similarly, this path defines a cyclic subword q ′

1
of w ending at vertex 0 when w is viewed as a word labeling ∂F2. The two pairs
of cyclic subwords (q1, q

′
1) and (q2, q

′
2) := (q ′

1, q1) satisfy 0 ∈ zone(q1) ∩ zone(q ′
2),

contradicting Definition 1.1. �

Lemma 2.4 (The three-face lemma) Suppose that the face F2 is folded onto the face
F1 with at least one pair of edges glued, and suppose that face F3 is folded onto a
vertex v ∈ F̄1 ∩ F̄2. Then no edges are glued via the folding process for F3; that is,
no edge of F3 can be glued to an edge of F̄1 ∪ F̄2, and no two edges of F̄1 ∪ F̄2 are
identified.

Proof By construction, F̄1 ∩ F̄2 is a connected non-empty edge path containing
σ̄ (F2) and the vertex v = σ̄ (F3), so there is a subpath p1 of F̄1 ∩ F̄2 with endpoints
σ̄ (F2) and σ̄ (F3). When viewed as a path in ∂F2, p1 determines a cyclic subword
q ′

1 = w(i′1, j ′
1, ε

′
1) such that zone(q ′

1) contains both 0 = i(F2, σ̄ (F2)) and the index
i(F2, v) of the vertex corresponding to v. When viewed as a path in ∂F1, p1 deter-
mines a cyclic subword q1 = w(i1, j1, ε1) such that zone(q1) contains i(F1, σ̄ (F2))

and i(F1, v).
Suppose that some edge of F3 is glued onto an edge of F̄1 ∪ F̄2.
Case 1. F3 folds onto an edge of F̄1. Then there is a non-trivial path p2 in F̄1 ∩ F̄3

with endpoint v = σ̄ (F3). When viewed as a path in ∂F3, p2 determines a cyclic sub-
word q ′

2 = w(i′2, j ′
2, ε

′
2) with 0 ∈ zone(q ′

2). When viewed as a path in ∂F1, p2 deter-
mines a cyclic word q2 = w(i2, j2, ε2) such that i(F1, v) ∈ zone(q2). Then i(F1, v) ∈
zone(q1) ∩ zone(q2) �= ∅. But i1 − ε1ε

′
1i

′
1 = i(F1, σ̄ (F2)) and i2 − ε2ε

′
2i

′
2 = i(F1, v),

so i1 −ε1ε
′
1i

′
1 �= i2 −ε2ε

′
2i

′
2, contradicting condition (sparse 2) of Definition 1.1. Thus

Case 1 cannot occur.
Case 2. F3 folds onto an edge of F̄2. Then there is a non-trivial path p3 in F̄2 ∩ F̄3

with endpoint v = σ̄ (F3). When viewed as a path in ∂F3, p3 determines a cyclic
subword q ′

3 = w(i′3, j ′
3, ε

′
3) with 0 ∈ zone(q ′

3). When viewed as a path in ∂F2, p3
determines a cyclic subword q3 = w(i3, j3, ε3) with i(F2, v) ∈ zone(q3). In this case,
i(F2, v) ∈ zone(q ′

1) ∩ zone(q3) �= ∅, so condition (sparse 1) fails, a contradiction.
Since no edge of F3 is folded onto any edge of F̄1 ∪ F̄2, no additional edge folding

can occur in F̄1 ∪ F̄2. �

3 The Schützenberger complex SC(1)

Throughout this section, w will denote a fixed sparse word and M = Inv〈X | w = 1〉.
We recall that the Schützenberger graph of 1 for this presentation is the restriction
of the Cayley graph of M to the R-class of 1. We denote this graph by S�(1): its
vertices are the elements s ∈ M such that ss−1 = 1 in M and there is an edge labeled
by x ∈ X ∪ X−1 from s to t if ss−1 = t t−1 = 1 and sx = t in M . We denote this
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edge by (s, x, t). Its inverse edge is the edge (t, x−1, s) in S�(1), where we interpret
(x−1)−1 = x, and this inverse pair is interpreted as a single topological edge. The
Schützenberger complex of 1 is the complex SC(1) obtained from S�(1) by adding
a face with boundary label w for each closed path labeled by w in S�(1). Stephen’s
iterative construction of a sequence of approximations of the Schützenberger graph
S�(1) may easily be adapted to yield a sequence of approximations of the Schützen-
berger complex SC(1). In particular, we may construct such a sequence of complexes
in the following way.

Start with a trivial complex S0 consisting of one vertex v0 and no edges or faces.
Take a copy F1 of the n-gon P , identify its start vertex σ(P ) with v0, and denote this
complex by S1. As in Sect. 2, we build a sequence of complexes S1 = F̄1, S2 = F̄1 ∪
F̄2, S3 = F̄1 ∪ F̄2 ∪ F̄3, . . . by successively folding faces Fi onto F̄1 ∪ F̄2 ∪ · · · ∪ F̄i−1
at vertices vi−1 ∈ Si−1 at which no face has yet been attached, in such a way that
d(v0, vi−1) is as small as possible, where d is the path metric in Si−1. To see that
such a vi−1 exists, note that if to the contrary no such vi−1 exists, then S�(1) = Si−1,
and so S�(1) is finite. Thus if x is the first letter in w, since xj labels a path in S�(1)

for each j > 0 we see that x is a torsion element in M (i.e. xj = xk for some k �= j ).
It follows that x must be a torsion element of G = Gp〈X|w = 1〉, but Lemma 2.2
shows that w is primitive and hence G is torsion-free.

A sequence of complexes obtained in the above manner is referred to as a Schüt-
zenberger approximation sequence. Since vi = σ̄ (Fi+1) is chosen so as to minimize
the distance from v0, we can see that every vertex of Si is the start vertex of some
face in Si+j for some j . From the results of Stephen [9], the corresponding sequence
of 1-skeleta of a Schützenberger approximation sequence has a direct limit that is
independent of the choice of the vertices vi , and this direct limit is S�(1). By an
argument similar to the formal category theoretical argument in [9] used to show this,
it follows that the Schützenberger approximation sequence of complexes has a direct
limit, and since the approximation sequence attaches faces whenever a closed path
labeled by w is attached, the limit of the Schützenberger approximation sequence is
the Schützenberger complex SC(1).

