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Abstract

It is known that the variety generated by a finite semigroup is finitely axioma-
tisable if and only if it is finitely axiomatisable in the class of finite semigroups
(M. Sapir [29]). We examine similar restrictions for most other common finite-
ness properties of semigroup varieties.
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A variety is said to be finitely based (abbreviated to FB) if there is a finite
subset of its identities from which all of its identities may be deduced. Likewise
an algebra S is said to be finitely based if it generates a finitely based variety.
There are many FB and many non-FB finite semigroups, and consequently the
finite basis property for finite semigroups, and for finite algebras in general has
been one of the most extensively studied in facets of varieties. We direct the
reader to [36] for an excellent survey and introduction to this topic in the case
of semigroups and their relatives.

A variety is hereditarily finitely based (abbreviated to HFB) if all of its
subvarieties are finitely based. Every finite group generates a HFB variety
[23], as does any commutative semigroup [24]. An elementary application of
Zorn’s Lemma shows that any variety that is not HFB contains a subvariety
that is minimal with respect to being not FB. Varieties with this property
are called limit varieties. There are very few explicitly constructed examples
of limit varieties. The six element semigroup B1

2 generates a limit variety in
the inverse semigroup signature [16] (with only 3 proper subvarieties), while
examples of semigroup limit varieties are constructed in [30] and [34]. Amongst
(locally finite) groups, there are known to be infinitely many limit varieties
[22], however the explicit construction of such an example remains one of the
foremost unsolved problems in group variety theory [17].

As much of the interest surrounding the finite basis property has centred
around finite algebras, it is natural to also consider this and related properties
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relativised to the class of finite algebras. Formally, we will say that a locally
finite variety V (or an algebra generating V) is finitely based within the class
of finite algebras (abbreviated to FBfin ) if there is an n ∈ N such that a finite
algebra A is contained in V if and only if its n -generated subalgebras are in
V . Equivalently, V is FBfin if there is a finite set Σ of identities satisfied by
V such that for a finite algebra A we have A ∈ V if and only if A satisfies Σ.
The possible inequivalence of the FBfin property and the general FB property
appears to be a tantalising open problem in universal algebra [3]1 , however for
finite semigroups, the two concepts coincide [29] (see also Lemma 1.1 below).

There now appear to be three reasonable possibilities for a relativised
HFB property (we omit possibilities where the concepts of FB and FBfin are
mixed). Namely, a finitely generated variety V could satisfy the relativised
HFB property if:

(1) all subvarieties of V are FBfin ; or

(2) all finitely generated subvarieties of V are FB; or

(3) all finitely generated subvarieties of V are FBfin .

There also appears to be at least three reasonable relativised versions of
the notion of a limit variety. Namely, a finitely generated variety V could be
denoted a relativised limit variety if:

(1) V is not FBfin , but all proper subvarieties of V are FBfin ; or

(2) V is not FB, but all proper finitely generated subvarieties of V are FB;
or

(3) V is not FBfin , but all proper finitely generated subvarieties of V are
FBfin .

In this paper we describe for finite semigroups, the possible discrepancies
between the general and relativised notions of the above properties. Because of
our restriction to finitely generated varieties of semigroups, some easy observa-
tions regarding the main result of [29] will enable some identifications between
the various relativised notions introduced above. The first of the relativised no-
tions of HFB and of limit varieties will become equivalent to their general forms,
while the second and third versions will coincide (details are given in Section 4).
However, we solve a problem from [36] by showing that the second and third
relativised versions of the HFB property turn out to be distinct from the gen-
eral version of the HFB property (Section 4). Similar behaviour is found for the
relativised notions of limit varieties (Section 5). We also survey the situation

1 If one (artificially) allows for the possibility that V be not locally finite, then the two
notions are distinct. To see this, let V be a non-finitely based variety whose finite members
are trivial—uncountably many unary varieties of this kind are constructed in Exercise II.14.8
of [2]. Then a finite algebra of appropriate signature is contained in V if and only if it satisfies
x ≈ y ; equivalently, if and only if its two generated subalgebras are trivial.
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for some relativised versions of a number of other related finiteness properties
(Section 6). In the final section we make some elementary observations and find
that satisfaction of any of these finiteness properties is undecidable for finitely
generated varieties.

Our main technique involves exploiting the dichotomy between the mon-
oid variety of a monoid and the semigroup variety of a monoid. Several other
results come out of this approach, including what appears to be the first explicit
construction of a monoid limit variety in the usual sense (Section 5).

We begin the paper with three preliminary sections. The second of these
(Section 2) is of some independent interest; namely a further characterisation
of the class of aperiodic semigroups with central idempotents.

1. Preliminaries: basic definitions

For standard notions of semigroup theory we direct the reader to a book, such
as [13]. Most of the essential definitions will be given here however.

A word in an alphabet X is an element of the free semigroup X+ , while
a possibly empty word in X is an element of the free monoid X∗ . Equality on
free semigroups and free monoids will be denoted ≡ . We will use letters x , y ,
z , s , t (with or without subscripts) for single letters and p , q , u , v , w (with
or without subscripts) for words or possibly empty words.

A semigroup identity is an expression u ≈ v where u and v are words.
A semigroup S satisfies the identity u ≈ v (in variables X , say) if for every
homomorphism θ : X+ → S , the equality θ(u) = θ(v) holds (written S |=
u ≈ v ). The set of identities of S over some fixed countably infinite alphabet
is denoted Id(S). The class of all semigroups satisfying the identities of S is
called the variety generated by S . Equivalently, the variety of S is the class
of all homomorphic images of subalgebras of direct powers of S . A variety is
finitely generated if it is the variety generated by a finite algebra.

We will denote the semigroup variety of a semigroup or monoid S by
V(S), and the monoid variety generated by a monoid by VM(S). In this paper
we will often use the fact that a monoid S is contained in the semigroup variety
of a monoid T if and only if it is contained in the monoid variety of T . This
is easily proved using the HSP definition of a variety; details can be found in
[10].

The notation S � T will be used to denote when Id(S) = Id(T) (equiva-
lently, V(S) = V(T)); that is, to denote equational equivalence. This and other
definitions given above can be extended to classes of semigroups or monoids in
the obvious way; for example if K is a class of semigroups, then Id(K) will de-
note the identities satisfied by all members of K , and for classes of semigroups
J and K , we write K � J when Id(J) = Id(K).

Let Σ be a set of semigroup identities over some fixed countably infinite
alphabet of letters X . An equational deduction of an identity p ≈ q (where p
and q are also words in X+ ) from Σ is a sequence p ≡ p0 ≈ p1 ≈ . . . ≈ pn ≡ q ,
where if n ≥ 1, then for each 0 ≤ i ≤ n − 1, there is an identity ui ≈ vi or
vi ≈ ui in Σ and a substitution θi : X

+ → X+ , such that pi+1 is obtained from
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pi by replacing the subword θi(ui) of pi by θi(vi). If such a deduction exists
we write Σ 
 p ≈ q (or Σ 
 K , if K is a set of identities equationally deducible
from Σ). Thus a semigroup S has a finite basis of identities (or simply, S is
FB) if there is a finite subset Σ ⊆ Id(S) such that Σ 
 Id(S). We can give a
similar definition of equational deduction for monoids, however as noted in [36],
a monoid is finitely based as a monoid if and only if it is finitely based as a
semigroup. The abbreviation NFB will be used to denote algebras or varieties
that are not FB.

Let V be a locally finite variety with only finitely many operations. A
well known result of G. Birkhoff ([1]; see also [2, Theorem 4.2]) states that for
each n ∈ N , the class Idn(V) of all identities of V in at most n variables can
be derived from some finite subset of Idn(V). Hence V is FB if and only if
there is an n ∈ N such that the identities of V in at most n -variables form
a basis for Id(V). Equivalently, V is NFB if and only if for every n ∈ N

there is an algebra An failing Id(V), but satisfying Idn(V). If the algebras
A1 , A2 , . . . can be chosen to be finite, then we can say that V is NFB within
the class of finite algebras (NFBfin ). The reader should consult the definition
of the FBfin property at the start of this paper to see that for locally finite
varieties of finite type, the NFBfin property is precisely the negation of the
FBfin property. The following fundamental result due to M. Sapir shows that
the FB and FBfin properties coincide for any variety that lies within the variety
generated by a finite semigroup or finite monoid.

