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Abstract

The variety of guarded semigroups consists of all (S, ·, ) where (S, ·)
is a semigroup and x �→ x is a unary operation subject to four additional
equations relating it to multiplication. The semigroup Pfn(X) of all partial

transformations on X is a guarded semigroup if x f = x when xf is defined
and is undefined otherwise. Every guarded semigroup is a subalgebra of Pfn(X)
for some X . A covering theorem of McAlister type is obtained. Free guarded
semigroups are constructed paralleling Scheiblich’s construction of free inverse
semigroups. The variety of banded semigroups has the same signature but
different equations. There is a canonical forgetful functor from guarded semi-
groups to banded semigroups. A semigroup underlies a banded semigroup if and
only if it is a split strong semilattice of right zero semigroups. Each banded
semigroup S contains a canonical subsemilattice g�(S) . For any given semi-
lattice L , a construction to synthesize the general banded semigroup S with
g�(S) ∼= L is obtained.

Keywords: Ample semigroups, inverse semigroups, restriction categories, vari-
eties of semigroups with unary operation, ordered semigroups.
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1. Introduction

Inverse semigroups have been generalized by dropping regularity. This has led
to left ample semigroups (introduced in [8] where they are called left type A and
subsequently studied in [9], [10], [11], [15]), weakly left ample semigroups ([12],
[13], [14]) and, in this paper, guarded semigroups.

Each of these structures can be characterized by how they embed in a
semigroup of partial transformations. Let Pfn(X) denote the monoid of partial
transformations X → X with composition x(fg) = (xf)g , (x ∈ X). Denote
the submonoid of injective partial transformations by IX . For f ∈ Pfn(X), let
dom(f) = {x ∈ X: xf is defined} . For A ⊂ X the guard of A is gA ∈ IX with
dom(gA) = A , xgA = x, (x ∈ A). A subset S ⊂ Pfn(X) is closed under
guards if f ∈ S ⇒ gdom(f) ∈ S and S is replete if f ∈ S and f2 = f ⇒ f
is a guard. Note that IX is replete.

The following results are well known.

Proposition 1.1. S is an inverse semigroup if and only if, for some X , S
is isomorphic to a subsemigroup of IX which is closed under inverses.
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Proposition 1.2. S is a left ample semigroup if and only if, for some X ,
S is isomorphic to a subsemigroup of IX which is closed under guards.

Proposition 1.3. S is a weakly left ample semigroup if and only if, for some
X , S is isomorphic to a replete subsemigroup of Pfn(X) which is closed under
guards.

Notice that in IX , gdom(f) = ff−1 . It follows that inverse ⇒ left ample
⇒ weakly left ample.

While repleteness is unavoidable in IX , it is a restrictive condition for
subsemigroups of Pfn(X), so it is natural to ask which semigroups are a
guard-closed subsemigroup of Pfn(X) with no repleteness condition. At first
glance, the question seems uninteresting since the endomorphism monoid of X
(of total transformations) is guard-closed (because each guard is the identity
transformation) so that every monoid can be so embedded.

But there is another way to look at this. Each weakly left ample semi-
group admists a canonical unary operation x �→ x+ which abstracts the guard
operator f �→ gdom(f) . Denote by V the variety of universal algebras (S, ·, )
where (S, ·) is a semigroup and x �→ x is an arbitrary unary operation. With
x = x+ , left ample and weakly left ample constitute quasivarieties of V ([14,
Lemmas 2.2, 2.3]). The revised question is this: which algebras in V are
isomorphic to a guard-closed subsemigroup of Pfn(X) for some X ?

This question we answer successfully: guarded semigroups, a variety in
V determined by four equations. The prototypical example is Pfn(X) with
f = gdom(f) . Extremal examples are monoids where x is constant and semi-
lattices where x = x .

We show in Proposition 2.17 that a weakly left ample semigroup with
x = x+ is a guarded semigroup.

A V -morphism f is g -idempotent-separating if x �= y ⇒ x f �= y f . For
weakly left ample semigroups, this is the same as idempotent-separating. The
resulting theorem of McAlister type (Theorem 4.6 below) is as follows: Every
guarded semigroup S is a g -idempotent-separating image of a guarded subsemi-
group H of a semidirect product of a monoid with a semilattice and such H
may be taken finite if S is. Say that a guarded semigroup is g -proper if given
x = y , e = e , ex = ey then x = y . For left ample semigroups this coincides
with proper. In the covering theorem just given, H is g -proper.

If S is a guarded semigroup then S1 with 1 = 1 is again a guarded
semigroup, so it is fair to say that guarded semigroups with a unit constitute
a broad class. The even broader class of guarded semigroups with a given left
unit u can be axiomatized as a variety of algebras (S, ·, u, �) with (S, ·, u) a
semigroup with left unit and (S, �) a right normal band subject to three further
axioms. This leads to the concept of a banded semigroup which is part of the
structure of any guarded semigroup.

Banded semigroups are semigroups with additional structure. In Theorem
8.10 below, we are able to characterize those semigroups which admit a banded
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structure as precisely the split strong semilattices of right zero
semigroups.

Every guarded semigroup has a natural partial order. In Theorem 3.7 we
show that, while a semigroup can be a guarded semigroup in more than one way,
an ordered semigroup admits at most one guarded semigroup structure whose
natural order coincides with the given order.

A banded semigroup B also has a natural partial order and a canonical
subset g � (B) which is a meet semilattice under this order. Given an arbitrary
meet semilattice L , we show in Theorem 9.1 how to construct the general
solution B of g � (B) ∼= L .

On an arbitrary semigroup S , Green’s R-order induces a topology by
virtue of which S1 is a left topological monoid. As does any left topological
monoid, such S1 acts naturally on the union semilattice of the closures of finite
sets. Any semidirect product of a semilattice with a monoid has a natural guard
structure and the free guarded semigroup generated by S is a guarded subsemi-
group of the semidirect product resulting from the S1 -action just given. In
particular, the free guarded semigroup generated by a set obtains by letting S
be the free semigroup generated by X .

Many questions remain open. A few are discussed at the end of the paper.

We thank the referee for valuable advice.

Added in proof: We recently learned that guarded semigroups were con-
sidered (without proofs) in a paper by Batbedat in Springer Lecture Notes in
Mathematics 855, 1981, and that Theorem 4.1 below was proved by Jackson
and Stokes in this journal, 62, 2001. A forthcoming paper with Robin Cockett
will provide details.

2. Guarded semigroups

The notion of a guarded semigroup arises by adapting the axioms for a restric-
tion category of Cockett and Lack [2]. Their axioms (R.1, . . . ,R.4) are given
below as (g .1, . . . ,g .4), but note that we have reversed the order of composition
to be consistent with the literature that we have cited. Their paper also devel-
ops the elementary consequences of the axioms. Other overlap between the two
papers is explicitly cited below.

The most powerful of the axioms is (g .4). We believe the first occurrence
in the semigroup literature is in [8] where it appears in the weaker form ae = aea
when e is idempotent in a context where necessarily e = e . In the category
literature, the axiom first appears in [4].

Definition 2.1. A guard operator x �→ x on a semigroup S satisfies the
three equations

(g .1) xx = x

(g .2) x y = y x

(g .3) x y = x y
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The expected fourth axiom (g .4) will be given shortly. The numbering
(g .5), (g .6), . . . will be used for basic immediate consequences of the axioms.