Theorem 3.1 Let S0, S1, S2, . . . be any Schützenberger approximation sequence for
SC(1) corresponding to a sparse word w. Then for all m ≥ 0 and for all distinct
faces F̄i , F̄j , F̄k, F̄l in Sm:

(1) The natural map Fi → F̄i is an embedding of Fi into Sm.
(2) If F̄i ∩ F̄j �= ∅, then F̄i ∩ F̄j is a connected path such that either σ̄ (Fi) ∈ F̄j with

σ̄ (Fj ) /∈ F̄i , or σ̄ (Fj ) ∈ F̄i with σ̄ (Fi) /∈ F̄j .
(3) If F̄i ∩ F̄j ∩ F̄k �= ∅, then there exists r ∈ {i, j, k} with F̄i ∩ F̄j ∩ F̄k = σ̄ (Fr) and

F̄r shares no other vertices with the other two faces.
(4) F̄i ∩ F̄j ∩ F̄k ∩ F̄l = ∅.
(5) The natural map from Sm−1 to Sm is an embedding.

Proof The proof proceeds by induction on m. The result is clear if m is 0 or 1.
Suppose that the result is true for approximation sequences of length m − 1. Let v be
the vertex of Sm−1 at which Fm is attached to Sm−1. From part (4) of the induction
assumption, at most three faces contain the point v.
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Case 1. Suppose that v is on the boundary of three faces in Sm−1. Then by part (3)
of the induction assumption, one of these faces F̄ satisfies v = σ̄ (F ). But then the
algorithm for constructing the Schützenberger approximation sequence would not
attach Fm at v also. Hence Case 1 cannot occur.

Case 2. Suppose that v is on the boundary of exactly two faces F̄i and F̄j in Si−1.
By part (2) of the induction hypothesis, we may assume without loss of generality
that σ̄ (Fi) ∈ F̄j and again by this induction hypothesis there is a non-trivial path in
F̄i ∩ F̄j from v to σ̄ (Fi). Then by the three-face lemma, no edge of Fm is glued onto
any edge of F̄i ∪ F̄j at v, and hence no edge of Fm is glued onto any edge of Sm−1 at
all. Hence properties (1)–(5) of the statement of the theorem hold for Sm.

Case 3. Suppose that v is on the boundary of exactly one face F̄i of Sm−1. Consider
the complex Ŝm obtained from Sm−1 and Fm by just gluing edges of Fm and F̄i

starting from v, and no additional edge foldings. Then F̄i ∩ F̂m is a connected path.
If there exists a vertex v′ in F̄i ∩ F̂m with v′ �= v = σ̂ (Fm), the two-face lemma says
that v′ �= σ̄ (Fi) also. In this case the three-face lemma then says that any other face
incident to v′ cannot contain an edge that can be identified with an edge of either F̄i

or F̂m in a further folding process. Thus in any case no further edges can be glued, and
Ŝm = Sm. Hence properties (1)–(5) of the statement of the theorem hold for Sm. �

Using part (5) of Theorem 3.1, we may consider S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ · · ·, and so
SC(1) = ⋃∞

m=0 Sm for any Schützenberger approximation sequence constructed as
above. Hence the corollary below follows immediately.

Corollary 3.2 Properties (1)–(5) of Theorem 3.1 hold with Sm replaced by SC(1).

For every Schützenberger approximation sequence, there is a unique vertex v0
distinguished by the property that v0 is incident to only one face in the direct limit,
and so there is a unique distinguished vertex in SC(1) that is incident to only one
face. From the viewpoint of the labeling on the vertices of SC(1) by the elements of
the R-class of 1, this distinguished vertex is the vertex labeled by 1; throughout the
rest of the paper we will refer to this as the (distinguished) vertex 1̂ and to the face
incident to this vertex as the (distinguished) face F1. For any face A of SC(1), the
sparse property of w implies that there is only one vertex in ∂A that can be the start
vertex σ̄ (A), and only one possible orientation starting from this vertex in which the
word w labels the boundary path.

For distinct faces A and B of SC(1), we define A < B if the face A must be
attached before the face B in every Schützenberger approximation sequence. The
corresponding partial ordering ≤ is the face ordering on the faces of SC(1). This
partial ordering is well-founded, and the face F1 is a minimal element.

Corollary 3.3 (Order Corollary) Let v be a vertex of SC(1), and let B be the face
with v = σ̄ (B).

(1) If v is incident to exactly one other face A, then A < B .
(2) If v is incident to two other faces A and C with σ̄ (C) ∈ A, then A < B and

A < C.
(3) If v is incident to a face A and A ∩ B contains at least one edge, then A < B .
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Proof Let S0, S1, S2, . . . be any Schützenberger approximation sequence for SC(1)

corresponding to a sparse word w, with face Fi attached to Si−1 in the construction
of Si , as above. In the case that v is incident only to faces A = F̄j and B = F̄k , the
vertex v must exist in a complex Si before B can be attached, and so we must have
j < k.

In the case that v is also incident to a third face C = F̄l with σ̄ (C) ∈ A, then
Theorem 3.1 says that A ∩ C contains a connected non-empty edge path from σ̄ (C)

to v, and so at the vertex σ̄ (C), an edge of C is glued to an edge of A. Again applying
Theorem 3.1, no face other than A and C can be incident to σ̄ (C) in any of the Si .
Then as in the paragraph above, we have j < l. Now the face Fk can be attached at
v only after v has been built in the sequence, and hence only after at least one of Fj ,
Fl has been attached. Therefore j < k also.

Finally, if v ∈ A and A ∩ B contains at least one edge, then Theorem 3.1 says that
no other face can be incident to v, and so the first paragraph of this proof applies. �

4 The dual graph and the word problem

In this section we define a (non-standard) notion of a dual graph of the Schützenber-
ger complex SC(1) for an inverse monoid M = Inv〈X | w = 1〉 corresponding to a
sparse word w. We show that this dual graph is a tree and we make use of this to
provide a solution to the word problem for M .