Lemma 1.1. (M. Sapir [29]) Let V be a subvariety of a finitely generated
variety of semigroups (monoids). Then V is NFB if and only if for each
n ∈ N there are finite semigroups (monoids, respectively) Sn �∈ V such that
Sn satisfies all n-variable identities of V but not all identities of V .

We note that in [29] this result is only stated and proved for the semigroup
variety of a finite semigroup, however the more general result we have stated
follows from only a minor modification of the proof; full details are given in [10].

We will also be needing some facts relating to formal languages and
automata theory. For further details, we direct the reader to a book such as [5].
Let S be a monoid and T ⊆ S . We define the syntactic congruence, ∼T of T
in S by a∼T b if and only if

(∀x, y ∈ S) xay ∈ T ⇔ xby ∈ T.

If ∼T is the diagonal relation ∆ on S , then we say that T is a syntactic subset
of S . The quotient of a free monoid X∗ by the syntactic congruence of a set
(or language) W ⊆ X∗ is the syntactic monoid, SynM(W ), of W (in X∗ ). It
is well known that SynM(W ) is finite if and only if W is recognised by some
finite automata (Myhill’s Theorem).

Let A be a generating set for a monoid S and ν : A∗ → S be the unique
surjection extending the inclusion map from A into S . If T is a syntactic
subset of S , then the quotient of A∗ by the syntactic congruence of ν−1(T ) in
A∗ (that is, the syntactic monoid of ν−1(T ) in A∗ ) is isomorphic to S .
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If S is a semigroup that is not a monoid, and T ⊆ S , then one can define
the syntactic congruence of T in S by first adjoining an identity element and
then using the definition given above for monoids (of course in this case, the
identity element is only used for the definition of ∼T , and must be removed
before taking quotient of S by ∼T ). All other notions defined above for
syntactic monoids carry over to syntactic semigroups (with X+ replacing X∗ ).
The notation Syn(W ) denotes the syntactic semigroup of a language W (not
containing the empty word).

2. Preliminaries: aperiodic semigroups with central idempotents

In this section we develop some useful theory regarding the class of semigroups
from which our main examples are taken. In the context of this paper the
material is preliminary, however it is also of some independent interest and
accordingly we have developed it slightly beyond what is essential for our needs.

Recall that a semigroup is unipotent if it contains precisely one idem-
potent. A finite unipotent semigroup S that is aperiodic (that is, has trivial
subgroups) is nilpotent; for semigroups this simply means that there is a zero el-
ement 0, and a positive integer k (the cardinality of S will suffice) such that all
products of length k of elements of S are equal to 0; in this case we may more
precisely say that S is k -nilpotent. A finite monoid is said to be (k -) nilpo-
tent if it can be obtained by adjoining an identity element to a (k -) nilpotent
semigroup.

Varieties generated by finite nilpotent monoids have turned out to be a
surprisingly rich source of counterexamples in the study of semigroup varieties
[8, 9, 11, 24, 32] and we again use them in this paper. These structures were
also investigated by Straubing [33] who proved the following result (recall that
for semigroups S , T , we say that S divides T if S is a subsemigroup of a
homomorphic image of T).

Theorem 2.1. [33] Let S be a finite semigroup with n elements. The fol-
lowing are equivalent:

(i) S is an aperiodic semigroup with central idempotents;

(ii) S divides a direct product of syntactic monoids of finite languages;

(iii) S divides a direct product of finite nilpotent monoids;

(iv) S satisfies {xn+1 ≈ xn, xny ≈ yxn} ;

(v) S satisfies {xn+1 ≈ xn, y0xy1x . . . xyn ≈ xny0y1 . . . yn ≈ y0y1 . . . ynx
n} .

We let F denote the class of finite aperiodic semigroups with central idem-
potents. While Theorem 2.1 says much about the kind of semigroup we can
expect to find in the variety of a nilpotent monoid, we will require a still finer
description. In this section we are going to prove the following.
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Theorem 2.2. For every semigroup S ∈ F there are finite languages U and
V such that S � {Syn(U),SynM(V )} . If S is a monoid, then we can assume
that U is empty, while if S is a nilpotent semigroup then we may assume that
V is empty.

This theorem is proved in Lemmas 2.3–2.9.

The following result is probably part of the folklore, but we include its
proof for the sake of completeness.

Lemma 2.3. A finite aperiodic semigroup S has central idempotents if and
only if it is a subdirect product of a nilpotent semigroup and a finite set of
monoids in F .

Proof. The ‘if’ direction is trivial since F is closed under finite direct prod-
ucts and the taking of subsemigroups. Now let E denote the set of idempotents
in S , and let S have central idempotents. Because the idempotents in S are
central, the set I := {x ∈ S : (∃e ∈ E) xe = x} is an ideal of S contain-
ing E and therefore the Rees quotient S/I is a unipotent quotient of S . We
will denote S/I by SI and let νI : S → SI be the natural map. For each
e ∈ E let Se denote the subsemigroup of S on the set {xe : x ∈ S} . Again
since idempotents are central this is a homomorphic image of S under the map
νe defined by x �→ xe . Note that if x and y are such that xe �= ye for
some e then νe(x) �= νe(y). On the other hand if xe = ye for all e ∈ E
and x �= y then νI(x) �= νI(y). Indeed, if xe = ye for all e ∈ E but x , y
both lie in I then there are e, f ∈ E such that xe = x and yf = y . Then
x = xe = ye = yfe = xfe = xef = xf = yf = y .

Now there is a natural homomorphism φ : S →
∏
i∈E∪{I} Si given by

defining φ(s)(i) = νi(s). Since each distinct pair x, y ∈ S are separated by
a map νe or the map νI and each of these maps is onto, φ is a subdirect
embedding.

The assumption of aperiodicity played little role in this proof. If we omit this
assumption the proof shows that a semigroup with central idempotents is a
subdirect product of some monoids with a unipotent semigroup.

Lemma 2.4. Let S be a finite monoid with precisely two idempotents: an
identity element 1 and a zero element 0 . If S is aperiodic, then S is a nilpotent
monoid.

Proof. The divisors of 1 in a finite monoid lie in a subgroup containing 1.
Because S is aperiodic, it follows that no element of S\{1} divides 1; that
is S\{1} is a subuniverse of S . Let S− be the corresponding subsemigroup.
Evidently S− is unipotent, and hence nilpotent because S is finite.

Lemma 2.5. Every monoid in F is equationally equivalent to a finite set of
finite nilpotent monoids.
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Proof. Let S be a monoid in F and let E denote the idempotents of S . For
each idempotent e ∈ E , consider the quotient Se of S obtained by collapsing
each x onto the element xe (of course, Se is isomorphic to the subsemigroup Se
used in the proof of Lemma 2.3). The set Ie := {x ∈ Se : (∃f ∈ Ee\{e}) xf =
x} , forms an ideal in Se and we will denote the resulting Rees quotient by S(e).
Note that S(e) has only two idempotents: the identity element e and a zero
element. Lemma 2.4 then shows that S(e) is a nilpotent monoid.

We now claim that the map ι:S →
∏
e∈E S(e) given by ι(s)(e) = se/Ie

is a subdirect embedding. All but the injectivity of ι in this claim are obvious.
To see that ι is injective, let a and b be distinct elements in S and let e and
f be the smallest idempotents for which ae = a and bf = b . If e = f then
ι(a)(e) = a �= b = ι(b)(e). If e �= f then one of af = b or be = a must
fail since otherwise a = be = afe = aef = af = b . Say that af �= b . Now
ι(b)(f) = bf/If = b however ι(a)(f) = af/If which is either equal to the zero
of S(f) (when af ∈ If ) or it equals af . Because, af �= b �∈ If , in either case
ι(b)(f) �= ι(a)(f). This completes the proof that ι is a subdirect embedding
of S into a product of nilpotent monoid quotients of S . Hence S satisfies the
same identities as

∏
e∈E S(e), and so V(S) is generated by the finite set of finite

nilpotent monoids {S(e) : e ∈ E} .