We have favored the Cockett and Lack notation x rather than the x+

which is used in the literature cited because of an anticipated interaction with
the theory of lattice-ordered groups ([3]) where the notation x+ = x ∨ 1 is
well-established. This work will appear elsewhere.

Proposition 2.2. A guard operator satisfies the additional equations

(g .5) x x = x

(g .6) xy x = xy

(g .7) x = x

(g .8) x y = x y

Proof. (g .5) x x = x x (g .3) = x (g .1);

(g .6) xy x = x xy (g .2) = xxy (g .3) = xy (g .1)

(g .7) x = x x (g .5) = x x (g .3) = x x (g .2) = x (g .1)

(g .8) x y = x y (g .3)= x y (g .7)

By the preceding,

g(S) = {x: x ∈ S} = {x ∈ S: x = x}

is a semilattice with infimum xy . Elements of g(S) are guards.

Definition 2.3. For a guard operator on a semigroup, say that x is deter-
ministic if for all y

x y = xy x

Example 2.4. Let Rel(X) be the semigroup of all relations R ⊂ X × X
with the usual composition

RS = {(x, z): (∃y) (x, y) ∈ R, (y, z) ∈ S}

Let xR denote {y: (x, y) ∈ R} and define

R = {(x, x): xR �= ∅}

It is routine to see that Rel(X) is a semigroup with guard operator R . R is
deterministic if and only if R is a partial transformation, that is, xR has at most
one element for all x . To check this, first assume that R is deterministic and
that (x, y), (x, z) ∈ R . If S = {(y, y)} , (x, x) ∈ RS so that (x, z) ∈ RS R = RS
which gives that y = z . Conversely, if R is a partial transformation then, for
all S , (x, y) ∈ RS R ⇔ xRS �= ∅ and y = xR ⇔ (x, y) ∈ RS .

Definition 2.5. Let S be a semigroup with guard operator. A subset A ⊂ S
is g -full if g(S) ⊂ A .
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Proposition 2.6. Let S be a semigroup with guard operator. Define

det(S) = {x ∈ S: x is deterministic}

Then det(S) is a g -full subsemigroup of S .

Proof. For x, y ∈ S , x y = x y x (semilattice) = x y x (g .3), and this shows
g -full. For x, y, z ∈ S ,

(xy) z = x(y z) = x(yz y) = xyz xy

shows xy ∈ det(S) if x, y ∈ det(S).

We are ready for the main definition of the paper.

Definition 2.7. A guarded semigroup, g -semigroup for short, is a
semigroup with guard operator for which every element is deterministic. Thus
(g .1, . . . ,g .4) axiomatize g -semigroups, where

(g .4) x y = xy x

If S , T are g -semigroups, a semigroup homomorphism f : S → T is a g -
homomorphism if also x f = xf . A g -subsemigroup H of a g -semigroup
also satisfies x ∈ H ⇒ x ∈ H .

g -semigroups and g -homomorphisms constitute an equationally-definable
class with one binary operation and one unary operation. We hence denote this
variety by GS . A g -monoid is a g -semigroup with unit 1. The corresponding
g -monoid homomorphisms also satisfy 1f = 1, and we denote this variety
as GM .

Lemma 2.8. In any guarded semigroup, the following equation holds:

(g .9) x y = xy

Proof. By (g.4, g.3, g.6), x y = xy x = xy x = xy .

Example 2.9. It is evident from Proposition 2.6 that for any semigroup S
with guard operator, det(S) is a g -semigroup. In the context of Example 2.4
this gives the g -semigroup Pfn(X) with f = g

Dom(f)
.

We note that in a g -monoid, 1 = 1 1 = 1.

The forgetful functor from monoids to semigroups has a left adjoint which
maps S to S1 . This is obvious. The same construction produces the left adjoint
of the forgetful functor from GM to GS : if S is a guarded semigroup, S1 is
a guarded monoid defining 1 = 1. Thus one can work with either guarded
semigroups or guarded monoids, depending on convenience.

Given a g -semigroup in which x is constant, (∃u ∀x) x = u , u is
necessarily a monoid unit as follows. ux = xx = x , xu = xu = xux = ux = x .



Manes 99

Example 2.10. An arbitrary monoid is a g -monoid under the definition
x = 1 , as is routinely checked.

We say a g -semigroup is a monoid if x is constant.

Example 2.11. An arbitrary commutative band is a g -semigroup if x = x .

We say such a g -semigroup is a semilattice. Clearly, a g -semigroup is
a semilattice if and only if g(S) = S .

Example 2.12. Every inverse semigroup is a guarded semigroup with x =
xx−1 .

A g -semigroup is an inverse semigroup if its underlying semigroup is
and x = xx−1 .

Proposition 2.13. (cf. [2, Pages 239–240]) Let S be a g -semigroup. Then
S has a largest inverse subsemigroup, namely

I(S) = {x ∈ S: (∃ a ∈ S) xax = x, xa, ax ∈ g(S)}

and the set E(I(S)) of idempotents of I(S) coincides with g(S) so that I(S)
is g -full in particular.

Proof. Let xax = x , yby = y , xa, ax, yb, by ∈ g(S) so that x, y are typical
elements of I(S). Then

xy(ba)xy = x(yb)(ax)y = x(ax)(yb)y = xy

and
xyba = x yb a = xyb xa = xyb xa ∈ g(S)

Similarly, baxy ∈ g(S). This shows I(S) is a subsemigroup. Let u2 = u ∈ I(S)
and choose a with uau = u, ua, au ∈ g(S). Define b = aua , so that b, u are
inverse. We have ub = uaua = ua ∈ g(S) and bu = auau = au ∈ g(S). Thus
b = aua = (au)(ua) ∈ g(S). In particular, b2 = b so u = (ub)(bu) ∈ g(S).
Thus I(S) as a semigroup is a regular semigroup in which idempotents (being
guards) commute, and hence is an inverse semigroup. For x ∈ S ,

x = xx−1x = xx−1 x = xx−1 x = xxx−1 = xxx−1 = xx−1 = xx−1

so I(S) as a g -semigroup is an inverse subsemigroup. As every idempotent of
I(S) has form xx−1 , it follows E(I(S)) = g(S). Finally, let H be an inverse
subsemigroup of S . For x ∈ H , xx−1x = x and xx−1 = x ∈ g(S). Replacing
x with x−1 , x−1x ∈ g(S). This shows H ⊂ I(X).

From the definition of I(S), it is clear that if the g -semigroup S is a
monoid, I(S) is the group of units of S . On the other hand, if S is a semi-
lattice then I(S) = S .

Proposition 2.14. Let S be a g -semigroup. Then the semigroup center
Z(S) is a g -subsemigroup.
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Proof. Let x ∈ Z(S). Then for all a ∈ S ,

a x = ax a (g .4) = xa a (x ∈ Z(S))

= x a a (g .9)

= a x a (x ∈ Z(S)) = a x a (g .3)

= x a a (g .2) = x a (g .1)

so, having used all four axioms to show it, x ∈ Z(S) as well.

We conclude this section by characterizing weakly left ample semigroups
as guarded semigroups. Similar results for inverse semigroups and left ample
semigroups will be provided as Propositions 3.8, 4.3.

