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Abstract

We present a semigroup approach to stochastic delay equations of the form

dX(t) =

(∫ 0

−h
X(t+ s) dµ(s)

)
dt+ dW (t) for t ≥ 0,

X(t) = f(t) for t ∈ [−h, 0],
in the space of continuous functions C[−h, 0] . We represent the solution as a
C[−h, 0] -valued process arising from a stochastic weak∗ -integral in the bidual
C[−h, 0]∗∗ and show how this process can be interpreted as a mild solution of
an associated stochastic abstract Cauchy problem. We obtain a necessary and
sufficient condition guaranteeing the existence of an invariant measure.
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1. Introduction

In this paper we study the stochastic linear delay differential equation

dX(t) =

(∫ 0

−h
X(t + s) dµ(s)

)
dt + dW (t) for t ≥ 0,

X(t) = f(t) for t ∈ [−h, 0], (1.1)

where µ is a finite signed Borel measure on [−h, 0] and W = (W (t))t≥0 is
a standard Brownian motion. Following a well known approach in the theory
of deterministic delay equations, we lift the equation to an abstract stochastic
Cauchy problem in the space of continuous functions C[−h, 0] of the form

dU(t) = AU(t) dt + B dW (t) for t ≥ 0,

U(0) = f. (1.2)
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Here A is the generator of the C0 -semigroup (T (t))t≥0 on C[−h, 0] canonically
associated with the deterministic part of (1.1). In contrast to the deterministic
situation, B is an element of the bidual space C[−h, 0]∗∗ which is defined by

〈µ,B〉 = µ({0}), µ ∈M [−h, 0] = C[−h, 0]∗.

Although the problem (1.2) is formulated in the bidual space C[−h, 0]∗∗ , it
turns out that its unique mild solution U takes its values in C[−h, 0] almost
surely. A solution to the problem (1.1) is then obtained by putting

X(t, f) := (U(t, f))(0), t ≥ 0.

The semigroup approach to deterministic delay equations in C[−h, 0]
used here is presented in detail in the monographs of Diekmann–van Gils–
Verduyn Lunel–Walther [6] and Engel–Nagel [7], where further references to
the literature can be found. With the role of C[−h, 0] replaced by L2(−h, 0),
stochastic delay equations were studied by Chojnowska-Michalik [4] and, more
recently, in the monograph by Da Prato–Zabczyk [5]. The reason for taking
L2(−h, 0) comes from the fact that the Itô stochastic calculus extends readily to
Hilbert spaces. Recently, a theory of stochastic integration in Banach spaces has
been developed and applied to abstract stochastic Cauchy problems in [3, 11].
This theory cannot be applied to study the problem (1.1) in C[−h, 0], however,
since the functional B belongs to C[−h, 0]∗∗ rather than C[−h, 0]. To overcome
this problem, in Section 2 we formulate a simple extension of the theory of
[3, 11] to locally convex spaces and apply it to dual Banach spaces in their
weak∗ -topology. In the case of a bidual Banach space E∗∗ , we are particularly
interested in conditions ensuring that the weak∗ -stochastic integral takes its
values in E almost surely (Theorem 2.3). In Section 3 we verify these conditions
for the problem (1.2) and prove the existence of a mild solution with values in
C[−h, 0] (Theorem 3.3). Furthermore, necessary and sufficient conditions for
the existence of an invariant measure are obtained in terms of the resolvent
function associated with the deterministic problem (Theorem 3.4).

2. Stochastic integration in locally convex spaces

2.1. Gaussian Radon measures

Let E be a real locally convex topological vector space. A Borel probability
measure µ on E is called a Radon measure if for every Borel set B in E and
every ε > 0 there exists a compact set K ⊆ B such that µ(B \K) < ε . A Borel
measurable random variable X: (Ω,P) → E is called Radon if its distribution
is a Radon probability measure on E . We refer to [2, Appendix A] whose
terminology we follow.

A Radon measure µ on E is called Gaussian if its image under every
continuous linear functional x′ ∈ E′ is a Gaussian measure on R . By [2,
Theorem 3.2.3] there exists a unique element mµ ∈ E , the mean of E , such
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that for all x′ ∈ E′ we have

〈mµ, x
′〉 =

∫
E

〈ξ, x′〉 dµ(ξ).