Lemma 2.6. Let S be a finite nilpotent monoid (semigroup). Then S is
equationally equivalent to a finite set of finite syntactic nilpotent monoids (semi-
groups).

Proof. It is well known that every monoid (semigroup) is a subdirect product
of its syntactic monoid (semigroup) quotients [5]. However, every quotient of a
finite nilpotent monoid (semigroup) is either trivial (and can be ignored) or is
again a finite nilpotent monoid (semigroup).

Lemma 2.7. Let S be a nilpotent monoid containing a syntactic subset T
with T �= {1} and T �= S\{1} . Then ∼T\{1} = ∼T∪{1} = ∆ on S .

Proof. Let n be such that products of length n (not involving 1) in S
equal 0.

Claim 1. Neither ∼T\{1} nor ∼T∪{1} equals ∇ .
This is because neither T\{1} nor T ∪ {1} is empty or equal to S .

Let ρ denote one of ∼T\{1} or ∼T∪{1} .
Claim 2. The ρ -class containing 1 is a singleton.
Let θ be any congruence on S such that a ∈ S\{1} has 1 θ a . Then for every
x ∈ S we have x = x1 = x1n θ xan = x0 = 0. Hence θ = ∇ . Claim 2 follows
because ρ �= ∇ by Claim 1.

Now let a ∈ S\{1} . Because S is nilpotent, 1 has no proper divisors and
so we have:

Claim 3. (∀x, y ∈ S) xay ∈ T\{1} ⇔ xay ∈ T ∪ {1} ⇔ xay ∈ T .
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Finally, let a and b be ρ -related elements. To complete the proof we need
to show that a = b . By Claim 2 we have that either a = b = 1 or a, b ∈ S\{1} .
By Claim 3 we have a∼T b , which since T is syntactic in S , gives a = b .

Lemma 2.8. Let S be a finite nilpotent monoid (semigroup) that is also a
syntactic monoid (semigroup). Then S is the syntactic monoid (semigroup) of
a finite language.

Proof. The semigroup case is almost identical to the monoid case, but easier
because we do not need to consider the identity element. We leave this case to
the reader. So let us assume that S is a k -nilpotent monoid.

If S is trivial (one element), then it is the syntactic monoid of the empty
language over any finite alphabet. (Note that unless we allow empty semigroups,
a nilpotent monoid cannot be trivial.) Now let 2 denote the two element
semilattice. If S ∼= 2 then S is the syntactic monoid of the language {1}
(over any non-empty alphabet). For the remainder of the proof we assume that
S is neither trivial, nor isomorphic to 2 and that S is a finite nilpotent monoid
that is a syntactic monoid with syntactic subset T . Let A be a minimal set
of generators for S as a monoid and consider the natural map ν : A∗ → S .
By taking complements if necessary, we may assume that 0 �∈ T . Now S
is (isomorphic to) the syntactic monoid of ν−1(T ) in A∗ . By k -nilpotency,
ν−1(T ) consists of a set of words of lengths at most k−1 and since the alphabet
A is finite, it follows that ν−1(T ) is a finite language.

We note that in the semigroup case of the above proof, the finite language
obtained will not include the empty word 1.

Lemma 2.9. Let W1, . . . ,Wn be a finite family of finite languages. There
is a finite language W so that {SynM(Wi) : i = 1, . . . , n} � SynM(W ) , and
if 1 �∈ ∪1≤i≤nWi , then there is a finite language V such that {Syn(Wi) : i =
1, . . . , n} � Syn(V ) .

Proof. This result can be gleaned from the methods given in [10], but we
give the easy argument for completeness. We again leave the semigroup case to
the reader. Let us assume without loss of generality that the finite languages
W1, . . . ,Wn are each non-empty and over pairwise disjoint alphabets A1, . . . , An
(each finite). For each i there is a surjective morphism νi : A

∗
i → SynM(Wi)

such that the kernel of νi is the syntactic congruence of Wi in A∗i . We let
Vi denote νi(Wi). Because Wi is finite, we have 0 �∈ Vi . Now let W denote
the union ∪i≤nWi and amalgamate the monoids SynM(W1), . . . ,SynM(Wn) at
{0, 1} . Make the resulting object a monoid by letting any undefined products
equal 0. This monoid, which we denote here by S , is a nilpotent monoid.
Clearly each SynM(Wi) embeds into S ; in fact it does no harm to assume the
convention that each SynM(Wi) is actually a subalgebra of S .

Now let us consider the subset V := ∪1≤i≤nVi of S , and let ∼ denote
the syntactic congruence of V in S . Because S/∼ is a nilpotent monoid and
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a syntactic monoid, Lemma 2.8 shows that S/∼ is the syntactic monoid of a
finite language. (In fact, it is not hard to show that it is the syntactic monoid of
the language W in (∪1≤i≤nAi)∗ .) We now show that S/∼ generates the same
variety as {SynM(Wi) : i = 1, . . . , n} .

For each i we have V ∩SynM(Wi) = Vi or V ∩SynM(Wi) = Vi∪{1} and
so by Lemma 2.7, the restriction of ∼ to SynM(Wi) is at least as fine as the
syntactic congruence of Vi in SynM(Wi). However, this last congruence is the
diagonal relation because Vi is a syntactic subset of SynM(Wi). Hence, each
SynM(Wi) also embeds into S/∼ , showing that the (semigroup or monoid) va-
riety generated by S/∼ contains that generated by {SynM(Wi) : i = 1, . . . , n} .
For the other direction, we observe that S can be identified with the subalgebra
of the direct product

∏
1≤i≤n SynM(Wi), consisting of the element constantly

equal to 1 along with all elements that simultaneously satisfy the properties of
being equal to 0 on all but at most one coordinate and not equal to 1 on any
coordinate. Therefore S/∼ is a homomorphic image of a subalgebra of a direct
product of the monoids SynM(Wi), for i = 1, . . . , n and hence lies in the variety
these monoids generate. This now shows that S and {SynM(Wi) : i = 1, . . . , n}
generate the same varieties (equivalently, are equationally equivalent).

Now we complete the proof of Theorem 2.2. Let S be a member of F .
By Lemma 2.3, S is equationally equivalent to a set consisting of a nilpotent
semigroup and a finite set of monoids from F . By Lemma 2.5, this finite set of
monoids can be replaced by a finite set of finite nilpotent monoids. Lemmas 2.6,
2.8, 2.9 show that any finite collection of finite nilpotent monoids (semigroups)
is equationally equivalent to a single syntactic monoid (semigroup) of a finite
language. Thus S is equationally equivalent to a set consisting of a syntactic
semigroup of a finite language and a syntactic monoid of a finite language. This
completes the proof.

3. Preliminaries: a useful construction

In this short section, we gather together some further results, definitions and
constructions that are used throughout the remainder of the paper.

We will be examining the semigroup identities of monoids. The following
basic lemma is very useful in this regard and we use it freely and without
reference below.

Lemma 3.1. Let S be a monoid in the type 〈2〉 (that is, in the single binary
operation of multiplication) and p ≈ q be an identity satisfied by S . Then the
semigroup identity px ≈ qx obtained by deleting all occurrences of a variable x
in p ≈ q is also satisfied by S .

Proof. The identity p ≈ q is also satisfied by S considered as a monoid
(in the type 〈2, 0〉). In the variety of monoids we may deduce by equational
deduction the identity px ≈ qx (assign 1 to the variable x and use 1y ≈ y1 ≈ y )
and hence this is also satisfied by S as a monoid or as a semigroup.
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We will also make use of some definitions (see [11] for example). If
w is a word and x is a letter, then occ(x,w) is the number of occurrences
of x in the word w . The content of the word w , denoted c(w) is {x :
x is a letter and occ(x,w) > 0} . In the following lemma we interpret x0 to
mean the identity element 1.