Various characterizations of weakly left ample semigroups exist. We take
[12, Page 723] as our definition.

Definition 2.15. A semigroup equipped with a unary operation x is a weakly
left ample semigroup if the following equations and equational implications
hold.

(wla.1) xx = x

(wla.2) xx = x

(wla.3) idempotents commute

(wla.4) x2 = x, xy = y ⇒ x y = y

(wla.5) x = y ⇒ zx = zy

(wla.6) x2 = x ⇒ yx = yx y

Although not obvious from the above definition, a semigroup can be
weakly left ample in at most one way. If a R̃ b means (∀ e ∈ E(S)) ea =

a ⇔ eb = b then R̃ is an equivalence relation and x is the unique idempotent
in the R̃-class of x . Note, however, that we prove the next proposition using
only (wla.1, . . . ,wla.6).

Definition 2.16. A g -semigroup is replete if E(S) = g(S) , that is, if every
idempotent is a guard.

Proposition 2.17. Let S be a semigroup with unary operation x . Then S
is weakly left ample if and only if S is a replete g -semigroup.

Proof. First assume (wla.1, . . . ,wla.6) hold. Let e ∈ E(S). As e2 = e ,
e e = e , so e = e e = e e = e . In particular, x = x . We can now check the g -
semigroup axioms. (g.1) is (wla.2), (g.2) follows from (wla.1, wla.3) and (g.4) is
immediate from (wla.1, wla6). For (g.3), x = x ⇒ x y = x y (by (wla.5)) and
this is xy because (wla.3) implies that the product of idempotents is idempotent.
Conversely, let S be a g -semigroup with E(S) = g(S). (wla.1, wla.2, wla.3,
wla.6) are clear. For (wla.4), if xy = y with x = x , x y = x y = x y = xy = y .
For (wla.5), if x = y then zx = z x = z y = zy .
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3. The natural order

A semigroup can be a g -semigroup in more than one way. For example, Pfn(X)
admits f = g

Dom(f)
and f = idX as distinct guarded semigroup structures. We

show in this section, however, that g -semigroups are a class of ordered semi-
groups.

Definition 3.1. Let S be a g -semigroup. The natural order on S is

x ≤ y ⇔ x y = x

Restricted to I(S), the natural order is the usual one for inverse semi-
groups. Restricted to g(S) it is also the usual order on idempotents.

Proposition 3.2. [2, Section 2.1.4] The natural order is a compatible partial
order and g -homomorphisms are monotone.

Proof. x ≤ x by (g .1). If x ≤ y ≤ x then

x = x y = x y x = y x x = y x = y

which gives antisymmetry. If x ≤ y ≤ z then

x z = x y z = x y z = x y = x

so x ≤ z . Fix a and let x ≤ y . Then

xa ya = xax ya (g .6) = xaxa = xa

shows xa ≤ ya . Further,
ax ay = a x y = ay

so ax ≤ ay . This completes the proof that ≤ is a compatible partial order. If
f : S → T is a g -homomorphism and x ≤ y in S then xf yf = (x y)f = xf so
xf ≤ yf and f is monotone.

Mitsch [24] defines a partial order ≤M on an arbitrary semigroup by

x ≤M y ⇔ (∃ t, u ∈ S1) x = ty = yu, tx = x

If x ≤ y , set t = x to get x = ty = tx . This begs for a comparison of the two
orders. For a monoid as in Example 2.10, x ≤ y ⇔ x = y whereas x ≤M y
is often nontrivial. In Pfn(X), if g is a constant total transformation and if
∅ �= f < g , no h exists with f = gh so f �≤M g . In general, ≤M is not a
compatible partial order. Note, also, that ≤M is determined by the semigroup
structure alone whereas ≤ is not. So, one concludes in the main, that ≤ and
≤M behave quite differently.

Observe that (g .6) asserts that xy ≤ x .
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Generalizing the terminology of [23], we have

Proposition 3.3. The natural order on a g -semigroup is amenable, that is,
x ≤ y ⇒ x ≤ y .

Proof. x y = x y = x y = x .

Proposition 3.4. Let S be a semigroup, e ∈ g(S) , A = {x: x = e} . Then
A is discretely ordered under the natural order.

Proof. Let x, y ∈ A , x ≤ y . Then x = x y = y y = y .

Definition 3.5. Let (X,≤) be a poset, A ⊂ X . A is a lower set if x ≤ a
with a ∈ A implies x ∈ A . Dually, A is an upper set if a ≤ x with a ∈ A
implies x ∈ A .

Proposition 3.6. Let S be a g -semigroup, H a g -full g -subsemigroup of
S . Then H is a lower set.

Proof. Let x ≤ h with h ∈ H . Then as x = xh and x ∈ H , x ∈ H .

Recall that the negative cone of a partially ordered semigroup is
{x: ∀ y xy ≤ y, yx ≤ y} .

Theorem 3.7. Let S be a g -semigroup. Then g(S) is the negative cone of
S . Moreover,

x = Min{e ∈ g(S): ex = x}

so the guard operator is determined by its natural order.

Proof. Because x y y = x y y = x y , x y ≤ y . Also, y x ≤ y because
y x y = yx y (g .9) = y x . Conversely, if x is in the negative cone then
x = xx ≤ x so, by Proposition 3.4, x = x . This shows that the negative
cone is precisely g(S). If e ∈ g(S) with ex = x then e x = e x = e x = ex = x ,
so x ≤ e .

The preceding theorem establishes GS as a subcategory of the category
of partially ordered semigroups and monotone homomorphisms, although it is
not a full subcategory.

Notice that in any guarded semigroup, g(S) is a lower set. For this is
true of the negative cone in any partially ordered semigroup.

We next apply the natural order to characterize inverse semigroups within
guarded semigroups.

Proposition 3.8. Let S be a g -semigroup. Then S is an inverse semigroup
if and only if S is regular and replete.

Proof. That an inverse semigroup is regular is clear and, since all idempo-
tents have form xx−1 = x for some x , it is replete as well. Conversely, if S is
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regular and E(S) = g(S), idempotents commute so that the underlying semi-
group of S is inverse, but we must also prove that x = xx−1 . To that end,
as x =

∧
{e: e2 = e, ex = x} , as xx−1x = x , and as xx−1 is idempotent,

x ≤ xx−1 . Further,

xx−1 x = xx−1x−1 = x(xx)−1 = xx−1

gives xx−1 ≤ x .

4. Fundamental structure theorems

The following Wagner/Preston theorem (at least for g -monoids) appears in [2,
Theorem 3.9] as a corollary of a much more extensive theorem for categories. We
offer here a straightforward proof in the style of the usual theorem for inverse
semigroups.

Theorem 4.1. Every g -semigroup S is isomorphic to a g -subsemigroup of
Pfn(S) .