Definition 4.1 Let w be a sparse word. The dual graph of SC(1) for M = Inv〈X |
w = 1〉 is the directed graph D with

• vertex set V (D) given by the set of faces of SC(1), and
• set E(D) of directed edges (A,B) (oriented from A to B) for A,B ∈ V (D) satis-

fying A < B in the face ordering and A ∩ B �= ∅ in SC(1).

We note that this graph is not the usual dual graph associated to a 2-complex. As
a consequence of Corollaries 3.2 and 3.3, the definition of E(D) can also be phrased
purely in terms of the combinatorial properties of SC(1), namely (A,B) is a directed
edge in D if and only if A �= B , σ̄ (B) ∈ A, and whenever C ∈ V (D) with σ̄ (B) ∈ C

then σ̄ (C) ∈ A.

Proposition 4.2 Let w be a sparse word and M = Inv〈X | w = 1〉. Then the dual
graph D of SC(1) is a directed, rooted, infinite tree (with root F1) in which each
vertex has at most l(w) − 1 children.

Proof Recall that the face F1 is the only face of SC(1) containing the unique ver-
tex 1̂ of SC(1) incident to only one face. Let A �= F1 be any other face in SC(1),
and assume by Noetherian induction that for all faces B < A with respect to the
well-founded face ordering, there is a directed edge path in D from F1 to B . From
Corollary 3.2, there are either 2 or 3 faces incident to the vertex σ̄ (A) in SC(1),
including A.
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If there is only one other face B incident to σ̄ (A), then the Order Corollary 3.3
implies that B < A. Since σ̄ (B) ∈ A ∩ B �= ∅, then (B,A) ∈ E(D). The concatena-
tion of the path from F1 to B from the induction assumption with this edge (B,A)

then gives a directed edge path in D from F1 to A.
On the other hand, if there are two other faces B and C incident to σ̄ (A), then

Corollary 3.2 says that one of these faces contains the σ̄ vertex of the other; without
loss of generality, suppose that σ̄ (C) ∈ B . Then the Order Corollary 3.3 again implies
that B < A, and as in the previous paragraph we obtain a directed path in D from F1
to A. Hence D is connected.

Suppose that D is not a tree. Then there is an undirected circuit in this graph.
Suppose that two edges of this circuit have a common target; that is, suppose

that there are edges (A,C), (B,C) ∈ E(D) with A �= B . Using the combinatorial
description of E(D) above, then σ̄ (C) ∈ A ∩ B . From Corollary 3.2 part (2), A ∩ B

is a path containing one of σ̄ (A) or σ̄ (B) but not both. This contradicts the existence
of one of the edges (A,C), (B,C), and so the circuit must also be a directed circuit.

The consecutive vertices A1,A2, . . . ,Ak following the directed edges in this cir-
cuit must then satisfy A1 < A2 < · · ·Ak < A1 in the face ordering, which is again a
contradiction. Hence D is a directed tree with root F1.

Since each face A of SC(1) has l(w) − 1 vertices other than its vertex σ̄ (A),
there are at most l(w) − 1 directed edges in D with source vertex A. In addition, as
remarked in Sect. 3, the fact that w is primitive guarantees SC(1) is infinite. Therefore
the tree D must be infinite. �

This proof shows that for every face B of SC(1) with B �= F1, the parent of B in D
is the (unique) face (i.e., 2-cell) A in SC(1) incident to B satisfying the property that
A must be constructed before B in every Schützenberger approximation sequence.
However, the only cell of SC(1) that is both incident to F1 and that is constructed
before F1 in each Schützenberger approximation sequence is the vertex (or 0-cell) 1̂.
To simplify notation later, it will be helpful to consider a slight modification of D,
which we call the augmented dual graph D′, to include this 0-cell as the parent of
F1. Then the vertices of D′ are V (D′) := V (D) ∪ {1̂} (so that in addition to vertices
labeled by the faces of SC(1), the graph D′ also has a vertex labeled by the distin-
guished vertex 1̂ of SC(1)), and the edges of D′ are the edges of D together with one
additional directed edge from 1̂ to F1. Then D′ is a directed rooted tree with root 1̂.
Using standard language for rooted trees, if (A,B) is a directed edge in D′, we call
A the parent of B , and B a child of A.

Define a map � : V (SC(1)) → V (D′) as follows. For each vertex v �= 1̂ in SC(1),
let �(v) be the unique face of SC(1) that is closest to 1̂ in D′ from among the faces
that are incident to v, and let �(1̂) := 1̂.

For any face A of SC(1), we have �(σ̄ (A)) is the parent of A in D′, and so the (0-
or 2-cell) �(σ̄ (A)) must be attached before A in any Schützenberger approximation.
By Corollaries 3.2 and 3.3, in the folding process edges of A can be glued to edges of
�(σ̄ (A)) but not to edges of any other face, and the glued edges are a connected path.
Recall that the boundary ∂A of the polygon A is labeled by the word w, when read
starting at the vertex σ̄ (A) in the clockwise direction. The connected set γ (A) :=
A∩�(σ̄ (A)), then, can be regarded as the image of a (“gluing”) path (which we will
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also call γ (A)) going clockwise around ∂A from the (“reverse”) vertex ρ(A) to the
(“forward”) vertex φ(A). Note that if no edges are glued when A is attached to its
parent �(σ̄ (A)), then ρ(A) = σ̄ (A) = φ(A) and γ (A) is this point.

Lemma 4.3 Let A be a face of the complex SC(1) for a sparse word w.

(1) The lengths l(w) and l(γ (A)) satisfy l(γ (A)) ≤ 1
2 l(w) − 1.

(2) If v is a vertex in γ (A), then �(v) = �(σ̄ (A)).
(3) If v is a vertex in ∂A \ γ (A), then �(v) = A.

Proof The path γ (A) determines a cyclic subword q ′ of w when viewed as a path
in ∂A, and determines a cyclic subword q when viewed as a path in the parent
∂�(σ̄ (A)) of A. Since w is sparse we must have zone(q ′) ∩ zone(q) = ∅, (take
(q1, q

′
1) = (q2, q

′
2) = (q, q ′) in Definition 1.1), and so there must also be at least

one edge between the endpoints of these cyclic subwords on both sides. Then
l(w) ≥ 2l(γ (A)) + 2.