Lemma 3.2. Let S ∈ F and u , v be words such that S |= u ≈ v . Say that
n := min{occ(x, u), occ(x, v)} and occ(x, u) �= occ(x, v) . Then

(i) S |= xn ≈ xn+1 and

(ii) S |= xny ≈ yxn .

Proof. By Lemma 3.1, S |= xocc(x,u) ≈ xocc(x,v) , which is equivalent to
xn ≈ xn+i , for some i ≥ 1. Aperiodicity then gives S |= xn ≈ xn+1 .
As {xn ≈ xn+1} 
 (xn)2 ≈ xn , it follows that any value of xn in S is
idempotent and therefore commutes with any other element of S . That is,
S |= xny ≈ yxn .

The main examples in this paper are going to be equationally equivalent
to syntactic monoids of finite languages, however it is more convenient to give a
different description of them. The following concept was introduced by Perkins
[24] (although in essence it appears in [21], where it is attributed to Dilworth).
Given a set W of possibly empty words in an alphabet X , we let W̄ denote the
set of all words that are subwords of W , and I(W ) denote X∗\W̄ . It is clear
that I(W ) is an ideal of X∗ , so that X∗/I(W ) (which we denote by S(W )) is
monoid with zero element (which we denote by 0). The multiplication in S(W )
has 0 acting in the usual way, and for words u, v ∈ W̄ we have u · v = uv if
uv ∈ W̄ , and u · v = 0 otherwise. Clearly S(W ) is finite if and only if W is
finite. It is shown in [11] that S(W ) � {S({w}) : w ∈ W} ; also, when W is a
singleton {w} , then S({w}) is isomorphic to SynM({w}) (see [8]).

The monoids S(W ) are often more useful for counterexamples than their
syntactic monoid equivalents, because it is much easier to trace which identities
hold. These are the construction used by Sapir to prove Lemma 1.1 (actually,
Sapir’s construction does not have an identity element, but as observed in [10],
the proof still holds if identity elements are adjoined) and are the central source
of examples in [8, 9, 11, 32].

A final important notion, also introduced by Perkins, is that of an isoterm.
An isoterm for a semigroup S is a word w for which S |= w ≈ w′ implies
w ≡ w′ . This is one of the most useful tools in analysing the semigroup
identities of monoids. There is a fundamental connection between isoterms
and the constructions introduced in this section.

Lemma 3.3. Let S be a monoid and let W be a set of possibly empty words.
Then S(W ) ∈ VM(S) if and only if each word in W is an isoterm for VM(S)

This result is implicit in all of the above mentioned applications of the construc-
tion S(W ). We omit the proof, but note that it is given in [8] in the case when W
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is a singleton, while the extended version we state here follows from the singleton
case and the fact that if W is a language, then S(W ) � {S({w}) : w ∈W} .

4. Strong finite bases

At the start of this paper we have listed three possible relativised versions of
the HFB property for a locally finite variety V :

(1) all subvarieties of V are FBfin ; or

(2) all finitely generated subvarieties of V are FB; or

(3) all finitely generated subvarieties of V are FBfin .

If V is a finitely generated semigroup variety, then Lemma 1.1 shows the first of
these properties is just the usual notion of a HFB variety, while the second and
third coincide. In this section we are going to present a finite semigroup that
demonstrates that these later two properties are not equivalent to the general
notion of HFB (Theorem 4.3). We note that the second relativised notion
of the HFB property is given the name strongly finitely based (abbreviated to
SFB) in [36] and the possible equivalence of the SFB property with the general
HFB property is questioned (Problem 5.2 of [36]); so the example we give here
provides a solution to this problem. The example is also a kind of ‘relativised
limit variety’ because we will show that it satisfies the extra property of being
minimally not HFB amongst finitely generated varieties.

We note that there are existing examples of semigroup varieties that
demonstrate the distinction between the properties of being SFB and HFB,
however these varieties are not finitely generated (or even locally finite). The
variety of all semigroups satisfying x2 ≈ 0 is one simply stated example; this is
shown in [14] to have uncountably many non-finitely based subvarieties, while
any finite member is nilpotent and therefore finitely based.

Lemma 4.1. If T is a monoid in F whose semigroup variety does not
contain S({xyx}) , then T satisfies one of the identities xyx ≈ xxy or xyx ≈
yxx .

Proof. As S({xyx}) �∈ V(T), it follows by Lemma 3.3 that xyx is not an
isoterm for T . Let w �≡ xyx be such that T |= xyx ≈ w . We consider a
number of cases.

If c(w) �= {x, y} , then Lemma 3.2 (i) shows that (as a monoid) T |= x ≈
1, and so is trivial.

Now say that c(w) = {x, y} . If occ(x,w) = 1, or occ(y, w) > 1, then
Lemma 3.2 shows that T |= {x ≈ x2, xy ≈ yx} and so also satisfies both
xyx ≈ xxy and xyx ≈ yxx . Thus we may assume that occ(y, w) = 1 and
occ(x,w) ≥ 2.

If occ(x,w) = 2, then w ∈ {xxy, yxx} , and we are done. Now say that
occ(x,w) > 2. So there are integers n,m ≥ 0 with w ≡ xnyxm and such
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that n + m > 2 (here x0 denotes the empty word). By Lemma 3.2 we have
T |= {x2 ≈ x3, x2y ≈ yx2} . As one of n and m is at least equal to 2, we have
T |= xyx ≈ w ≈ x2y ≈ yx2 , as required.

It is shown in [7] that for W a finite set of words, S(W ) is HFB if and
only if S({xyx}) �∈ V(S(W )). The following result extends this.

Proposition 4.2. Let S ∈ F . Then S is HFB if and only if S({xyx}) �∈
V(S) .

Proof. The only if direction follows because S({xyx}) is not HFB [8]. Now
say that S({xyx}) �∈ V(S), where S ∈ F . By Theorem 2.2, we may find a
nilpotent monoid S1 and a nilpotent semigroup S2 such that S � {S1,S2} .
By Lemma 4.1 (with T = S1 ), we may assume without loss of generality that
S1 |= xyx ≈ yxx .

Now S2 is a nilpotent semigroup, so there is a number & ∈ N such that
S2 satisfies any semigroup identity in which both sides have length at least & .
Hence both S1 and S2 satisfy the law

xyxx1x2 . . . x ≈ yxxx1x2 . . . x.

This identity defines a HFB variety by a result of [25] and so S � {S1,S2} is
HFB.

Proposition 4.2 shows that V(S({xyx})) enjoys limit type characteristics
with respect to the HFB property—namely, every proper finitely generated
subvariety of V(S({xyx})) is HFB, but it itself is not HFB. The proposition
also gives us the main result of this section:

Theorem 4.3. V(S({xyx})) is SFB but not HFB.

Proof. We have already commented that V(S({xyx})) is not HFB. Let S
be a finite semigroup in V(S({xyx})). This implies that S ∈ F .

The semigroup S({xyx}) is finitely based by [11], so if S � S({xyx}),
then S is also finitely based. Otherwise, V(S) is a proper finitely generated
subvariety of V(S({xyx})) and hence is HFB by Proposition 4.2.

With only a little extra work we can easily give a complete description of
the monoid subvarieties of VM(S({xyx})), which is useful later in this paper.

Lemma 4.4. The proper and non-trivial subvarieties of VM(S({xyx})) are
precisely the variety of monoid semilattices, the variety VM(S({x})) and the
variety VM(S({xy})) and these form a chain under containment.

Proof. The last claim in the lemma is trivial so we concentrate on finding
the monoid subvarieties of VM(S({xyx})).



Jackson 171

To begin with, we recall some identity bases for the varieties mentioned
(we omit the variety of semilattices).

Lemma 4.5. [11]

(i) A basis for the monoid identities of VM(S({xyx})) is

Σxyx := {xt1xt2x ≈ xxt1t2, xxt ≈ txx, xyt1xt2y ≈ yxt1xt2y,

xt1yxt2y ≈ xt1xyt2y, xt1yt2xy ≈ xt1yt2yx}.