Proof. Define ρ: S → Pfn(S), a �→ ρa by

x ρa =

{
xa if x ∈ Da
⊥ otherwise

where ⊥ means “undefined” and Da = Dom(ρa) is yet to be determined. As ρ
is to preserve guards, ρa must be the same as ρa . Thus xρa is xa for x ∈ Da
and xρa is x for x ∈ Da . This strongly suggests that we define

Da = {x: x a = x}

and we do so. Then Da = {x: x a = x} = Da and so ρ preserves guards.
Since x(ab) = (xa)b , ρab = ρa ρb providing both transformations have the same
domain. Now

x ρab is defined ⇔ x ab = x

x ρa ρb is defined ⇔ x a = x and x a b = xa

First suppose that x ρab is defined. Then x a = x ab a = x ab = x and
x a b = x ab a = xa , so x ρa ρb is defined. Conversely, suppose that x ρa ρb
is defined. Then

x ab = xab x = xa b x = xax = x ax = xx = x

Thus ρ is a g -homomorphism and it remains only to show ρ is injective. Let
ρa = ρb so that Da = Db and xa = xb for x ∈ Da . As a a = a , a ∈ Da . Thus
a = a a = a b which shows a ≤ b . Symmetrically, b ≤ a .
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For inverse semigroups, the proof of the above theorem is similar, using
Da = Sa−1 . Noting that a = aa−1 , it is routine to check that Sa−1 = {x: x a =
x} . Thus for a guarded semigroup that happens to be an inverse semigroup, the
usual proof of the Wagner/Preston theorem is obtained from the proof above,
although one has to further check closure under inverses.

Definition 4.2. A left ample semigroup is a g -semigroup isomorphic to
a g -subsemigroup of the g -semigroup IX of injective partial transformations.

Proposition 4.3. A g -semigroup is left ample if and only if it satisfies the
equational implication

x a = x, y a = y, xa = ya ⇒ x = y

Proof. Suppose f, g, h ∈ IX with f h = f, g h = g, fh = gh . Let xf be
defined. As f h = f , xfh is defined so that xfh = xgh . As h is injective,
xf = xg . This shows f ≤ g . Symmetrically, g ≤ f , so f = g . Thus
the equational implication holds for IX , hence for any left ample semigroup.
Conversely, consider the embedding ρ of Theorem 4.1. Let xρa, yρa be defined
and equal so that x a = a , y a = y , xa = ya . By hypothesis, x = y . Thus ρ
takes values in IX .

A similar description of left ample semigroups as a quasivariety appears
in [14, Lemma 2.2].

Semidirect products of appropriate monoids with semilattices have played
a role on several fronts: free inverse semigroups [25], proper inverse semigroups
[21], [22] and other proper semigroups ([7], [9] to cite but two). The same will
be true for g -semigroups. We begin with the basic construction.

Let L be a commutative band so that L is an inf semilattice with respect
to x ≤ y ⇔ xy = x and a sup semilattice with respect to x ≤ y ⇔ xy = y .
Both interpretations will arise naturally later. Let S be a monoid acting on L
on the left via

τ : S × L→ L, (s, e) �→ s · e

that is, the following equations hold.

(act.1) (st) · e = s · (t · e)
(act.2) 1 · e = e

(act.3) s · (ef) = (s · e)(s · f)

The resulting semidirect product of L with S is the semigroup structure on
L× S given by

(e, s)(f, t) = (e(s · f), st)

It is well known that this is a semigroup, and we denote it as L × τ S , dropping
the subscript when it is clear from context or irrelevant.
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Proposition 4.4. A semidirect product L × S is a g -semigroup if (e, s) =
(e, 1) .

Proof. (g .1) (e, s) (e, s) = (e, 1)(e, s) = (e(1 · e), 1 s) = (e, s).

(g .2) (e, 1)(f, 1) = (ef, 1) = (fe, 1) = (f, 1)(e, 1).

(g .3) (e, s) (f, t) = (e, 1) (f, t) = (ef, 1) = (e, s) (e, t).

(g .4) (e, s) (f, t) = (e, s)(f, 1) = (e(s · f), s) = (e(s · f)(1 · e), s) =
(e(s · f), 1) (e, x) = (e, s) (f, t) (e, s).

Definition 4.5. A g -homomorphism ψ: S → T is g -idempotent sepa-
rating if e �= f ∈ g(S) ⇒ eψ �= fψ . If ψ even induces an isomorphism
g(S) ∼= g(T ) then ψ is strong g -idempotent separating.

The following is a covering theorem of McAlister type for guarded semi-
groups. It asserts that arbitrary g -semigroups can be built from the extremal
cases, monoids (only one guard) and semilattices (every element is a guard).

Theorem 4.6. Every g -semigroup S is the image under a strong g -idem-
potent separating g -homomorphism of a full g -subsemigroup H of a semidirect
product of a monoid with a semilattice. Moreover, H can be taken finite if S is.

Proof. If S is a g -semigroup, S1 acts on the semilattice g(S) by (s, e)τ =
s · e = se . We check the action equations (act.1, act.2, act.3). (st) · e = ste =
ste = s · (t · e); 1 · e = 1e = e ; s · (ef) = sef whereas (s · e)(s · f) = se sf .
The two expressions are equal in Pfn(X) because if e = gB , f = gC , and
A = {x: xs is defined, xs ∈ B ∩ C} , both sides are gA . But if the equation
holds in all Pfn(X) it must hold in all g -semigroups. Define

H = {(e, x) ∈ g(S) × τ S
1: e ≤ s}

(more precisely, if s ∈ S , s is the original guard whereas if s = 1, 1 = 1. Hence
we use S1 as a monoid, ignoring the guard structure, to construct the semidirect
product but use the guard structure to define the subset H ). If e ≤ s, f ≤ t
then (e, s)(f, t) = (esf, st) and, using the amenable property and (g .9),

esf ≤ sst = s st ≤ st

so H is a subsemigroup. For e ∈ g(S), e ≤ 1 = 1 since e1 = e , so (e, 1) ∈ H
and H is a full g -subsemigroup, finite if S is. Define γ: H → S by

(e, s)γ = es

Then

((e, s)(f, t))γ = (esf, st)γ = e sf st = esft = esft = (e, s)γ (f, t)γ
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Also, as e ≤ s ,

(e, s)γ = es = es = e = e = (e, 1)γ = (e, s) γ

This shows so far that γ is a g -homomorphism. Given s , (s, s)γ = s , so γ is
surjective. As (1, e)(1, f) = (1, ef), γ induces an isomorphism g(H) ∼= g(S).

Corollary 4.7. The class of semidirect products L × τ S , for τ a left action
of the monoid S on the semilattice L , satisfies no equations in the operations
xy , x which are not satisfied by all g -semigroups.

It is well known that groups constitute a full reflective subcategory of
inverse semigroups where the group reflection of a semigroup S is S/σ for the
congruence σ is given by

xσy ⇔ (∃ e) e2 = e, ex = ey

It is obvious that all idempotents are in a single σ -class, so that S/σ is an inverse
semigroup with one idempotent, hence a group. The construction works as well
for guarded semigroups, save that a guarded semigroup with one idempotent
is a monoid. The formal statement is as follows, where a g -congruence on
a g -semigroup S is a g -subsemigroup of S × S which is also an equivalence
relation.

Proposition 4.8. Let S be a guarded semigroup. Write xσy if there exists
e ∈ g(S) with ex = ey . Then σ is a g -congruence and S/σ is the reflection of
S in the full subcategory of monoids in GS .