In this paper, all Gaussian Radon measures µ on E will be centred, meaning
that mµ = 0, or equivalently, that all image measures 〈µ, x′〉 are centred as
Gaussian measures on R .

Let µ be a (centred) Gaussian Radon measure on E . For an element
x ∈ E we define

|x|µ := sup{|〈x, x′〉|: x′ ∈ E′,
∫
E

〈ξ, x′〉2 dµ(ξ) ≤ 1}.

This supremum may be infinite. The Cameron-Martin space associated with µ
is the space

Hµ := {h ∈ E: |h|µ <∞}.

This space has the structure of a separable real Hilbert space [2, Section 3.2].
Moreover, the inclusion mapping iµ: Hµ ↪→ E is continuous. To see this, note
that by [2, Corollary 3.2.4], iµ maps bounded set of Hµ into relatively compact
sets of E . Since compact sets in topological vector spaces are bounded [13,
Theorem 1.15], the continuity of iµ now follows from [13, Theorem 1.32]. Let
i′µ: E′ → Hµ denote the adjoint mapping. Then,

〈iµi′µx′, y′〉 = [i′µx
′, i′µy

′]Hµ =

∫
E

〈ξ, x′〉〈ξ, y′〉 dµ(ξ).

If (hn)n≥1 is an orthonormal basis for Hµ and (γn)n≥1 is a Gaussian sequence,
i.e. a sequence of independent standard Gaussian random variables, then the
E -valued Gaussian sum

∑
n≥1 γn iµhn converges in E almost surely, and its

sum is an E -valued random variable with distribution µ [2, Theorem 3.5.1].
More generally, if H is a Hilbert space and T ∈ L(H,E) is a continuous
linear operator, then by using the fact that the mapping U : H → Hµ by
U : T ′x′ �→ i′µx

′ satisfies ‖T ′x′‖2H = ‖i′µx′‖2Hµ and therefore extends to a unitary

mapping from ran(T ′) = (ker(T ))⊥ onto Hµ , we have:

Proposition 2.1. Let H be a separable real Hilbert space with orthonormal
basis (hn)n≥1 . For a continuous linear operator T : H → E the following
assertions are equivalent:

(1) There exists a Gaussian Radon measure µ on E such that T ◦T ′ = iµ◦i′µ ;

(2) The E -valued Gaussian sum
∑
n≥1 γn Thn converges almost surely to an

E -valued Radon random variable X .

In this situation, the sum X has distribution µ .
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An operator T : H → E satisfying the equivalent assumptions of the
proposition is called radonifying.

A function φ: [0, T ]→ E is called weakly L2 if t �→ 〈φ, x′〉(t) := 〈φ(t), x′〉
defines an element of L2(0, T ) for all x′ ∈ E′ . A function φ: [0, T ]→ E is called
stochastically integrable with respect to a Brownian motion W = (W (t))t∈[0,T ]

defined on a probability space (Ω,P) if it is weakly L2 and there exists a Radon
random variable X: Ω→ E such that for all x′ ∈ E′ we have

〈X,x′〉 =

∫ T

0

〈φ(t), x′〉 dW (t)

almost surely. In this situation we write

X =

∫ T

0

φ(t) dW (t).

The random variable X is Gaussian and is uniquely determined almost every-
where. Indeed, suppose X1 and X2 are E -valued Radon random variables
satisfying 〈X1, x

′〉 = 〈X2, x
′〉 for all x′ ∈ E′ . To prove that X1 = X2 almost

surely it suffices to show that the distributions µY of Y := X1−X2 equals the
Dirac measure δ0 .