(ii) A basis for the monoid identities of VM(S({xy})) is

Σxy:={xtx ≈ xxt ≈ txx, x2 ≈ x3}.

(iii) A basis for the monoid identities of VM(S({x})) is

Σx:={xy ≈ yx, x2 ≈ x3}.

Let S be a monoid generating a monoid variety that is properly contained
in VM(S({xyx})). Now S({xyx}) |= xxy ≈ yxx , and so S also satisfies
xxy ≈ yxx as well as at least one of the identities xyx ≈ xxy or xyx ≈ yxx by
Lemma 4.1. In either case we find that S in fact satisfies xxy ≈ xyx ≈ yxx .
Now note that Σxyx∪{xyx ≈ x2y ≈ yx2} is logically equivalent to Σxy . Hence
every proper subvariety of VM(S({xyx})) is a subvariety of VM(S({xy})).

Now let S be a monoid generating a monoid variety properly contained
in VM(S({xy})). By Lemma 3.3, xy is not an isoterm. Applications of Lemma
3.2 (i), as in the proof of Lemma 4.1, show that V satisfies one of the identities
xy ≈ yx or x2 ≈ x . Adjoining the first of these to Σxy gives a system logically
equivalent to Σx , while adjoining the second gives a system logically equivalent
to {xy ≈ yx, x2 ≈ x} , which defines the variety of monoid semilattices. Hence
every proper subvariety of VM(S({xy})) is a subvariety of VM(S({x})).

By Lemma 3.3, a proper subvariety of VM(S({x})) satisfies a non-trivial
identity x ≈ w . Lemma 3.2 (i) then shows that such a variety satisfies x ≈ x2 ,
and hence is a variety of semilattice monoids. The proof is complete because
of the well known fact that the variety of monoid semilattices covers the trivial
variety (the reader could again use Lemmas 3.3 and 3.2 (i) to prove this).

5. Limit varieties

We now examine the relativised notions of limit varieties introduced at the
start of this paper. Recall that a finitely generated variety V could be called a
relativised limit variety if:

(1) V is not FBfin , but all proper subvarieties of V are FBfin ; or

(2) V is not FB, but all proper finitely generated subvarieties of V are FB;
or
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(3) V is not FBfin , but all proper finitely generated subvarieties of V are
FBfin .

(We could reasonably extend the scope of this definition to include locally finite
varieties.) If V is a finitely generated semigroup variety, then Lemma 1.1 shows
that the first of these restrictions is equivalent to the usual notion of a limit
variety. Lemma 1.1 also shows that the second and third possible definitions
coincide in the case when V is finitely generated. We will say that a finite
algebra satisfying the second of the properties is a limit variety amongst finitely
generated varieties (abbreviated to limitfin variety).

Unlike in the case of true limit varieties, there seems to be no guarantee
that limitfin varieties even exist. We note however that if V is a finitely gener-
ated limit variety of semigroups, then V is a limitfin variety. An example of such
a variety is given in [30]. In this section we give two semigroup limitfin varieties
that are not limit varieties in the true sense. Specifically, we give two exam-
ples of finite monoids whose semigroup varieties are non-finitely based and are
not semigroup limit varieties but which are nevertheless limitfin varieties. As
in the previous section, our technique involves an exploitation of the restricted
properties of monoid varieties. If we consider our examples in the type 〈2, 0〉
they become true limit varieties, and indeed appear to be the first known limit
varieties generated by finite monoids. We now state the main result of this
section.

Proposition 5.1. The monoids S({absatb, asbtab}) and S({asabtb}) gen-
erate semigroup varieties that are limitfin varieties, but are not limit varieties.
As monoids, they generate monoid varieties that are limit varieties in the true
sense.

Proof. The proof of Proposition 5.1 covers most of the rest of this section.

To begin with, note that neither the semigroup variety of S({absatb,
asbtab}) nor that of S({asabtb}) is a limit variety in the true sense. This is
because both contain the subvariety V(S({xyx})) which has uncountably many
non-finitely based subvarieties by [7].

Lemma 5.2. A NFB monoid T ∈ F generates a limitfin variety of semi-
groups if all proper finitely generated subvarieties of VM(T) are FB.

Proof. Assume that T is NFB (as a semigroup or monoid—as observed
in [36], this makes no difference) and that any finitely generated subvariety of
VM(T) is FB. Since T is NFB, it suffices to show that all proper finitely gen-
erated subvarieties of V(T) are finitely based. Let S be a finite semigroup
generating a proper subvariety V(T). By Theorem 2.2, there are finite lan-
guages U and V such that S � {Syn(U),SynM(V )} .
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The central result of [35] states that the join of a semigroup variety V
with a variety generated by a finite nilpotent semigroup is finitely based if and
only if V is finitely based. Now Syn(U) is a finite nilpotent semigroup and

V({Syn(U),SynM(V )}) = V(Syn(U)) ∨ V(SynM(V ))

and so S is finitely based if and only if SynM(V ) is finitely based as a semigroup.
However we may also view SynM(V ) as a finite monoid in the monoid variety
generated by T . Now VM(SynM(V )) is a proper subvariety of VM(T) because
V(SynM(V )) ⊆ V(S) � V(T). Hence SynM(V ) is finitely based as a monoid,
and then also as a semigroup. Therefore S is finitely based, as required.

Lemma 5.2 shows that all remaining claims of Proposition 5.1 will follow
if we can prove that S({absatb, asbtab}) and S({asabtb}) generate limit varieties
of monoids.

We recall some further definitions from [11, 32].

Definition 5.3. (i) A word is n-limited if occ(x,w) ≤ n for all letters x .

(ii) A letter x is n-occurring in a word w if occ(x,w) = n ; 1-occurring letters
are called linear letters.

(iii) If w is a word and x1, x2, . . . , xn are letters then w(x1, x2, . . . , xn) denotes
the word obtained from w by deleting all occurrences of the letters other
than x1, x2, . . . , xn .

(iv) If x is a letter and w is a word with occ(x,w) ≥ n then nx denotes the
nth occurrence of x in w .

A pair of letters (x, y) is said to be stable in an identity u ≈ v if
u(x, y) ≡ v(x, y); otherwise (x, y) is unstable in u ≈ v . In the case when (x, y)
is unstable in u ≈ v , it is often useful to refer to the particular occurrences
of the two letters where instability is ‘appearing’. To this end, we say that a
pair (ix, jy) is an unstable occurrence pair in an identity u ≈ v if the order
of appearance of the ith occurrence of x and the jth occurrence of y in u is
different to that of v . A pair (ix, jy) is a critical occurrence pair in an identity
u ≈ v if it is an unstable occurrence pair and ix jy is a subword of u or v . An
unstable pair of letters (x, y) in u ≈ v is critical, if there are numbers i and j
such that (ix, jy) is a critical occurrence pair.

We may also extend these definitions to stability in words. A pair of
letters (x, y) or occurrences of letters (ix, jy) is said to be stable in a word w
(relative to some particular semigroup S) if it is stable in any identity w ≈ v
satisfied by S . It is easily verified that every nontrivial balanced identity (that
is, one side is a permutation of the other side) contains at least one unstable
pair of letters, at least one unstable occurrence pair and at least one critical
pair.

We now return to the aims of this section by proving that the two monoids
under consideration are non-finitely based.
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Lemma 5.4. S({absatb, asbtab}) is NFB.

Proof. For all integers n>3, let u1,n and u2,n denote the words x1x2 . . . xn2

and

(x1xn+1 . . . xn2−n+1)(x2xn+2 . . . xn2−n+2) . . . (xnx2n . . . xn2)

respectively (the brackets indicate ‘blocks’ to be used below) and let un denote
the word u1,ntu2,n . It is routinely observed that for any permutation ū1,n

of u1,n and ū2,n of u2,n , S({absatb, asbtab}) |= un ≈ ū1,ntū2,n ; indeed the
only assignments θ for which both sides of this identity do not take the value
0, must assign all but perhaps one of the letters xi the value 1, and then
θ(un) = θ(ū1,ntū2,n).