If v is a vertex in γ (A), then by definition of the set γ , the point v is also in the
parent �(σ̄ (A)) of A. If there is a third face C incident to v in SC(1), then by the
order corollary and the definition of D′, the face �(σ̄ (A)) is also the parent of C.

For a vertex v in ∂A \ γ (A), then v = σ̄ (B) for another face B of SC(1). If there
is no other face incident to v, the order corollary then says A < B . If C is a third
face incident to v, then Corollary 3.2 says that A and C must share at least one edge
in common, and either σ̄ (A) is in C, or σ̄ (C) is in A. The order corollary then says
that the face among A and C that contains the start vertex σ̄ of the other is the parent
of the pair. However, since v /∈ �(σ̄ (A)), we must have C �= �(σ̄ (A)), and hence
σ̄ (C) ∈ A and A is the parent of both B and C. �

Let the 1-skeleton S�(1) of the 2-complex SC(1) have the path metric dS� , and
let the augmented dual graph have path metric dD′ . The following theorem shows
that geodesics in these metric spaces are closely related.

Theorem 4.4 (Geodesic Theorem) Let p be any geodesic edge path in S�(1) from 1̂
to a vertex v. Let 1̂ = v0, v1, . . . , vk = v be the successive vertices in the path p. Then
for all i, either �(vi) = �(vi+1) or �(vi) is the parent of �(vi+1) in D′, and the
edge from vi to vi+1 is contained in �(vi+1). Moreover, whenever �(vi) < �(vi+1),
then vi ∈ {ρ(�(vi+1)),φ(�(vi+1))}.

Proof We prove this by induction on the length k of the edge path p. If k = 0, then
p is the constant path at 1̂ = v0 in SC(1), and there is no other vertex. If k = 1, then
p follows a single edge from 1̂ = v0 to v1 = v �= 1̂. Then �(1̂) = 1̂ is the parent of
�(v) = F1 in D′.

Suppose that k ≥ 2. The prefix p̂ of the path p with vertices 1̂ = v0, . . . , vk−1

is also a geodesic path in S�(1), and so by induction the conditions on the pair
�(vi),�(vi+1) in the theorem hold for all 0 ≤ i ≤ k − 2. The vertex vk−1 �= 1̂,
so Corollary 3.2 says that there are at least two faces A := �(vk−1) and B with
σ̄ (B) = vk−1, and possibly a third face C, incident to the vertex vk−1 in SC(1). By
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definition of � and the Order Corollary, we have A < B and A < C. The edge e from
vk−1 to vk must be contained in at least one of these faces.

Case 1. Suppose that e is contained in A. If vk is in the path γ (A), then Lemma 4.3
implies that �(vk) = �(σ̄ (A)), but since �(vk−1) = A, the same lemma implies that
vk−1 is not in γ (A). Then vk must be one of the endpoints ρ(A), φ(A) of γ (A).
By induction, the prefix p̂ of p traversed one of these endpoints, and since p is a
geodesic, p̂ must have traversed the endpoint v′ of γ (A) that is not vk . However, this
implies that a suffix of p is a geodesic in ∂A from v′ to vk that goes through the point
vk−1 not in γ (A). This contradicts Lemma 4.3(1), and so vk must lie in ∂A \ γ (A).
Lemma 4.3(3) then implies that �(vk) = A = �(vk−1).

Case 2. Suppose that e is contained in a child E of the face A, but not in A. That
is, E is one of the faces B or C. In this case, since vk is not contained in A ∩ E, then
Lemma 4.3(3) says that �(vk) is E, and we have that �(vk−1) = A is the parent of
�(vk). Moreover, since vk−1 is in A ∩ E but vk is not, we have that vk−1 is one of
the endpoints ρ(E), φ(E) of γ (E). �

We can now provide a solution to the word problem for M .

Proof of Theorem 1.2 As noted in Sect. 1, it is sufficient to prove that there is an
algorithm that takes a word u ∈ (X ∪ X−1)∗ as input, and outputs whether or not
u = 1 in M . Since u = 1 in M if and only if u labels an edge path in SC(1) from 1̂ to
1̂, it suffices to show that there is an effective algorithm to build the ball of radius L

centered at 1̂ in the graph S�(1), where L := l(u) is the length of the word u. Given a
sparse word w, the following procedure is such an algorithm for M = Inv〈X | w = 1〉.

The procedure to build the ball of radius L follows the construction of a Schüt-
zenberger approximation sequence as described at the beginning of Sect. 3, attaching
a face at each step to a vertex whose distance to v0 in the approximation complex
is minimal from among all of those vertices that are not yet the start vertex (σ̄ ) of a
face. Continue this process until the next vertex at which a face is to be attached has
distance L · l(w) + 1 from v0; the process stops at this time, with an approximation
complex S. Since each complex in this sequence is locally finite, this process is finite.

From Theorem 3.1 we know that S embeds in SC(1), with the vertex v0 of S

mapped to 1̂ in SC(1) by this embedding. From the Geodesic Theorem 4.4, we have
that for each vertex v in S, any geodesic path p in S�(1) from 1̂ to v is contained
in the union of the the faces labeling vertices of the geodesic in D′ from 1̂ to �(v).
By the definition of the map �, these are the faces that must be constructed in the
Schützenberger approximation sequence before the face �(v), together with the face
�(v) which must be the first face containing v constructed in the sequence. Hence
all of these faces are also in S, as is the path p. Therefore the path metric dS in the
1-skeleton of S is the same as the metric inherited from S�(1).