Proof. xx = xx shows σ is reflexive, and symmetric is obvious. If e, f ∈
g(S) and ex = ey , fy = fz , efx = fex = fey = efy = efz , so σ is an
equivalence relation. If xσy choose e ∈ g(S) with ex = ey . Let z ∈ S . Then
exz = eyz . Also, ze zx = z e x = zex = zey = zey . Thus σ is a semigroup
congruence. Since g(S) is a subsemilattice, all guards are in one σ -class so
σ is a g -congruence and S/σ is a monoid. Now consider a g -homomorphism
f : S → M where M is a monoid. We must show there exists a unique g -
homomorphism ψ in the triangle

S
θ ✲ S/σ

❅
❅
❅
❅
❅

f
❘ ✠�

�
�
�
�

θ

M

To that end it is necessary and sufficient to show that if xσy then xf = yf . If
e ∈ g(S) and ex = ey then as ef = x f = ef is the unit of M ,

xf = xf ef = (xe)f = (ye)f = yf
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Example 4.9. Let L be a semilattice and let S be a monoid. For any
semidirect product L × S , (e, s)σ (f, t) ⇔ s = t . Thus the monoid reflection
is the projection map L × S → S .

5. Proper guarded semigroups

Lemma 5.1. Let S be a g -semigroup, x, y ∈ S . Then

((∀ e ∈ g(S)) ex = x ⇔ ey = y) ⇔ x = y

Proof. The left side implies the right because x =
∧
{e ∈ g(S): ex = x} .

Conversely, if x = y and ex = x then x ≤ e so y ≤ e and ey ≤ y = yy ≤ ey
shows ey = y .

Definition 5.2. A guarded semigroup is g -proper if whenever x = y and
(∃ e ∈ g(S)) ex = ey , then necessarily x = y . S is g -unitary if g(S) is an
upper set.

g -proper and g -unitary coincide with proper and E -unitary for weakly
left ample semigroups, left ample semigroups and inverse semigroups since these
are replete. It is known [7, Example 3] that g -unitary does not imply g -proper.

Proposition 5.3. A g -proper guarded semigroup is g -unitary.

Proof. Let e ∈ g(S), e ≤ s . Then s = s and es = es = e . As e ≤ s ,
e = e ≤ s so, similarly, es = e . Thus es = es . By g -proper, s = s .

Extremal guarded semigroups are g -proper. If S is a monoid, g(S) = {1}
so if ex = ey for some guard e , x = y . If S is a semilattice, x = y ⇔ x = y
because x = x . More generally we have

Example 5.4. L × S (L a semilattice, S a monoid) is g -proper. For
(e, s) = (f, t) ⇔ e = f and ∃(g, 1) with (g, 1)(e, s) = (g, 1)(f, t) ⇒ s = t .

It is clear from the definition that g -proper guarded semigroups form a
quasivariety, so any g -subsemigroup of a g -proper semigroup is g -proper. In
particular, Theorem 4.6 shows that every guarded semigroup is a g -idempotent
separating image of a g -proper guarded semigroup.

Example 5.5. Let G be a lattice-ordered group. Let S be a submonoid
of G and let H be a convex subgroup of G . By [3, Theorem 8.2], the left
coset space G/H is an inf-semilattice with xH ∧ yH = (x ∧ y)H . S acts on
G/H by g · (xH) = (gx)H , as is well known. The resulting semidirect product
S × (G/H) is then a proper g -semigroup. It is, in fact, left ample because S
is right cancellative, as is easy to check.

6. Free guarded semigroups

Cockett and Lack [2] constructed the free restriction category generated by a
category, influenced by Scheiblich’s construction of the free inverse semigroup
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in [25]. We use the same proof to construct the free g -semigroup generated
by a semigroup, but present it to show the use of some topological ideas and
to highlight a connection with Green’s R order. Of course, the free g -semi-
group generated by a set X is just the free g -semigroup generated by the free
semigroup generated by X .

If A is a subset of a topological space, we denote the closure of A by
A• . It is well known that a function f between topological spaces is continuous
if and only if A•f ⊂ (Af)• . We pause to establish two other versions of this
which we need.

Lemma 6.1. Let f : X → Y be a function between topological spaces. Then
the following conditions are equivalent to the continuity of f .

(cont.1) A•f ⊂ (Af)•

(cont.2) A• = B• ⇒ (Af)• = (Bf)•

(cont.3) (A•f)• = (Af)•

Proof. (cont.1) ⇒ (cont.2): If A• = B• then (Af)• ⊃ (A•)f = (B•)f ⊃
Bf so that (Bf)• ⊂ (Af)• , and the reverse inequality symmetrically. (cont.2)
⇒ (cont.3): A• = A•• ⇒ (Af)• = (A•f)• . (cont.3) ⇒ (cont.1): A•f ⊂
(A•f)• = (Af)• .

Example 6.2. Let S be a left topological monoid with unit 1, that is, a
monoid equipped with a topology (no separation axioms assumed!) for which all
left multiplications λa , xλa = ax , are continuous. Let C be the sup semilattice
of closed subsets of X , the join being union. Then S acts on C on the left by

s ·A = (sA)•, where sA = {sa: a ∈ A}

We check the action axioms. Since λa is continuous it follows from (cont.3)
that (s(tA)•)• = (stA)• , and this is precisely (act.1). Since elements of C
are closed, (act.2) is obvious, and (act.3) amounts to the Kuratowski axiom
(A ∪ B)• = A• ∪ B• .

Definition 6.3. Let PO be the category of preordered sets (X,≤) (i.e., ≤
is reflexive and transitive) and monotone maps (x ≤ y ⇒ fx ≤ fy ). Let TOP

be the category of topological spaces and continuous maps. It is known ([19])
that PO is the full subcategory of TOPof all spaces with the property that every
intersection of open sets is open–we call such spaces pospaces.

We review the constructions. Given preordered (X,≤), the pospace
topology of (X,≤) has as its open sets precisely all the lower sets. Conversely,
if X is a pospace the corresponding preorder, called the specialization pre-
order, is defined by

x ≤ y ⇔ y ∈ {x}• ⇔ x ∈ Uy
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where Uy is the intersection of all open neighborhoods of y . As is easily checked,
the closed subsets are just the upper sets. More generally, A• = {x: (∃a ∈
A) x ≥ a} . Note that ≤ is antisymmetric if and only if the corresponding
pospace is T0. While many nontrivial results appear in [19], the facts stated
here are easily established by the reader.

Green’s R order is reflexive and transitive and so induces a pospace as
follows.

Proposition 6.4. Let S be an arbitrary semigroup. Then

A• = {y: (∃x ∈ S1), yx ∈ A}

is a Kuratowski closure operator on S . With this topology, S is a left topological
semigroup.

Proof. The Green order y ≤R z if (∃x ∈ S1) yx = z is reflexive and transi-
tive and satisfies ∀w, y ≤R z ⇒ wy ≤R wz . The given closure formula above is
just the closure operator of the pospace topology. The left multiplications are
monotone, as already noted, and so are continuous.

We apply the previous proposition to the construction of free guarded
semigroups.

Theorem 6.5. [2, Pages 232–235] Let S be a semigroup. Regard S1 as a
left topological monoid via the green R-order as in Proposition 6.4. Let C × S1

be the semidirect product g -semigroup resulting from Proposition 4.4 using the
action of Example 6.2. Define

HS = {(A, x) ∈ C × S1: x ∈ A ∪ {1}, A = F • for some finite F}

Then HS is a g -subsemigroup and, via the inclusion of the generators η: S →
HS , x �→ ({x}•, x) , HS is the free guarded semigroup generated by the semi-
group S .