Since µY and δ0 are Radon measures on E , they are determined by
the cylindrical σ -field E (this follows by noting that K ∈ E for all compact
sets K ⊆ E ). Thus it suffices to show that µY = δ0 on E . Let C the field
of cylindrical subsets of E . Then C is closed under taking finite intersections
and we have σ(C) = E . Thus it suffices to show that µY = δ0 on C . But if
C ∈ C , there exists a Borel set B ⊆ Rn and elements x′1, . . . , x

′
n ∈ E′ such that

C = {x ∈ E: (〈x, x′1〉, . . . , 〈x, x′n〉) ∈ B} , and therefore

µY (C) = P{(〈Y, x′1〉, . . . , 〈Y, x′n〉) ∈ B} = P{0 ∈ B} = δ0(C).

The following result extends [11, Theorem 2.3] to locally convex spaces
and can be proved in a similar way.

Theorem 2.2. For a weakly L2 function φ: [0, T ]→ E the following asser-
tions are equivalent:

(1) φ is stochastically integrable with respect to W ;

(2) There exists a Gaussian Radon measure µ on E such that for all x′ ∈ E′
we have ∫

E

〈ξ, x′〉2 dµ(ξ) =

∫ T

0

〈φ(t), x′〉2 dt;

(3) There exists a radonifying operator I: L2(0, T ) → E such that for all
x′ ∈ E′ we have

〈If, x′〉 =

∫ T

0

f(t)〈φ(t), x′〉 dt.

In this situation, µ is the distribution of
∫ T

0
φ(t) dW (t) .
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Now let E be a real Banach space with Banach space dual E∗ . The
theory developed so far can be applied to E∗ , considered as a locally convex
topological vector space in its weak∗ -topology. By general results from the
theory of locally convex spaces its topological dual is given by

(E∗,weak∗ )′ = E.

Accordingly we say that a function φ: [0, T ]→ E∗ is weak∗ L2 if 〈x, φ〉 defines
an element of L2(0, T ) for all x ∈ E . We call a function φ: [0, T ]→ E∗ weak∗ -
stochastically integrable with respect to W if it weak∗ L2 and there exists a
weak∗ -Radon random variable X: Ω→ E∗ such that for all x ∈ E we have

〈x,X〉 =

∫ T

0

〈x, φ(t)〉 dW (t)

almost surely. In this situation we write X = weak∗ -
∫ T

0
φ(t) dW (t).

Of particular interest is the special case where E itself is a dual space, say
E = F ∗ for some real Banach space F . If φ: [0, T ]→ F ∗∗ is weak∗ -integrable,
one may ask under which conditions the weak∗ -integral is an F -valued random
variable. In order to make this question precise, let µφ denote the distribution of

weak∗ -
∫ T

0
φdW and let Sφ be the topological support of µφ , i.e., the smallest

weak∗ -closed linear subspace of F ∗∗ with the property that µφ(Sφ) = 1 [2,
Appendix A].

Theorem 2.3. Let F be a real Banach space and let φ: [0, T ] → F ∗∗

be weak∗ -stochastically integrable. With the notations as above, the following
assertions are equivalent:

(1) The topological support Sφ is contained in F ;

(2) There exists a Gaussian Radon measure µ on F such that for all x∗ ∈ F ∗
we have ∫

E

〈ξ, x∗〉2 dµ(ξ) =

∫ T

0

〈x∗, φ(t)〉2 dt;

(3) There exists a radonifying operator I: L2(0, T ) → F such that for all
x∗ ∈ F ∗ we have

〈If, x∗〉 =

∫ T

0

f(t)〈x∗, φ(t)〉 dt.

In this situation, µ is the distribution of weak∗ -
∫ T

0
φ(t) dW (t) .

Proof. (1) ⇒ (2): We need to show that µ restricts to a Radon measure
on F .

By [2, Theorem 3.6.1] the Cameron-Martin space Hφ of µφ is contained
in Sφ , and hence in F . Let iφ: Hφ → F ∗∗ be the inclusion mapping. If (hn)n≥1
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is an orthonormal basis for Hφ , then by Proposition 2.1 the sum
∑
n≥1 γniφhn

converges weak∗ in F ∗∗ almost surely. Since iφ takes its values in F , the sum∑
n≥1 γniφhn converges weakly in F almost surely. Its sum Y is a random

variable which takes its values in a weakly separable, hence separable, closed
subspace F0 of F . Thus we see that µφ is supported on F0 . Since the Borel
σ -fields generated by the weak and the strong topologies coincide on F0 , µφ
is a Borel measure on F0 . By a standard result, the separability of F0 then
implies that µφ is actually a Radon measure on F0 , and hence on F .