We claim that every face A of SC(1) with dD′(1̂,A) ≤ L lies in S. Suppose not;
that is, suppose that there is a face A with dD′(1̂,A) ≤ L and A not in S, and choose A

to have minimal distance from 1̂ in D′ among all such faces. Then the parent �(σ̄ (A))

of A satisfies dD′(1̂,�(σ̄ (A))) = dD′(1̂,A) − 1, and so �(σ̄ (A)) lies in S. But the
previous paragraph and Theorem 4.4 imply that dS(v0, σ̄ (A)) = dS�(1̂, σ̄ (A)) < L ·
l(w), and so S has a vertex σ̄ (A) within L · l(w) of v0 that is not the start vertex of
an attached face, giving the required contradiction.
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Now let v′ be any vertex of SC(1) with dS�(1̂, v′) ≤ L. It follows from Theo-
rem 4.4 that dD′(1̂,�(v′)) ≤ L also, and so by the previous paragraph, �(v′), and
hence also v′, is in the finite complex S. Hence the ball of radius L centered at v0 in
the 1-skeleton of the constructed complex S is also the ball of radius L centered at 1̂
in S�(1). �

5 Languages of geodesics and words representing 1

Throughout this section, w is a sparse word and M = Inv〈X | w = 1〉.

Lemma 5.1 Let A be any face in SC(1). There is a unique point xA in the edges and
vertices of ∂A \ γ (A) satisfying dS�(1̂, xA) ≥ dS�(1̂, y) for all y ∈ ∂A.

Proof First consider points in the set T := ∂A \ γ (A). Lemma 4.3(3) and the Geo-
desic Theorem 4.4 imply that every geodesic in S�(1) from 1̂ to a point y in T must
traverse one of the points ρ(A),φ(A), and then follow edges in the path along T

to y. Let a := dS�(1̂, ρ(A)), b := dS�(1̂, φ(A)), and q := l(γ (A)), and let p be the
length of the edge path in T from ρ(A) to φ(A). The triangle inequality together with
Lemma 4.3(1) give |b − a| ≤ q ≤ p − 1. Let x be the point in T that is a distance
1
2 (p + (b − a)) < p from the endpoint ρ(A); then x is a distance 1

2 (p + (a − b))

along T from φ(A). Now the concatenation of a geodesic path from 1̂ to ρ(A) fol-
lowed by the geodesic in T from ρ(A) to x has the same length 1

2 (p + a + b) as the

concatenation of a geodesic path from 1̂ to φ(A) followed by the geodesic in T from
φ(A) to x, and hence both of these concatenations are geodesics from 1̂ to x. Since
every other point y ∈ T lies on one of these paths, we have dS�(1̂, x) > dS�(1̂, y).

Similarly, let z be the point in γ (A) that is a distance 1
2 (q + (b − a)) ≤ q from

the endpoint ρ(A) along the path γ (A), and hence a distance 1
2 (q + (a − b)) from

φ(A). The concatenation of a geodesic from 1̂ to either ρ(A) or φ(A), together with
the geodesic along γ (A) from that endpoint to z, has length 1

2 (q + a + b), and every
point y in γ (A) lies on one of these path concatenations. Hence for all y ∈ γ (A), we
also have dS�(1̂, x) = 1

2 (p + a + b) > 1
2 (q + a + b) ≥ dS�(1̂, y). �

For a face A of SC(1), choose Z representatives î(A,ρ(A)) and î(A,φ(A))

of the indices i(A,ρ(A)) and i(A,φ(A)) from Z/nZ, respectively, satisfying 0 ≤
î(A,φ(A)) < î(A,ρ(A)) ≤ n = l(w). Similarly, for each vertex v in ∂A \ γ (A), let
î(A, v) be the representative of i(A, v) satisfying 0 < î(A,v) < n; from Lemma 4.3,
then î(A,φ(A)) < î(A,v) < î(A,ρ(A)).

Define kA := 1
2 [î(A,ρ(A)) + î(A,φ(A)) + (dS�(1̂, ρ(A)) − dS�(1̂, φ(A)))]. The

proof above shows that the point xA lies at the index i(A,xA) = kA (mod nZ) if xA

is a vertex, otherwise xA lies at the midpoint of the edge whose endpoints y, z are the
vertices with indices i(A,y), i(A, z) given by kA ± 1

2 (mod nZ).

Definition 5.2 For any face A of SC(1), we define the associated triple f t (A) :=
(î(A,ρ(A)), î(A,φ(A)), kA). We define an equivalence relation ∼f t on the set of
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faces of SC(1) by A ∼f t B if and only f t (A) = f t (B); in this case, we say that
A and B have the same face type. Define an equivalence relation ∼f t on the set
of vertices of SC(1) by u ∼f t v if and only if �(u) ∼f t �(v) and i(�(u),u) =
i(�(v), v). Denote the equivalence class of a vertex or face z relative to ∼f t by [z].

Note that there are only finitely many face types, and similarly only finitely many
∼f t -equivalence classes of vertices. For example, it follows from this definition that
if A is a face of SC(1) that is attached to �(σ̄ (A)) at the vertex σ̄ (A) in such a
way that no edge of A folds onto �(σ̄ (A)), then the triple for A is (n,0, n/2), and
A ∼f t F1. Since 1̂ = �(1̂) is not a face of SC(1), the ∼f t -equivalence class [1̂]
contains only the vertex 1̂.

The following lemma will be used in the constructions of a push-down automaton
and a finite state automaton later in this section.

Lemma 5.3 In SC(1) let u1, u2 be vertices with u1 ∼f t u2 and let e1 = (u1, x, v1)

be an edge.

(i) If �(u1) = �(v1), then there is an edge e2 = (u2, x, v2) in SC(1) with v1 ∼f t v2

satisfying �(u2) = �(v2) and î(�(u1), v1) lies between î(�(u1), u1) and
k�(u1) (inclusive) if and only if î(�(u2), v2) lies between î(�(u2), u2) and
k�(u2).

(ii) If (�(u1),�(v1)) ∈ E(D′), then there is an edge e2 = (u2, x, v2) in SC(1) with
v1 ∼f t v2 satisfying (�(u2),�(v2)) ∈ E(D′) and σ̄ (�(v1)) ∼f t σ̄ (�(v2)).

(iii) If (�(v1),�(u1)) ∈ E(D′) and σ̄ (�(u1)) ∼f t σ̄ (�(u2)), then there is an edge
e2 = (u2, x, v2) in SC(1) with v1 ∼f t v2 satisfying (�(v2),�(u2)) ∈ E(D′).