Proof. (A, x) ∈ HS ⇒ (A, 1) ∈ HS so HS is closed under guards. We
must check that HS is a subsemigroup. Composition is given by

(F •, x)(G•, y) = (F • ∪ (xG•)•), xy)

= (F • ∪ (xG)•, xy) (cont.3)

= ((F ∪ xG)•, xy)

and F ∪ xG is finite. If xy �= 1 we must prove xy ∈ F • ∪ (xG)• . If x �= 1 = y ,
xy = x ∈ F • . Otherwise, y ∈ G• so xy ∈ xG• . So far, we have shown that HS
is a guarded semigroup. We next show that η is a semigroup homomorphism.
For convenience we start writing a• instead of the more cumbersome {a}• .
Since x ∈ (xy)• ,

(xη)(yη) = (x• ∪ (xy)•, xy) = ((xy)•, xy) = (xy)η
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To complete the proof, we must establish the universal property

S
η ✲ HS

❅
❅
❅
❅
❅

f
❘ ✠�

�
�
�
�

ψ

T

that for each guarded semigroup T and semigroup homomorphism f : S → T
there exists a unique g -homomoprhism ψ: HS → T with η ψ = f . To this end,
let F = {x1, . . . , xn} ⊂ S so that a typical element of HS has form (F •, x). If
x �= 1,

(F •, x) = ({x, x1, . . . , xn}•, x) (as x ∈ F •)
= (x• ∪ x•1 ∪ · · · ∪ x•n, x)

= x1η · · ·xnη (xη)

Similarly, (F •, 1) = x1η · · ·xnη . We are thus forced to define

(F •, x)ψ = x1f . . . xnf (xf)

(F •, 1)ψ = x1f . . . xnf

which establishes uniqueness. We must show that such a definition of ψ is
independent of the choice of F and results in a homomorphism of guarded
semigroups which extends f .

If y ∈ F • with y /∈ F = {x1, . . . , xn} ⊂ S , it follows from the definition
of the closure operator that there exist t ∈ S, 1 ≤ i ≤ n with yt = xi ∈
F . As (yt)f = (yf)(tf) ≤ yf , x1f . . . xnf yf = x1f . . . xnf . Hence if
G = {y1, . . . ym} with G• = F • then x1f . . . xnf y1f . . . ymf = x1f . . . xnf .
Arguing symmetrically,

y1f . . . ymf = x1f . . . xnf y1f . . . ymf = x1f . . . xnf

so ψ is well defined.

ψ extends f since xηψ = (x•, x)ψ = xf xf = xf . ψ preserves
guards since if x �= 1, (F •, x)ψ = (F •, 1)ψ = x1f . . . xnf = x1f . . . xnf xf

(as x ∈ F • ) = x1f . . . xnf (xf) (g .3) = (F •, x)ψ . Similarly, (F •, 1)ψ =

x1f . . . xnf = x1f . . . xnf = (F •, 1)ψ .

It remains to show ψ is a semigroup homomorphism. If x �= 1 �= y ,
F = {a1, . . . , am} , G = {b1, . . . , bn} ,

((F •, x)(G•, y))ψ = ((F ∪ xG)•, xy)ψ

= a1f · · · amf xb1f · · ·xbnf (xy)f
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whereas n uses of (g .4) give

(F •, x)ψ (G•, y)ψ = a1f · · · amf(xf)b1f · · · bnf(yf)

= a1f · · · amf xb1f (xf) b2f · · · bnf (yf)

. . .

= a1f · · · amf xb1f · · ·xbnf (xf)(yf)

and these results are the same because f is a semigroup homomorphism. The
other cases x = 1 �= y , x �= 1 = y , x = 1 = y are similar.

For X a set, let X+ be the free semigroup generated by X and let
X∗ = (X+)1 denote the free monoid generated by X .

Corollary 6.6. The free g -semigroup generated by a set X is the set of all
(Q,w) with Q ⊂ X+ finite and prefix-closed and w ∈ X∗ such that w ∈ Q∪{1}
with multiplication (Q,w)(R, v) = (Q ∪ wR,wv) , guard (Q, r) = (Q, 1) and
inclusion of the generators x �→ ({x}, x) .

7. An alternate equational description

Recall that a right normal band is a band satisfying xya = yxa .

Definition 7.1. Let GSlu be the variety of guarded semigroups with specified
left unit u , ux = x for all x . Homomorphisms must preserve u .

Because S1 has 1 as left unit for any g -semigroup S , a characterization of
this variety is very nearly a characterization of guarded semigroups. We now
determine GSlu entirely with semigroups and no explicit guard. The trick is to
use two semigroup structures!

Proposition 7.2. GSlu may be presented as the variety of all (S, ·, u, �)
where (S, ·) is a semigroup (write xy for x · y ), u is a left unit for (S, ·) and
(S, �) is a right normal band subject to the three equations

(g� .1) u � x = x

(g� .2) (y � z)x = y � (zx)

(g� .3) x(y � u) = (xy) � x

Proof. First let S be a g -semigroup and define

x � y = x y

Then (x � y) � z = xyz = x y z = x � (y � z); x � x = xx = x ; x � y � a = x y a =
y x a = y � x � a , so (S, �) is a right normal band. Observe

x = ux = uxu = xu
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Setting x = u , u = uu = u . We check (g� .1, g� .1, g� .3). u�x = uy = uy = y ;
(y � z)x = yzx = y � (zx); x(y � u) = xyu = xy = xyx = (xy) � x . Conversely,
consider (S, ·, u, �) with (S, �) a right normal band such that (g� .1, g� .1, g� .3)
hold. Define

x = x � u

and check (g .1, . . . ,g .4). xx = (x � u)x = x � (ux) = x � x = x ; x y =
(x � u)(y � u) = x � (u(y � u)) = x � y � u = y � x � u (right normal) = . . . = y x ;
x y = ((x � u)y) � u = x � (uy) � u = x � y � u = (as above) x y ; xy = x(y � u) =
(xy) � x = (xy) � (ux) = (xy � u)x = xy x . To conclude the proof we must

show these passages are inverse. If (S, ·, u, (-) �→ (S, ·, u, �) �→ (S, ·, u, (̂-))
then x̂ = x � u = xu = x . If (S, ·, u, �) �→ (S, ·, u, (-)) �→ (S, ·, u, ��) then
x��y = xy = (x � u)y = x � u � y = x � y .

8. Banded semigroups

As we have seen in the previous section, if a g -semigroup has a left unit u , the
auxiliary operation x � y = xy is a right normal band with x = x � u . Even
without a left unit, we can consider the variety in binary x � y and unary x
satisfying all equations in these operations which hold in all g -semigroups. The
algebras in this variety are called banded semigroups. We begin with a formal
definition in terms of four equations which, it turns out, entail all the others.
Later in the section we provide a characterization of those bands (S, �) which
admit a the structure of a banded semigroup.

Definition 8.1. A banded semigroup, g�-band for short, is (S, �, )
where (S, �) is a semigroup and x �→ x is a unary operation subject to the
previous equations (g .1, g .2, g .3) as well as

(g� .1) x � y = x � y

The variety of all g� -bands will be denoted G�B . Homomorphisms here preserve
x � y and x and we call them g�-homomorphisms. A g�subband of a g� -
band is a subsemigroup closed under x and such is g�-full is it contains x for
arbitrary x .