(2) ⇒ (3): By Theorem 2.2 there exists a radonifying operator I: L2(0, T )
→ F ∗∗ such that for all x∗ ∈ F ∗ we have

〈x∗, If〉 =

∫ T

0

f(t)〈x∗, φ(t)〉 dt.

We need to show that I takes its values in F . But I∗x∗ = 〈x∗, φ〉 and therefore

〈y∗, II∗x∗〉 =

∫ T

0

〈x∗, φ(t)〉〈y∗, φ(t)〉 dt = 〈y∗, iµi∗µx∗〉

for all y∗ ∈ F ∗ , where iµ is the inclusion operator of the Cameron-Martin space
Hµ into F . It follows that II∗x∗ ∈ F for all x∗ ∈ F ∗ . Since the range of I∗ is
dense in the orthogonal complement of the kernel of I in L2(0, T ), the result
follows from this.

(3) ⇒ (1): Choose an orthonormal basis (fn)n≥1 for L2(0, T ). Denoting
by Itô: L2(0, T )→ L2(Ω) the Itô isometry, the sequence γn := Itôfn consists of
independent standard normal random variables. It follows from Proposition 2.1
that the F -valued Gaussian series

∑
n≥1 γn Ifn converges almost surely to an

F -valued Radon random variable X . For all x∗ ∈ F ∗ we have

〈X,x∗〉 =
∑
n≥1

γn 〈Ifn, x∗〉 =
∑
n≥1

∫ T

0

[〈φ, x∗〉, fn] fn(t) dW (t)

=

∫ T

0

∑
n≥1

[〈φ, x∗〉, fn] fn(t) dW (t) =

∫ T

0

〈φ(t), x∗〉 dW (t)

almost surely. This proves that φ is weak∗ -stochastically integrable in F ∗∗

with X =
∫ T

0
φdW almost surely. Let µX and µφ be the distribution of X

and
∫ T

0
φdW . Then µX is a Radon measure on F and µφ is a weak∗ -Radon

measure on F . Moreover, jµX = µφ , where j: F → F ∗∗ is the canonical
inclusion operator. It follows that µφ is a Radon measure on F ∗∗ . By [2,
Lemma 3.2.2 and Theorem 3.6.1] this implies SX = HX = Hφ = Sφ , where
the closures are taken with respect to the strong topologies of F and F ∗∗ ,
respectively. In particular, Sφ is contained in F .

Remark 2.4. We have formulated condition (1) in terms of the topological
support in order to avoid the following subtle issue. For general Banach space
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E , it is not clear whether E is always a µφ -measurable subset of (E∗∗,weak∗)
(at least we could not find a reference for this problem). Thus one has to be
careful when using the phrase

“the weak∗ -stochastic integral of φ is almost surely E -valued” (2.1)

If E is separable, then E is a Borel subset of (E∗∗,weak∗) by [2, Theorem
A.3.15(ii)] and (2.1) becomes meaningful. Also, the proof of the theorem shows
that if (3) holds, then µφ is actually Radon on (E∗∗, ‖ · ‖) and (2.1) becomes
meaningful since E is norm closed as a subspace of E∗∗ .

3. Delay differential equations

In this section we apply our results on weak∗ -stochastic integration to represent
the solution of a real-valued stochastic delay differential equation as a C -valued
weak∗ -stochastic integral in the bidual of C , where C = C[−h, 0] is the space
of history functions. Before turning our attention to stochastic equations, we
summarize some results on deterministic delay differential equations. Proofs
may be found in [6, 9].