Proof Suppose first that u1 = 1̂. Then u1 ∼f t u2 implies that u2 = 1̂ = u1, and the
result of the lemma follows. For the remainder of the proof, we assume that u1 �= 1̂,
and as a consequence u2 �= 1̂. Let Ai be the face �(ui) for i = 1,2. By definition of
u1 ∼f t u2, then A1 ∼f t A2 and i(A1, u1) = i(A2, u2).

Suppose that (i) �(u1) = �(v1) holds. Then the edge e1 lies in the face A1.
The faces A1 and A2 are copies of the same polygon with the same boundary label
word w, and we have i(A1, u1) = i(A2, u2), hence there is an edge e2 = (u2, x, v2)

in the boundary of A2 with i(A1, v1) = i(A2, v2). From the definition of A1 ∼f t

A2, we have î(A1, φ(A1)) = î(A2, φ(A2)) and î(A1, ρ(A1)) = î(A2, ρ(A2)). From
Lemma 4.3, the edge e1 lies in ∂A1 \ γ (A1), and so we have î(A1, φ(A1)) <

î(A1, v1) < î(A1, ρ(A1)). Then î(A2, φ(A2)) < î(A2, v2) < î(A2, ρ(A2)), and so v2
lies in ∂A2 \ γ (A2). Applying the same lemma again gives �(v2) = A2. Then both
v1 ∼f t v2 and the betweenness condition follow directly.

Next suppose that (ii) (�(u1),�(v1)) ∈ E(D′). In this case, B1 := �(v1) is a face
of SC(1). Since A1 < B1, the edge e1 lies in B1, the vertices u1 and σ̄ (B1) (which
may or may not be the same point) both lie in A1 ∩ B1, and v1 lies in B1 \ γ (B1).
Let B2 be the face of SC(1) whose vertex σ̄ (B2) lies at the vertex of ∂A2 satisfying
i(A2, σ̄ (B2)) = i(A1, σ̄ (B1)). Again using the fact that the pairs of polygons A1,B1
and A2,B2 have the same boundary labels, the gluings of B2 onto A2 correspond to
the gluings of B1 onto A1. Hence u2 ∈ A2 ∩ B2, and there is an edge (u2, x, v2) in
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B2 with v2 /∈ A2. Since �(u2) = A2, we have A2 < B2, and so (A2,B2) ∈ E(D′). In
addition, we have î(C1, ρ(B1)) = î(C2, ρ(B2)) and î(C1, φ(B1)) = î(C2, φ(B2))

for Ci ∈ {Ai,Bi} and î(B1, v1) = î(B2, v2). Since B1 = �(v1), then î(B1, v1)

lies strictly between î(B1, φ(B1)) and î(B1, ρ(B1)), and hence î(B2, v2) lies
strictly between î(B2, φ(B2)) and î(B2, ρ(B2)), giving B2 = �(v2). The prop-
erty σ̄ (�(v1)) ∼f t σ̄ (�(v2)) follows immediately. Now A1 ∼f t A2 implies that
kA1 = kA2 . Lemma 5.1 shows that dS�(1̂, ρ(Bi)) = dS�(1̂, xAi

) − dS�(xAi
, ρ(Bi))

for i = 1,2, and similarly for φ(Bi). Then dS�(1̂, ρ(B1)) − dS�(1̂, φ(B1)) =
dS�(xA1 , φ(B1)) − dS�(xA1, ρ(B1)) = |kA1 − î(A1, φ(B1))| − |kA1 − î(A1, ρ(B1))|.
Since all of these numbers are the same if the subscript 1 is replaced by 2 everywhere,
then we have dS�(1̂, ρ(B1))−dS�(1̂, φ(B1)) = dS�(1̂, ρ(B2))−dS�(1̂, φ(B2)). This
shows that kB1 = kB2 , which is the last item needed to show that B1 ∼f t B2. There-
fore v1 ∼f t v2.

Finally, suppose that (iii) (�(v1),�(u1)) ∈ E(D′) and σ̄ (�(u1)) ∼f t σ̄ (�(u2)).
Suppose further that σ̄ (A1) = 1̂. Then v1 = 1̂ and A1 = �(u1) = F1. In this case
σ̄ (�(u2)) = 1̂, and so A1 = A2, u1 = u2, and the lemma holds.

On the other hand, suppose that σ̄ (A1) = σ̄ (�(u1)) �= 1̂. Then Ei := �(σ̄ (Ai))

is a face of SC(1) for i = 1,2, and we also have (E2,A2) ∈ D′ and E1 = �(v1).
The definition of σ̄ (A1) ∼f t σ̄ (A2) implies that E1 ∼f t E2 and i(E1, σ̄ (A1)) =
i(E2, σ̄ (A2)). Now the edge gluings in the folding of A1 onto its parent face E1

and in the folding of A2 onto E2 must be the same. The edge e1 = (u1, x, v1) lies
in A1 with u1 in ∂A1 \ γ (A1) and v1 in γ (A1), and there must be a corresponding
edge e2 = (u2, x, v2) in the face A2. Then i(A1, v1) = i(A2, v2), and so v2 lies in
γ (A2). Hence E2 = �(v2). Finally the correspondence in edge gluings together with
i(E1, σ̄ (A1)) = i(E2, σ̄ (A2)) imply that i(E1, v1) = i(E2, v2), and so v1 ∼f t v2. �

Next we use the face type classes of vertices in SC(1) to build a deterministic
push-down automaton, following the notation for a PDA in [2, p. 110].