Now note the following two facts:

(1) If i < j ≤ n2 are such that j − i < n , then the subword of u2,n between
xi and xj has at least n− 2 letters.

(2) Every two letter subword of un appears just once in un .

Only the first of these claims requires detailed proof. Divide the word u2,n into
blocks of length n , as indicated by the brackets in the definition of u2,n and
let i < j ≤ n2 be such that j − i < n . Now xi and xj cannot lie in the same
block, because this is so if and only if i ≡ j mod(n) and then j > i implies
j − i ≥ n .

Now assume xi and xj lie in consecutive blocks. If xi and xj lie in the
&th and (&+1)th blocks respectively then there are integers 0 ≤ k1, k2 < n such
that i = k1n+ & and j = k2n+ &+ 1. But then, since 0 < j − i < n , we have
0 < (k2 − k1)n + 1 < n , showing that k1 = k2 and that the subword between
xi and xj has exactly n− 1 letters.

If xi and xj lie in the (& + 1)th and (&)th blocks respectively, then
there are 0 ≤ k1, k2 < n such that i = k1n + & + 1 and j = k2n + & . Thus
0 < (k2 − k1)n − 1 < n , showing that k2 = k1 + 1, and that the length of the
subword between xi and xj is exactly n− 2 letters.

Finally, if xi and xj lie in neither the same block nor in consecutive
blocks then there is at least one block totally contained within the subword
between the occurrences of xi and xj , which gives more than n − 2 letters in
this subword. This proves the claim.

Now let p ≈ q be an identity satisfied by S({absatb, asbtab}) in fewer than
n > 3 variables. Assume (to derive a contradiction) that there is a semigroup
substitution θ such that θ(p) is a subword of un and θ(p) �≡ θ(q). Let (x, y) be
an unstable pair in p ≈ q . Evidently, both x and y are at most 2-occurring in
p ≈ q . Now since xyx is an isoterm, at least one of x and y is not a linear letter
in p . If one, say y , is linear in p , then p(x, y) is equal to xxy or yxx . However
every 2-occurring letter in un has a linear letter between its occurrences. Hence
there must be a linear letter, t say, between the two occurrences of x in p . Then
p(x, y, t) ≡ xtxy or p(x, y, t) ≡ yxtx , both of which are isoterms, contradicting
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the fact that (x, y) is unstable in p ≈ q . It follows that neither x nor y are
linear in p and thus we may assume that occ(x, p) = occ(y, p) = 2.

The form of the word un indicates that without loss of generality we can
write p as p1xp2yp3tp4xp5yp6 or p1xp2yp3tp4yp5xp6 for some possibly empty
words p1 , p2 , p3 , p4 , p5 , p6 , and some letter t , linear in p . Since xt1yt2xy
and xt1yt2yx are isoterms, there cannot be a linear letter in p2 . By observation
(5) above, for each 2-occurring letter z in c(p), θ(z) is a 2-occurring letter in
un (as opposed to some longer word). Therefore, up to a change of letter names,
xp2y is of the form yiyi+1 . . . yi+k for some k ≥ 1, where k < n and θ(x) = y
(for & = i, . . . , i+k ). Hence by observation (5) above (choosing j = i+k ), θ(p5)
contains at least n−2 letters and so p5 contains a linear letter, say t′ (because
|c(p)\{x, y}| ≤ n− 3). But then p(x, y, t, t′) is an isoterm, a contradiction.

It now follows that no finite set of identities for S({absatb, asbtab}) is an
equational basis.

Lemma 5.5. S({asabtb}) is NFB.

Proof. For every n ∈ N , let vn denote the word

z1t1z2t2 . . . zntnxz1zn+1z2zn+2 . . . znz2nxtn+1zn+1 . . . t2nz2n

and v′n denote the word

z1t1z2t2 . . . zntnxxz1zn+1z2zn+2 . . . znz2ntn+1zn+1 . . . t2nz2n.

It is not hard to verify that if θ is assignment such that both θ(vn) and θ(v′n)
do not take the value 0 in S({asabtb}), then θ(x) = 1 and hence θ(vn) = θ(v′n);
this is because there is no linear letter between the two occurrences of x in either
word, while the only repeated subwords of asabtb have linear letters between
their two occurrences. It follows that S({asabtb}) |= vn ≈ v′n for every n ∈ N .

Now consider the following observations (whose elementary proofs we
leave to the reader).

(1) For all i, j ≤ 2n , (zi, tj) is stable in vn .

(2) If i ≤ n and j > n then (zi, zj) is stable in vn .

(3) Every two letter subword of vn occurs just once in vn .

Now if 1 ≤ i < j ≤ n we can find k > n such that

vn(ti, tj , tk, zi, zj , zk) ≡ zitizjtjzizkzjtkzk

which is an isoterm. Hence (zi, zj) is stable in vn and by symmetry the same
holds true for the case when 2n ≥ i > j > n . It follows from this and
observations (1), (2) above, that the word obtained from vn by deleting x
is an isoterm for S({asabtb}). Denote this word by wn .
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Now let p ≈ q be an identity satisfied by S({asabtb}) and assume that
there exists a substitution θ such that θ(p) is a subword of vn and θ(p) �≡ θ(q).
Let (y1, y2) be a critical pair in p ≈ q . Since S({asabtb}) is not commutative,
at least one of y1 and y2 , say y1 , must be 2-occurring in p and then because wn
is an isoterm, and by observation (3), we may assume without loss of generality
that θ(y1) = x . We may write p in the form p1y1p2y1p3 for some possibly empty
words p1, p2, p3 . Evidently, θ(p2) ≡ z1zn+1z2zn+2 . . . znz2n . Now assume (to
obtain a contradiction) that p contains fewer than 2n letters. By observation
(3), p2 contains a letter, t , that is linear in p . Note that t is distinct from
y2 since p(y1, t) ≡ y1ty1 showing that (y1, t) is stable in p . If y2 is linear
in p then p(y1, y2, t) ∈ {y1ty1y2, y1ty2y1, y1y2ty1, y2y1ty1} , all of which are
isoterms, contradicting the instability of (y1, y2) in p . If y2 is 2-occurring,
then observation (3) implies that θ(y2) = zi for some i ≤ 2n . Now because
(y1, y2) is a critical pair we have that i = 1 or 2n . However, because y2 is
2-occurring, there is a linear letter s ∈ c(p) such that ti ∈ c(θ(s)). So

p(y1, y2, t, s) ∈ {y1ty2y1sy2, y2sy1y2ty1}

which are again all isoterms for S({asabtb}). This contradiction shows that
that p ≈ q must have at least 2n letters. Since n was arbitrary, S({asabtb}) is
non-finitely based.

Next we show that every monoid generating a proper subvariety of one
of the two given varieties is finitely based. It turns out that VM(S({absatb,
asbtab})) presents the most difficulties and we consider this first.

We begin by giving a set of identities satisfied by S({absatb, asbtab}).
We will then show that adjoining any identity that fails on S({absatb, asbtab})
to this set gives a (finitely generated) monoid variety that is either a subvariety
of VM(S({aba})), and hence finitely based by Lemma 4.4, or is a subvariety of
the variety generated by one of the two monoids S({absatb}) or S({asbtab}).
The proof will be complete when these two monoids are shown to be HFB as
monoids.

The proof of the following lemma is left to the reader.

Lemma 5.6. Let Σ1 denote the set of all identities obtainable from those
in {x2 ≈ x3, xt1xt2x ≈ x2t1t2 ≈ t1t2x

2, xt1xyt2y ≈ xt1yxt2y} by deleting
all occurrences of some (possibly empty) collection of letters. Then S({absatb,
asbtab}) |= Σ1 .

Lemma 5.7. Let V be a proper subvariety of VM(S({absatb, asbtab})) .
Then V |= absatb ≈ basatb or V |= asbtab ≈ asbtba .