Let h > 0 be fixed and consider the deterministic linear delay differential
equation

ẋ(t) =

∫
[−h,0]

x(t + s) dµ(s) for t ≥ 0,

x(t) = f(t) for t ∈ [−h, 0], (3.1)

where µ ∈ M = M [−h, 0], the space of signed Borel measure on [−h, 0] with
the total variation norm ‖·‖TV . The initial function f : [−h, 0]→ R is assumed
to be Borel measurable. A function x: [−h,∞)→ R is called classical solution
of (3.1) if x is continuous on [−h,∞), its restriction to [0,∞) is continuously
differentiable, and x satisfies the first and second identity of (3.1) for all t ≥ 0
and t ∈ [−h, 0], respectively. It is well known that for every f ∈ C = C[−h, 0]
the problem (3.1) admits a unique classical solution x = x(·, f).

For a continuous function x: [−h,∞) → R and t ≥ 0 we define the
segment xt ∈ C by

xt(u) := x(t + u), u ∈ [−h, 0].

The solution operators T (t): C → C ,

T (t)f = xt(·, f), t ≥ 0,

where x(·, f) is the solution of (3.1), form a strongly continuous semigroup
T = (T (t))t≥0 on C .
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The fundamental solution or resolvent of (3.1) is the unique locally abso-
lutely continuous function r: [0,∞)→ R which satisfies

r(t) = 1 +

∫ t

0

∫
[max{−h,−s},0]

r(s + u) dµ(u) ds for t ≥ 0.

It plays a role which is analogous to the fundamental system in linear ordinary
differential equations and the Green function in partial differential equations.
Formally, it is the solution of (3.1) corresponding to the initial function f =
1{0} .

From [9, Theorem 6.3.2] and [9, Equation (6.3.13)] we deduce:

Proposition 3.1. The adjoint T ∗(t) of the solution operator T (t) satisfies

〈T ∗(s)ν,B〉 =

∫
[max{−h,−s},0]

r(s + u) dν(u) for all s ≥ 0, ν ∈M, (3.2)

where B ∈ C∗∗ = M∗ is defined by 〈ν,B〉 := ν({0}) .

Now let us fix a complete probability space (Ω,F ,P) with a filtration
(Ft)t≥0 . We will study the stochastic linear delay differential equation

dX(t) =

(∫
[−h,0]

X(t + s) dµ(s)

)
dt + dW (t) for t ≥ 0,

X(t) = f(t) for t ∈ [−h, 0], (3.3)

where µ is a finite signed Borel measure on [−h, 0] and W = (W (t))t≥0 is
a standard Brownian motion on (Ω,F ,P). As before the initial function f is
taken from C . A solution of (3.3) is an adapted process (X(t, f))t≥−h with
continuous paths such that almost surely we have

X(t, f) = f(0) +

∫ t

0

(∫
[−h,0]

X(s + u) dµ(u)

)
ds + W (t) for t ≥ 0, (3.4)

with X(u, f) = f(u) for u ∈ [−h, 0] almost surely.

For t ≥ 0 and u ∈ [−h, 0] we define (I(t))(u) := 0 if t + u < 0 and

(I(t))(u) := W (t + u)−
∫ t+u

0

W (t− s + u) dr(s) if t + u ≥ 0 .

Clearly, u �→ (I(t))(u) is continuous for all t ≥ 0. By the Pettis measurability
theorem, I(t) is strongly measurable as a C -valued random variable. Since for
t + u ≥ 0 we have, almost surely,

W (t + u)−
∫ t+u

0

W (t− s + u) dr(s) =

∫ t+u

0

r(t− s + u) dW (s)

we may think of I(t) as a continuous version of the convolution process r ∗W .
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The following existence and uniqueness result is proved in [10]:

Proposition 3.2. For every f ∈ C the problem (3.3) admits a solution
(X(t, f))t≥−h . This solution is unique up to indistinguishability and almost
surely, for all t ≥ 0 we have

Xt(·, f) = T (t)f + I(t) in C.

The first main result of this section identifies the segment process
(Xt(·, f))t≥0 as a weak∗ -stochastic integral in C∗∗ which actually takes its
values in C .

Theorem 3.3. Let f ∈ C and denote by (X(t, f))t≥−h the solution of (3.3).
The function s �→ T ∗∗(t−s)B is weak∗ -stochastically integrable in C∗∗ on the
interval [0, t] and the segment process (Xt(·, f))t≥0 can be represented in C∗∗

by

Xt(·, f) = T (t)f + weak∗ -

∫ t

0

T ∗∗(t− s)B dW (s).