Every guarded semigroup induces a canonical banded semigroup structure
on the same set as follows.

Proposition 8.2. �: GS → G�B defined by

�(S, ·, ) = (S, �, ), x � y = xy

is a well-defined functor.

Proof. For (g .1, g .2, g .3), x � x = xx = xx = x ; x � y = x y = x y =

y x = · · · = y � x ; x � y = xy = xy = x y = x � y . (g� .1) is trivial as x � y =
xy = xy = x � y . If f is a g -homomorphism, (x � y)f = (xy)f = xf (yf) =
xf � yf .
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Proposition 8.3. A g�-band is a right normal band and the following hold:

(g� .2) x = x

(g� .3) x � y = x � y

(g� .4) x � y = y � x

Proof. x � x = x � x = x ; x � y � a = x � y � a = x � y � a = y � x � a =
· · · = y � x � a , so S is a right normal band. (g� .2) is the same as (g .7)
which follows from (g .1,g .2,g .3). For (g� .3), x � y = x � y = x � y ; For (g� .4),
x � y = x � y = y � x = y � x .

If S, T are g� -bands, the set [S, T ] of all g� -homomorphisms from S to
T is a banded semigroup with the pointwise operations, as is routine to check.
It follows from the theorem of Linton [18] that G�B is a closed category with
the appropriate tensor product and that the left and right inner translations of
S as well as x �→ x are g� -endomorphisms.

For S a g� -band, denote

g�(S) = {x: x = x} = {x: x ∈ S}

By the preceding proposition, g�(S) is a semilattice with infimum x � y . The
semilattice g�(�S) of �S coincides with g(S).

Proposition 8.4. Let (S, �, ) be a g�-band. Then

x ≤ y ⇔ x � y = x

is a compatible partial order on S satisfying

(g� .5) a � x ≤ x

(g� .6) x = y and x ≤ y ⇔ x = y

With respect to this order, every semigroup homomorphism between g�-bands is
monotone. Moreover, the negative cone N satisfies

N = Z(S, �) ⊂ g�(S)

where Z(S, �) is the semigroup center.

Proof. Since x ≤ y ⇔ xy = x , the proof that ≤ is a partial order
and that x ≤ y ⇔ a � x ≤ a � y from Proposition 3.2 works here as well
since (g .4) is not used there. To see x � a ≤ y � a use right normality:
x � a � y � a = x � y � a = x � a . (g� .5) is trivial: a � x � x = a � x . For
(g � .6), x = x � y = x � y = y � y = y . If f is a semigroup homomorphism and
x ≤ y then x � y = x ⇒ xf = (x � y)f = (xf) � (yf) so that xf ≤ yf . By
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(g� .5), N = {a: ∀x, x � a ≤ x} . If a ∈ N then a = a � a ≤ a so a = a by
(g� .6) and this shows N ⊂ g�(S). For a ∈ N , x ∈ S , as x � a ≤ x we have

x � a = x � a � x = a � x � x = a � x

so a ∈ Z(S, �). If a ∈ Z(S, �), x ∈ S , then x � a � x = x � x � a = x � a so
x � a ≤ x and a ∈ N .

Example 8.5. If the g -semigroup S is a semilattice then �S = S , that is,
x � y = xy = xy . Thus a semilattice satisfies all five equations (g .1, . . . ,g .4,
g� .1). Conversely, if (S, �, ) satisfies all five equations then it is a semilattice.

To see this, first observe

x � y � x = x � y � x = x � y = x � y = y � x = · · · = y � x � y

But then,

x � y = x � y � y = y � x � y = x � y � x = y � x � x = y � x

and S is a commutative band. Moreover,

x = x � x = x � x = x � x = x

so S is a semilattice.

Example 8.6. Let S a any monoid qua g -semigroup with x = 1 . Then �S
is a right zero semigroup since x � y = xy = 1 y = y

Indeed, for any set S with x0 ∈ S , x � y = y , x = x0 gives a g� -band. If a
g� -band is right zero then x must be constant since

x = y � x = x � y = y

Semilattices and right zero g� -bands generate the variety of all g� -bands.
This is an immediate corollary of the construction of the free g� -band in the
proof of the next proposition.

Proposition 8.7. Let X be a set and set X⊥ = X ∪ {⊥} where ⊥ /∈ X .
Regard X⊥ as the right zero g�-band with x =⊥ . Let P0(X) be the semilattice
of finite subsets of X under union. Then

J(X) = {(A, x) ∈ P0(X) ×X⊥: x ∈ A ∪ {⊥}}

is a g�-subband of the product band. Further, with respect to the inclusion

η: X → J(X), x �→ ({x}, x)

J(X) is the free g�-band generated by X .
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Proof. If (A, x), (B, y) ∈ J(X) then

(A, x)(B, y) = (A ∪B, y)

As y ∈ B ∪ {⊥} , y ∈ A ∪ B ∪ {⊥} . Also, (A, x) = (A, x) = (A,⊥) with
⊥∈ A∪ {⊥} . Thus, J(X) is a full g� -subband of P0(X)×X⊥ . Now, let S be
an arbitrary g� -band and let f : X → S be any function. We must show that
there exists unique g� -homomorphism ψ: J(X) → S with ηψ = f . Consider
(A, x) ∈ J(X). If x ∈ A write A = {a1, . . . , an−1, x} and observe that

(A, x) = ({a1},⊥) · · · ({an−1},⊥) ({x}, x) = a1 η · · · an−1 η (xη)

which forces
(A, x)ψ = a1 f · · · an−1 f (xf)

Similarly, if x =⊥ , necessarily

(A,⊥)ψ = a1 f · · · an f

where A = {a1, . . . , an} . It is routine to check that such ψ is a g� -homo-
morphism.

We are now able to prove the promised theorem connecting the equational
theory of g� -bands to guarded semigroups.

Theorem 8.8. Let E be the set of all equations in the operations x � y and
x which hold for �S as S ranges over all guarded semigroups. Let F be the set
of all equations in x � y and x which hold for all g�-bands. Then E = F .

Proof. F ⊂ E by Proposition 8.2. For the converse it suffices to show J(X)
has form �S since then all equations in E hold for all free g� -bands and hence
for all g� -bands. Let X have any semigroup structure, left or right zero for
example. Form the monoid X1 and let X⊥ = X1 with ⊥= 1. As is true for
any monoid, X1 acts on P0(x) (the finite subsets of X , recall) by x ·A = xA ,
where xA = {xa: a ∈ A} , as is routine to check. This gives rise to the semidirect
product g -semigroup P0(X) × X1 with operations

(A, x)(B, y) = (A ∪ xB, xy)
(A, x) = (A, 1)

But observe that �(P0(X) × X1) has multiplication

(A, x) � (B, y) = (A, 1)(B, y) = (A ∪B, y)

which is the product g� -band structure as in Proposition 8.7. Moreover, J(X)
is a g -subsemigroup of P0(X) × X1 because if y ∈ B then xy ∈ xB .
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The semigroups that underlie g -semigroups do not have very special
structure since all monoids are in this class. It is more interesting to ask which
right normal bands can be a g� -band for some x . The theorem of Yamada and
Kimura [26] gives that a band is a strong semilattice of rectangular bands if
and only if axya = ayxa . It is known (See [16, Corollary 5.18]) that the right
normal bands are precisely the strong semilattices of right zero semigroups.
See [1, Pages 402ff] for information about semilattices of right zero semigroups.
The next theorem gives necessary and sufficient conditions in this style for the
semigroups at hand.