Definition 5.4 Let P = (Q,
,�, δ, q0,Z0,F ) be the deterministic pushdown au-
tomaton with state set Q = {[v] | v ∈ V (SC(1))}, input alphabet 
 = X ∪ X−1,
stack alphabet � = {[v] | v ∈ V (SC(1))}, initial state q0 = [1̂], initial stack symbol
Z0 = [1̂], final (accept) state F = {[1̂]}, and transition function the partial function
δ:Q × 
 × � → Q × �∗ for which δ([u], x, [t]) is defined only if there is an edge
(u, x, v) for some vertex v in SC(1), by

δ([u], x, [t]) :=

⎧
⎪⎨

⎪⎩

([v], [t]) if �(u) = �(v)

([v], [σ(�(v))][t]) if (�(u),�(v)) ∈ E(D′)
([v], ε) if (�(v),�(u)) ∈ E(D′), [t] = [σ̄ (�(u))]

The undefined transitions for δ are viewed as going to a fail state. Note that for an
edge (u, x, v) in SC(1) satisfying 1̂ �= v = σ̄ (�(u)) = ρ(�(u)) = φ(�(u)), so that
the face �(u) is attached at v but no edges are glued, the last case of the definition of δ

can be split into two subcases. In this situation we have �(u) ∼f t F1, and there is an
edge (u1, x, 1̂) in F1 with u1 ∼f t u. If [t] = [v] �= [1̂], then δ([u], x, [t]) := ([v], ε),
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but if [t] = [1̂], then δ([u], x, [t]) := ([1̂], ε). The fact that δ is well-defined follows
directly from Lemma 5.3.

An instantaneous description (α, z,β) for the PDA P consists of the current state
α ∈ Q of the machine, the word z ∈ (X ∪ X−1)∗ that remains to be read, and the
current contents β ∈ �∗ of the stack, where the first letter of β is the “top” of the
stack. We write (α, yz,β) �∗ (α′, z, β ′) if, when y is read in starting from (α, yz,β),
the PDA reaches (α′, z, β ′), and write � when a single letter y ∈ X ∪ X−1 is read.

Define a function β : V (SC(1)) → �∗ as follows. Given any vertex v in SC(1),
let 1̂,F1, . . . ,Fm = �(v) be the labels of the vertices along the geodesic path in the
tree D′ from 1̂ to �(v). Then β(v) is the associated word over the stack alphabet
given by β(v) := [σ̄ (Fm)] · · · [σ̄ (F1)][1̂].

Proposition 5.5 Let w be sparse, and let SC(1) be the Schützenberger complex
of 1 for M = Inv〈X | w = 1〉. Let α ∈ Q, y, z ∈ (X ∪ X−1)∗, and β ∈ �∗. Then
([1̂], yz, [1̂]) �∗ (α, z,β) if and only if y labels an edge path in SC(1) starting at 1̂
and α = [v] and β = β(v) where v is the end vertex of this path.

Proof First we prove the forward implication, by induction on the length of y. If
l(y) = 0, then y = ε and ([1̂], εz, [1̂]) �∗ (α, z,β) implies that α = [1̂], and β =
[1̂] = β(1̂). The edge path in SC(1) starting at 1̂ labeled by y = ε ends at v = 1̂, as
required.

Now, suppose that the forward implication holds for any word ỹ with 0 ≤ l(ỹ) <

l(y), and write y = y′x with x ∈ X ∪ X−1. Suppose that ([1̂], yz, [1̂]) �∗ (α, z,β).
Then we have ([1̂], y′xz, [1̂]) �∗ (α′, xz,β ′) � (α, z,β) for some α′ ∈ Q and β ′ ∈ �∗.
By induction, the word y′ labels an edge path π ′ in SC(1) starting at 1̂, and α′ = [u]
and β ′ = β(u) where u is the ending vertex of the path π ′.

Since (α′, xz,β ′) � (α, z,β), the transition function δ is defined on the triple
(α′, x, γ ), where γ is the first letter of the word β(u) ∈ �∗. This means that there is a
representative ũ of the ∼f t -class α′ such that there is an edge of the form e = (ũ, x, v)

in SC(1) for some vertex v, and either (i) �(ũ) = �(v), (ii) (�(ũ),�(v)) ∈ E(D′),
or (iii) γ = [σ̄ (�(ũ))] and (�(v),�(ũ)) ∈ E(D′). In cases (i) and (ii), Lemma 5.3
shows that we may take ũ = u. In case (iii), notice that the first letter γ of β(u) sat-
isfies γ = [σ̄ (�(u))] if �(u) �= 1̂, and γ = [1̂] if �(u) = 1̂. However, if �(u) = 1̂,
then u = 1̂, and since [ũ] = α′ = [u], then ũ = 1̂, contradicting the existence of the
edge (�(v),�(ũ)) in D′. Then �(u) �= 1̂, and so we also may take ũ = u in this
case.

Then in all three cases, the path π ′ followed by the edge e is a path in SC(1)

labeled by the word y starting at 1̂ and ending at the vertex v. Moreover, we have
α = [v].

In case (i), δ(α′, x, γ ) = ([v], γ ), and the stack word β = β ′ = β(u) is unchanged
by this transition. Since �(u) = �(v), then β = β(v).

In case (ii), δ(α′, x, γ ) = ([v], [σ̄ (�(v))]γ ), and we have β = [σ̄ (�(v))]β(u).
Since (�(u),�(v)) ∈ E(D′), we again have β = β(v).

In case (iii), δ(α′, x, γ ) = ([v], ε). Now (�(v),�(u)) ∈ E(D′) implies that
β(u) = [σ̄ (�(u))]β(v), and we have β = β(v) in this case as well.

This completes the proof of the forward implication.
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For the reverse implication, we again induct on the length l(y). If l(y) = 0, then as
before y = ε labels a path from 1̂ to 1̂, and so ([1̂], yz, [1̂]) �∗ (α, z,β) where α = [1̂]
and β = [1̂] = β(1̂).

Suppose again that l(y) > 0 and write y = y′x with x ∈ X ∪ X−1. By hypothesis,
y labels a path in SC(1) from 1̂; let v be the vertex at the end of this path, and let
u be the penultimate vertex; that is, u is at the end of the path labeled by y′. By
induction we have ([1̂], yz, [1̂]) �∗ ([u], xz,β(u)). The definition of δ then shows
that ([1̂], yz, [1̂]) �∗ ([v], z, β(v)). �

We can now prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3 For a word y ∈ (X ∪X−1)∗, we have y = 1 in M if and only if
y labels an edge path from 1̂ to 1̂ in S�(1). Proposition 5.5 shows that the latter holds
if and only if ([1̂], y, [1̂]) �∗ ([1̂], ε, [1̂]); that is, exactly when the PDA P finishes in
the accept state [1̂] (with final stack [1̂]). Thus, the set of words representing the
identity element in M is a deterministic context-free language.