Proof. For t ≥ 0 we define φ: [0, t] → C∗∗ by φ(s) := T ∗∗(t − s)B . It is
immediate from (3.2) that φ is weak∗ L2 . By the stochastic Fubini theorem,
for all t ≥ 0 we have

〈I(t), ν〉 =

∫
[−h,0]

(I(t))(u) dν(u)

=

∫
[−h,0]

(∫ max{0,t+u}

0

r(t− s + u) dW (s)

)
dν(u)

=

∫ t

0

(∫
[max{−h,s−t},0]

r(t− s + u) dν(u)

)
dW (s)

=

∫ t

0

〈ν, T ∗∗(t− s)B〉 dW (s)

almost surely. The distribution of I(t) is a Radon probability measure on
C . As the inclusion C ⊆ C∗∗ is strongly-to-weak∗ -continuous, I(t) is weak∗ -
Radon as a C∗∗ -valued random variable. Consequently the function φ is weak∗ -
stochastically integrable and in C∗∗ we have

I(t) = weak∗ -

∫ t

0

T ∗∗(t− s)B dW (s)

almost surely.

The representation of the solution (X(t, f))t≥−h in C given by Theorem 3.3
identifies the segment process

U(t, f) := Xt(·, f)
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as the mild weak∗ -solution of the following Cauchy problem in C∗∗ :

dU(t) = AU(t) dt + B dW (t) for t ≥ 0,

U(0) = f, (3.5)

where A denotes the generator of the solution semigroup (T (t))t≥0 . As in [11,
Theorem 7.1] one checks that for all t ∈ [0, T ] and µ ∈ D(A∗) we have, almost
surely,

〈U(t, f), µ〉 = 〈f, µ〉+
∫ t

0

〈U(s, f), A∗µ〉 ds + µ({0})W (t).

Further properties of the segment process (Xt(·, f))t≥0 are investigated in [12].

It is shown in [8] that the problem (3.3) admits an invariant measure if
and only if r ∈ L2(0,∞). The second main result of this section shows that
this condition is in fact necessary and sufficient for the existence of an invariant
measure for the problem (3.5).

Theorem 3.4. The problem (3.5) admits an invariant measure if and only
if r ∈ L2(0,∞) . In this situation the invariant measure is unique.

Proof. First assume that r ∈ L2(0,∞). Noting that by Proposition 3.1 and
the Cauchy-Schwarz inequality we have

∫ ∞
0

|〈T ∗(s)ν,B〉|2 ds =

∫ ∞
0

∣∣∣∣∣
∫

[max{−h,−s},0]

r(s + u) dν(u)

∣∣∣∣∣
2

ds

≤ ‖ν‖TV
∫ ∞

0

∫
[max{−h,−s},0]

|r(s + u)|2 d|ν|(u) ds

≤ ‖ν‖2TV ‖r‖
2
L2(0,∞) ,

we may define Q∞: M → C∗∗ by

〈ν,Q∞ξ〉 =

∫ ∞
0

〈ν, T ∗∗(s)B〉〈ξ, T ∗∗(s)B〉 ds, ν, ξ ∈M.

We claim that the mapping ν �→ 〈ν, T ∗∗(·)B〉 is weak∗ -to-weakly continuous
from M to L2(0, T ). Indeed, if limα να = ν weak∗ in M , then for all
f ∈ L2(0, T ) we have

[〈να, T ∗∗(·)B〉, f ]L2(0,T ) =

∫ T

0

f(t)〈T ∗(t)να, B〉 dt

=

∫ T

0

f(t)

(∫
[max{−h,−t},0]

r(u + t) dνα(u)

)
dt

=

∫
[−h,0]

(∫ T

−u
f(t)r(u + t) dt

)
dνα(u).
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Since u �→
∫ T
−u f(t)r(u + t) dt belongs to C , the right hand side tends to

∫
[−h,0]

(∫ T

−u
f(t)r(u + t) dt

)
dν(u) = [〈ν, T ∗∗(·)B〉, f ]L2(0,T )

and the claim is proved.