Definition 8.9. Let the semigroup S be a semilattice of semigroups via a
semilattice-valued surjective homomorphism ψ: S → L . Say that such S is a
split semilattice of semigroups if there exists a homomorphism i: L→ S with
i ψ = idL .

Up to isomorphism, we may replace L by its image under i so that L is a
subsemigroup of S and ψ is a surjective homomorphism with xψ = x for x ∈ L .

Theorem 8.10. For a semigroup (S, �) , equivalent are

(1) There exists a unary operation x on S making (S, �, ) a g�-band.

(2) S is a split strong semilattice of right zero semigroups.

Proof. (1) ⇒ (2): Let L = g�(S), a semilattice with multiplication as
infimum whose partial order is the restriction of the partial order of Proposition
8.4. Define ψ: S → L by xψ = x . By (g� .2, g� .3), ψ is a semigroup
homomorphism and x ∈ L ⇒ xψ = x . For e ∈ L let Se = {x: x = e} .
For x, y ∈ Se , x � y = x � y = y � y = y , so Se is a right zero semigroup. So far,
S is a split semilattice of right zero semigroups. For e ≥ f define ψef : Se → Sf
by xψef = f �x . As f � x = f �x = f � e = f , this is well-defined. If e ≥ f ≥ g
then ψef ψfg = ψeg because xψef ψfg = (f � x)ψfg = g � f � x = g � x = xψeg .
Each ψef is a semigroup homomorphism because any function between right
zero semigroups is. For x ∈ Se , y ∈ Sf , we evaluate the the Se�f product

(xψe,e�f ) � (y ψf,e�f ) = y ψf,e�f (right zero) = e � f � y

= e � y � y = e � y = x � y = x � y

This shows that S is a split strong semilattice of right zero semigroups.

(2) ⇒ (1): Define x = xψ . For x ∈ Se , y ∈ Sf ,

x � y = (xψe,e�f ) � (y ψf,e�f ) = (xψe,e�f ) � (y ψf,e�f ) (right zero) = x � y

so (g� .1) holds. As x, x ∈ Sx , x � x = x by right zero. By semilattice,
x � y = y � x . Finally, as ψ is a semigroup homomorphism, x � y = x � y =
x � y .
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Proposition 8.11. Let D be the class of all semigroups (S, �) characterized
in the previous theorem, that is, for which there exists x �→ x making S a g�-
band. Then D is not a variety, but the variety it generates is that of all right
normal bands.

Proof. The lattice of varieties of bands is well-understood ([5]). The im-
mediate predecessors of the variety of right normal bands are the right zero
semigroups and semilattices. Since clearly D is contained in neither of these
(consider �S for, say, S = Pfn(X)), D generates all right normal bands.
An example of a right normal band not in D is the free one on two genera-
tors, S = {a, b, a � b, b � a} . For if S were a g� -band with respect to x , for
x = a, b, a � b, b � a , x � a is, respectively, a, b � a, b � a, b � a so the only solution
of x � a = a is x = a and a = a . Similarly, b = b . But as a � b �= b � a whereas
a � b = b � a , we have a contradiction.

9. Banded semigroups with given semilattice

Let L be a fixed meet semilattice. In this section we show how to construct the
general banded semigroup S with g�(S) ∼= L . We begin with some generalities.

Consider (C, 1) where C is a category and 1 is a chosen terminal object
of C . For X an object of C , we write x ∈ X to abbreviate that x is a morphism
x: 1 → X . Such x is called a global element of X . The category (C, 1)� has
as objects all pairs (X,x) with x ∈ X and has as morphisms f : (X,x) → (Y, y)
all morphisms f : X → Y in C such that xf = y .

Lop is the category whose objects are the elements of L and for which
there is at most one morphism x→ y with such existing precisely when x ≥ y .
Reflexivity gives identity morphisms and transitivity gives the composition. For
S the category of sets and total transformations, let SL

op

be the usual functor
category with functors Lop → S as objects and natural transformations as
morphisms.

Let 1 be a chosen singleton set in S and then choose the functor con-
stantly 1 as a terminal object of SL

op

, also denoted 1. We now show that objects
in (SL

op

, 1)� construct banded semigroups. For F ∈ SL
op

and e ≥ f ∈ L de-
note the corresponding function as Fe,f : eF → fF . A a global element τ ∈ F
amounts to a family τe ∈ eF such that whenever e ≥ f , τe Fe,f = τf .

Theorem 9.1. Let (F, τ) ∈ (SL
op

, 1)� . Let S be the disjoint union

S =
∐

(eF : e ∈ L)

and for x ∈ eF define x = τe ∈ eF ⊂ S . For x ∈ eF , y ∈ fF , define

x � y = y Ff,ef ∈ (ef)F ⊂ S

Then S = (S, �, ) is a g�-band with g�(S) ∼= L and every such g�-band arises
this way.
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Proof. Let x ∈ eF , y ∈ fF , z ∈ gF . To show associativity,

(x � y) � z = (y Ff,ef ) � z = z Fg,efg

= z Fg,fg Ffg,efg (functor)

= x � z Fg,fg = x � (y � z)

For (g .1),

x � x = τe � x = xFe,e

= x id
eF

(functor)

= x

For (g .2),

x � y = τe � τf = τf Ff,ef

= τef (τ is natural)

= τfe = y � x

For (g .3),

x � y = x � y

= τef (as x � y ∈ (ef)F )

= x � y (by (g .2) proof)

For (g� .1),

x � y = y Ff,ef

= τe � y (as τe ∈ eF )

= x � y

By construction, L → g�(S), e �→ τe is bijective. The proof of (g .2) showed
τe � τf = τe�f , so this map is an order isomorphism. Now let S be a g� -band
with g � (S) = L . Define eF = {x: x = e} and, for e ≥ f , Fe,f : eF → fF ,
x �→ f � x . As f � x = f � x = f � e = f , this is well defined. If e ≥ f ≥ g ,
xFe�f Ff�g = (f �x)Ff�g = g � (f �x) = (g �f)�x = g �x (as f ≥ g ) = xFe,g so
F preserves composition. xFe,e = e � x = x � x = x so F is a functor. τe = e
is natural as τeFe,g = f � e = f = τf .

We leave it as an exercise for the reader to show that the above construc-
tion establishes an equivalence of categories between (SL

op

, 1)� and the category
of banded semigroups S with g � (S) = L , where the morphisms of the latter
are g� -homomorphisms which restrict to the identity on L .
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10. Open questions

1. Characterize g -proper guarded semigroups.

2. Determine for which guarded semigroups, the g -semigroup natural order
coincides with the Mitsch partial order.

3. Forgetful functors between quasivarieties must have left adjoints. What
are explicit constructions for the left adjoints, for example, of the functors
�: GS−→G � B , g-proper−→GS , GSlu−→GS , Inverse−→GS ? What are
the surjective reflections for Left Ample−→GS ,

Weakly Left Ample−→GS ?

4. Characterize guarded semigroups as a class of partially ordered semi-
groups.

5. Is there a banded semigroup which is not the underlying banded semigroup
of a guarded semigroup?
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