The word y is in the language of words related to 1 in M by Green’s relation
R if and only if y labels a path starting at 1̂ in S�(1), which holds if and only if
([1̂], y, [1̂]) �∗ (α, ε,β) for some α ∈ Q and β ∈ �∗. Let P′ be the PDA P with the
set of final (accept) states changed to F = Q. Then we have y is accepted by P′ if and
only if y is in the R-equivalence class R1 of 1. Hence the set of words representing
an element of R1 in M is also a deterministic context-free language. �

Proof of Theorem 1.4 Let (Q,
, δ, q0,F ) be the finite state automaton with state set
Q = {[v] | v ∈ V (SC(1))}, input alphabet 
 = X ∪ X−1, initial state q0 = [1̂], final
(accept) states F = Q, and transition function the partial function δ:Q × 
 → Q,
defined by δ([u], x) := [v] if there is an edge (u, x, v) in SC(1) and either

(i) �(u) = �(v) and either î(�(u),u) < î(�(u), v) ≤ k�(u) or î(�(u),u) >

î(�(u), v) ≥ k�(u), or
(ii) (�(u),�(v)) ∈ E(D′)
Lemma 5.3 shows that this transition function is well-defined.

Let p be an arbitrary path in SC(1) starting at 1̂. Let 1̂ = v0, v1, . . . , vm be the
sequence of consecutive vertices traversed by p, and let Ai := �(vi). Note that the
path p is geodesic if and only if dS�(1̂, vi−1) > dS�(1̂, vi) for all i.

If (Ai,Ai−1) ∈ E(D′), then the Geodesic Theorem 4.4 says that p is not a geo-
desic. If (Ai−1,Ai) ∈ E(D′), then vi ∈ ∂Ai \ γ (Ai) = ∂Ai \ Ai−1, and the ver-
tex vi−1 must be one of the endpoints ρ(Ai),φ(Ai) of the gluing path of Ai onto
Ai−1; let ui be the other. The Geodesic Theorem 4.4 says that any geodesic from
1̂ = v0 to vi must pass through one of the points vi−1, ui . Since dS�(vi−1, vi) = 1,
then Lemma 4.3(1) shows that such a geodesic must also pass through vi−1. Hence
dS�(1̂, vi) > dS�(1̂, vi−1). Finally, if Ai−1 = Ai , then vi−1 and vi are both vertices
in ∂Ai \ γ (Ai). By Lemma 5.1, it follows that dS�(1̂, vi) > dS�(1̂, vi−1) if and only
if either i(Ai, vi−1) < i(Ai, vi) ≤ kAi

or i(Ai, vi−1) > i(Ai, vi) ≥ kAi
.

In the proof of Theorem 1.3, we showed that a word y labels a path starting at
1̂ in SC(1) if and only if it is accepted by the PDA P′, which is the PDA in Defi-
nition 5.4 but for which all states in Q are final (accept) states. Note that the only
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transitions of this PDA which utilize the stack in determining the next state are those
associated with edges from u to v with (�(v),�(u)) ∈ E(D′). Combining this with
the previous paragraph, then, the finite state automaton defined above is precisely
the underlying finite state automaton of the PDA P′ consisting only of transitions
associated with edges (u, x, v) such that dS�(1̂, v) > dS�(1̂, u). Thus this finite state
automaton accepts precisely the words which label geodesic paths in SC(1). �

Remark 1 The minimized form of the finite state automaton defined in the proof of
Theorem 1.4 is the automaton of cone types of S�(1). As an example, S. Haataja
showed that the automaton of cone types for S�(1) for the sparse word w =
aba−1b−1cdc−1d−1 corresponding to the surface group of genus 2 has 19 cone
types (unpublished manuscript). A description of Haataja’s example may be found
in Meakin’s survey article [7].

Remark 2 Descriptions of an iterative construction of the PDA in Definition 5.4 and
an implementation of the algorithm for solving the word problem is provided in
S. Lindblad’s PhD thesis [5]. The software is available from http://www.math.unl.
edu/~shermiller2/lindblad/.

Remark 3 In their paper [3], Ivanov, Margolis and Meakin show that the word prob-
lem for the inverse monoid M = Inv〈X | w = 1〉 corresponding to a cyclically re-
duced word w is solvable if the membership problem for the submonoid of the cor-
responding one-relator group G = Gp〈X|w = 1〉 generated by the prefixes of w is
solvable. However as far as we are aware, it is not known whether the prefix mem-
bership problem for this submonoid of G is equivalent to the word problem for M in
general. In particular, it is not known whether this prefix membership problem for G

is solvable if w is a sparse word.
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6. Margolis, S., Meakin, J., Šuniḱ, Z.: Distortion functions and the membership problem for submonoids

of groups and monoids. Contemp. Math. 372, 109–129 (2005)
7. Meakin, J.C.: Groups and semigroups: connections and contrasts. In: Proceedings, Groups St Andrews

2005, London Math. Soc. Lecture Note Series 340, vol. 2, pp. 357–400 (2007)
8. Munn, W.D.: Free inverse semigroups. Proc. Lond. Math. Soc. 29(3), 385–404 (1974)
9. Stephen, J.B.: Presentations of inverse monoids. J. Pure Appl. Algebra 63(1), 81–112 (1990)

10. Stephen, J.B.: Inverse monoids and rational subsets of related groups. Semigroup Forum 46(1), 98–
108 (1993)

11. Steinberg, B.: A topological approach to inverse and regular semigroups. Pac. J. Math. 208(2), 367–
396 (2003)

http://www.math.unl.edu/~shermiller2/lindblad/
http://www.math.unl.edu/~shermiller2/lindblad/

	Decision problems for inverse monoids presented  by a single sparse relator
	Abstract
	Introduction
	Sparse words
	The Schützenberger complex SC(1)
	The dual graph and the word problem 
	Languages of geodesics and words representing 1
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