It follows from the claim that Q∞ξ ∈ C for all ξ ∈M . Indeed, the claim
shows that for all ξ ∈M , Q∞ξ is weak∗ -continuous on M . As a consequence,
Q∞ is the adjoint of some operator acting from M to C , and by symmetry this
operator can only be Q∞ .

Let µt denote the distribution of the random variable U(t) := U(t, 0),
the solution of (3.5) with initial condition 0. Next we show that the family
{µt: t ≥ h} is uniformly tight on C . According to [1, Theorem 8.2], we have
to show that for every η > 0 there exists an a ≥ 0 such that

P(|U(t)(−h)| > a) ≤ η for every t ≥ h, (3.6)

and that for every ε > 0 and κ > 0 there exists a δ > 0 such that

P


 sup

u,v∈[−h,0]
|u−v|≤δ

|U(t)(u)− U(t)(v)| ≥ ε


 ≤ κ (3.7)

for every t ≥ h .

The first condition (3.6) coincides with the tightness of the laws of
{X(t): t ≥ h} in R , where X(t) := X(t, 0) is the solution of (3.3) with ini-
tial condition 0. The latter are tight since equation (3.3) admits an invariant
measure by the result of [8] mentioned above.

Towards (3.7), for −h ≤ v ≤ u ≤ 0 and t ≥ h we have, by (3.4),

U(t)(u)− U(t)(v) =

∫ t+u

t+v

∫
[−h,0]

X(s + m) dµ(m) ds + W (t + u)−W (t + v).

The Burkholder-Davis-Gundy inequality yields, for all δ > 0,

P

(
sup

0≤ρ≤δ
|W (t)−W (t + ρ)| ≥ ε

)
≤ ε−2m

E

(
sup

0≤ρ≤δ
|W (t)−W (t + ρ)|2m

)

≤ Cmε
−2mδm

for every m ≥ 1, with a constant Cm depending on m only. By using this
inequality and a sufficiently small partition of the interval [−h, 0] one obtains
that for all ε, κ > 0 there exists a δ > 0 such that, for all t ≥ h ,

P


 sup

u,v∈[−h,0]
|u−v|≤δ

|W (t + u)−W (t + v)| ≥ ε


 ≤ κ. (3.8)
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Furthermore, Proposition 3.2 and Itô’s isometry imply that

E |X(t)|2 =

∫ t

0

r2(t− s) ds ≤ ‖r‖2L2(0,∞) for t ≥ 0.

Using the Cauchy-Schwartz inequality twice we compute, for t ≥ h ,

E


 sup
u,v∈[−h,0]
|u−v|≤δ

∣∣∣∣∣
∫ t+v

t+u

∫
[−h,0]

X(s + m) dµ(m) ds

∣∣∣∣∣
2



≤ E


 sup
u,v∈[−h,0]
|u−v|≤δ

|u− v|
∫ t+v

t+u

∣∣∣∣∣
∫

[−h,0]

X(s + m) dµ(m)

∣∣∣∣∣
2

ds




≤ δ E


∫ t

t−h

∣∣∣∣∣
∫

[−h,0]

X(s + m) dµ(m)

∣∣∣∣∣
2

ds




≤ δ ‖µ‖TV
∫ t

t−h

∫
[−h,0]

E |X(s + m)|2 d|µ|(m) ds

≤ δh ‖µ‖2TV ‖r‖
2
L2(0,∞) .

Applying Chebyshev’s inequality and (3.8), we obtain (3.7) and thus the tight-
ness of {µt: t ≥ 0} . Therefore, Q∞ is the covariance operator of a centred
Gaussian Radon measure µ∞ on C which satisfies µ∞ = limt→∞ µt weakly. A
standard argument shows that µ∞ is invariant.

Conversely, if there exists an invariant measure for (3.5), then the same
holds true for (3.3). By the result in [8], the latter is equivalent to r ∈ L2(0,∞).

Finally, the uniqueness of the invariant measure follows from the fact,
proved in [8], that the invariant measure for (3.3) is unique.
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