Proof. Let V be a proper subvariety of VM(S({absatb, asbtab})). By Lemma
3.3, one of absatb and asbtab is not an isoterm for V . Without loss of
generality we will assume that absatb is not an isoterm (the other case will
follow by symmetry). If V is a subvariety of VM(S({xyx})) then Lemmas 4.4
and 4.5 show that we are done. Now assume that V is not a subvariety of
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VM(S({xyx})). Now if VM(S({xyx})) is not a subvariety of V , then Lemma
4.1 shows that one of the identities xyx ≈ xxy or xyx ≈ yxx holds in V .
However, in the presence of Σ1 these identities are equivalent and imply both
asbtab ≈ asbtba and absatb ≈ basatb . Thus we may assume further that
VM(S({xyx})) is a subvariety of V . In particular, Lemma 3.3 shows that xyx
is an isoterm for V .

Let absatb ≈ w be a non-trivial identity satisfied by V . Since xyx is an
isoterm for V , the pairs (a, s), (b, s) and (b, t) must be stable in absatb ≈ w .
But then (a, t) is also stable and hence the only unstable pair is (a, b). Note also
that because (a, s) and (b, s) are stable we must have occ(a,w) = occ(b, w) = 2.
Therefore w ≡ basatb , as required.

Lemma 5.7 implies that any variety properly contained in VM(S({absatb,
asbtab})) satisfies at least one of the sets Σ1 ∪ {xyt1xt2y ≈ yxt1xt2y} or
Σ1 ∪{xt1yt2xy ≈ xt1yt2yx} . We now show that these sets are equational bases
(within the variety of all monoids) for the monoids S({asbtab}) and S({absatb})
respectively. Hence we will have shown that any proper monoid subvariety of
VM(S({absatb, asbtab})) is a subvariety of one of the varieties VM(S({asbtab}))
or VM(S({absatb})).

Proposition 5.8. The set Φ := Σ1 ∪ {xyt1xt2y ≈ yxt1xt2y} is a monoid
basis for the identities of S({asbtab}) .

Proof. The identity xt1xt2x ≈ xxt1t2 ∈ Φ can be used to reduce every word
to one that is 2-limited. Thus it suffices to consider 2-limited identities.

Let x be a 2-occurring letter in a word w for which there is no linear
letter t such that w(x, t) ≡ xtx and let wx be the word obtained from w by
deleting x . We first show that Φ 
 w ≈ xxwx .

If xx is a subword of w , then an application of xxt1 ≈ t1xx ∈ Φ
transforms w into the desired form. If xx is not a subword then we may write
w in the form w1xw2yxw3 where y is 2-occurring in w (and w2 is a possibly
empty subword containing no letters that are linear in w ). Applications of one of
the identities yt1xt2yx ≈ yt1xt2xy , xt1yxt2y ≈ xt1xyt2y or their reverse, now
gives the identity w1xw2yxw3 ≈ w1xw2xyw3 . (Note that if w ≡ w1xu1yu2yxw3

then the application of yt1xt2yx ≈ yt1xt2xy is via the substitution θ defined
by θ(y) = x , θ(t1) = u , θ(x) = y and θ(t2) = u2 .) Repeating this procedure
eventually gives w ≈ w4xxw5 , where wx ≡ w4w5 , and then xxt ≈ txx may be
used as before.

By repeating the above paragraph for each 2-occurring letter that does
not have occurrences either side of a linear letter, we eventually arrive at a
word of the form uv , where u is a product of squares of letters (that can be
arbitrarily commuted using xxt1 ≈ t1xx ∈ Φ) and every 2-occurring letter in v
occurs either side of a linear letter. Now say that w ≈ w′ is a 2-limited identity
satisfied by S({asbtab}), where both w and w′ have been rearranged in this
way; that is w ≡ uv and w′ ≡ u′v′ , where u and u′ are products of squares of
letters and every two occurring letter in v and v′ occurs either side of a linear
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letter. By deleting letters it is clear that S({asbtab}) also satisfies u ≈ u′ and
v ≈ v′ . Because we can commute squares using Φ, we find that Φ 
 u ≈ u′ .
Therefore it will now suffice to show that Φ 
 v ≈ v′ .

Because xyx is an isoterm for S({asbtab}), any unstable pair in v ≈ v′

must involve only 2-occurring letters. Let (ix, jy) be a critical pair. There are
several possibilities for the pattern of occurrences of x and y in v , however
the identities xyt1xt2y ≈ yxt1xt2y, xt1xyt2y ≈ xt1yxt2y enable (ix, jy) to be
removed from the set of all unstable occurrence pairs in v ≈ v′ in all but the
case where v is of the form v1xv2yv3xyv4 or v1xv2yv3yxv4 . In either case,
the assumption that a linear letter occurs between the two occurrences of every
2-occurring letter enables us to write v more specifically in one of the forms
v1xv2yv5tv6xyv4 or v1xv2yv5tv6yxv4 where t is linear. It will be clear below
that there is no essential difference between these two cases (indeed we will use
Φ to derive v1xv2yv5tv6xyv4 ≈ v1xv2yv5tv6yxv4 ) and so we will assume that v
is of the first form.

Since (x, y) is unstable while xt1yt2yx and xt1yt2xy are isoterms it fol-
lows that v2 cannot contain any letter that is linear in v . If v2 is empty, then
we may apply the identity xytxy ≈ xytyx (which is obtained up to a change
in letter names from xt1yt2xy ≈ xt1yt2yx ∈ Φ by deletion of the letter t1 ).
Otherwise v2 is nonempty and so there is some 2-occurring letter z such that
v ≡ v1xzv7yv5tv6xyv4 (where v7 is such that zv7 ≡ v2 ). Regardless of the posi-
tion of the other occurrence of z , the identities xyt1xt2y ≈ yxt1xt2y, yt1yxt2x ≈
yt1xyt2x enable us to derive v1xzv7yv5tv6xyv4 ≈ v1zxv7yv5tv6xyv4 . Since v7

contains no letters that are linear in w , we may repeat this procedure until
finally arriving at the word v1v2xyv5tv6xyv4 . The identity xytxy ≈ xytyx now
gives us v1v2xyv5tv6xyv4 ≈ v1v2xyv5tv6yxv4 .

We may now reverse the procedure above, eventually returning us the
word v1xv2yv5tv6yxv4 . That is, we have derived

v ≡ v1xv2yv5tv6xyv4 ≈ v1xv2yv5tv6yxv4.

The two words differ only in that the second occurrences of x and y have been
switched. No new unstable occurrence pairs have been created and in fact one
unstable occurrence pair in v ≈ v′ has been removed. Clearly the number of
unstable occurrence pairs in v ≈ v′ is finite and therefore if this procedure is
performed sufficiently many times we eventually obtain a word v′′ for which
Φ 
 v ≈ v′′ and such that v′′ ≈ v′ has no unstable occurrence pairs. That is,
we have v′′ ≡ v′ and therefore Φ 
 v ≈ v′ as required.

By symmetry, a similar result holds for VM(S({absatb})).

Lemma 5.9. Every proper monoid subvariety of VM(S({asbtab})) is a mon-
oid subvariety of VM(S({aba})) .

Proof. Let V be a proper subvariety of VM(S({asbtab})). By Lemma 3.3,
we may assume that asbtab is not an isoterm for V and that V is not a
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Figure 1: The lattice of subvarieties of VM(S({absatb, asbtab})).

proper subvariety of VM(S({aba})). Arguments using Lemma 3.2 (i) as in the
proof of Lemma 5.7 then easily show that V satisfies asbtab ≈ asbtba . However
Φ∪{asbtab ≈ asbtba} is a basis for the monoid identities of S({aba}) (it contains
a copy of each of the identities given in the basis Σxyx of Lemma 4.5). Hence
V = V(S({aba})), and therefore every proper subvariety of VM(S({asbtab})) is
a subvariety of VM(S({aba})) and therefore HFB by Lemmas 4.4 and 4.5.

Again, a similar result holds for S({asbtab}). We now complete the proof
of the first case in Proposition 5.1.

Lemma 5.7, Proposition 5.8, Lemma 5.9 and their duals combine with
Lemma 4.4 to show that the monoid subvarieties of VM(S({absatb, asbtab})) are
precisely those shown in Figure 1. Proposition 5.8, its dual and Lemma 4.4 show
that the proper subvarieties VM(S({absatb, asbtab})) are all FB, while Lemma
5.4 shows that S({absatb, asbtab}) is NFB (as a monoid or as a semigroup).
All this shows that S({absatb, asbtab}) generates a limit variety of monoids,
and so Lemma 5.2 shows that S({absatb, asbtab}) generates a limitfin variety of
semigroups.

Note that VM(S({absatb, asbtab})) has the apparently unusual property
of being a NFB variety that is the join of two finitely based aperiodic semigroup
varieties; the only other examples with this property are given in [11].

Now we consider the subvarieties of S({asabtb}).

Lemma 5.10. Every proper monoid subvariety of VM(S({asabtb})) is a
monoid subvariety of VM(S({xyx})) .
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Proof. This proof is almost identical to that of Lemma 5.9. First note that
S({asabtb}) satisfies the set Σ2 consisting of all identities obtainable from

Σ2 := {x2 ≈ x3, xt1xt2x ≈ x2t1t2 ≈ t1t2x
2, xt1yt2yx ≈ xt1yt2xy,

xyt1xt2y ≈ yxt1xt2y},

by deleting all occurrences of some (possibly empty) collection of letters. Let V
define a proper subvariety of VM(S({asabtb})). If S({xyx}) is not in V , then
by Lemma 4.1, V satisfies one of xyx ≈ xxy or xyx ≈ yxx . However, in the
presence of Σ2 , these imply all of the identities in the set Σxy of Lemma 4.5.
But then V is a subvariety of VM(S({xy})), and so certainly a subvariety of
VM(S({xyx})). Now say that S({xyx}) ∈ V . By Lemma 3.3, xyx is an isoterm
for V , but by Lemma 3.3, asabtb is not an isoterm for V . Thus V |= asabtb ≈
asbatb , and more particularly V |= Σ2 ∪ {asabtb ≈ asbatb} . Each identity
from the set Σxyx of Lemma 4.5 can be derived from Σ2 ∪ {asabtb ≈ asbatb}
(we leave this easy check to the reader), and hence V = VM(S({xyx})) as
required.

This lemma and Lemma 4.4 combine to completely describe the proper monoid
subvarieties of VM(S({asabtb})), which are all FB—their bases are given in
Lemma 4.5. (Thus the lattice of monoid subvarieties of VM(S({asabtb})) is
the six element chain.) Hence VM(S({asabtb})) is a limit variety of monoids.
Lemma 5.2 now shows that V(S({asabtb})) is a limitfin variety.

This completes the proof of Proposition 5.1.

We have been unable to find any other examples of finitely generated
limit varieties of aperiodic monoids with central idempotents. Certainly, all non-
finitely based monoids found in [8, 11, 32] generate varieties containing at least
one of the two cases given above. Even outside of the class F , the two examples
given here appear to be very ‘small’; for example, it follows from [27] that all
three of asabtb , absatb , asbtab are isoterms for inherently non-finitely based
finite semigroups, which in the monoid case (every inherently non-finitely based
semigroup contains an inherently non-finitely based submonoid [28]) implies
that S({asabtb}) and S({absatb, asbtab}) are contained in the corresponding
varieties (by Lemma 3.3). On the other hand, there are known to be infinitely
many limit varieties of groups [22], though none of these lie in any finitely
generated semigroup variety and none have been explicitly described. We also
note that a finite completely regular monoid without a finite basis of identities
would establish the existence of a limit variety other than those presented above
because such an example would satisfy the law x ≈ xn+1 for some n ∈ N , a
property not shared by S({asabtb}) and S({absatb, asbtab}). Certain monoids
are conjectured to have this property in [36], Problem 6.1. We pose the following
questions.

Question 1. Are VM(S({asabtb})) and VM(S({absatb, asbtab})) the only
limit varieties generated by finite aperiodic monoids with central idempotents?
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Are there any finitely generated but non-finitely based aperiodic monoid vari-
eties that do not contain these varieties?

Note that any counterexample to the first of these questions would have
to satisfy at least one of the following two sets of identities: {xsxyty ≈
xsyxty, xsytxy ≈ xsytyx} or {xsxyty ≈ xsyxty, xysxty ≈ yxsxty} .

6. Other finiteness properties

In this section we briefly discuss the behaviour of some other finiteness properties
with known connections to the finite basis problem. In addition to the FB and
HFB properties, the most popular finiteness properties are probably:

(1) all subvarieties of V are finitely generated;

(2) V contains (up to isomorphism) only finitely many subdirectly irreducible
members;

(3) V has only finitely many subvarieties;

(4) V is contained in a finitely based locally finite variety.

The first of these properties does not appear to be of any interest upon
relativising to the class of finitely generated varieties.

The obvious relativised version of Property (2) is covered by a well known
result of Quackenbush; namely a locally finite variety with finitely many sub-
directly irreducibles has no infinite subdirectly irreducibles [26, 4]. (Note that
because each variety is determined by its subdirectly irreducible members, we
have the following implications between the first three properties on locally finite
varieties: (2)⇒(1); and (2)⇒(3).) While Property (2) is of deep importance in
universal algebra, it has not played such a significant role in semigroup theory
because so few varieties actually satisfy it; a complete description can be found
in [6] or [18].

Relativising Property (3) to finite algebras presents an interesting ques-
tion; namely is there a locally finite variety with infinitely many subvarieties,
but only finitely many finitely generated subvarieties? The answer (which is
negative) is probably folklore, but to complete the picture we give its proof.

In the following lemma, and elsewhere to follow, we say that a variety is
non-finitely generated if it cannot be generated by any finite algebra.

Lemma 6.1. Let V be a non-finitely generated locally finite variety of arbi-
trary type. The poset of finitely generated subvarieties of V (partially ordered by
containment) does not satisfy the ascending chain condition. Hence V contains
infinitely many finitely generated subvarieties.

Proof. Let V be a non-finitely generated locally finite variety. For n ∈ N ,
let Vn denote the variety generated by the n -generated V -free algebra. Note
that each Vn is finitely generated since finitely generated algebras in locally
finite varieties are finite. Also, V1 ⊆ V2 ⊆ . . . is a chain.
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Now V is non-finitely generated and hence not equal to Vn for any
n ∈ N . Therefore, for each n ∈ N there is an identity pn ≈ qn that fails in
V but is satisfied by Vn . If m is the number of variables in pn ≈ qn , then,
by freeness, pn ≈ qn fails on the m -generated free algebra in V and therefore
is not satisfied by Vm . Hence for all n ∈ N there is m ∈ N such that the
containment Vn ⊂ Vm is proper, whence the chain V1 ⊆ V2 ⊆ . . . is infinite
and has no maximum member.

Note that this shows that Property (3) above implies Property (1) for locally
finite varieties.

Proposition 6.2. Let V be a locally finite variety of arbitrary type. Then
V has infinitely many subvarieties if and only if it has infinitely many finitely
generated subvarieties.

Proof. The ‘if’ direction is trivial. So assume that V has infinitely many
subvarieties. If all subvarieties of V are finitely generated we are done. Oth-
erwise, V contains a (locally finite) subvariety that is non-finitely generated,
which by Lemma 6.1 contains infinitely many finitely generated subvarieties.

Only Property (4) remains. A locally finite variety (or an algebra gen-
erating such a variety) failing Property (4) is said to be inherently non-finitely
based (INFB), while otherwise such a variety is said to be weakly finitely based.
The most natural relativised version of this property would be as follows: a
finite algebra is inherently non-finitely based in the class of finite algebras if it
is not contained in any finitely generated, finitely based variety. Following [36],
we will say that such an algebra is strongly not finitely based (SNFB). While
every INFB finite algebra is SNFB, there are no known examples contradicting
the reverse implication. The possible existence of a SNFB but not INFB finite
semigroup is Problem 4.4 in [36]. A similar open problem exists for inverse semi-
groups: in [16] Kleiman asked whether or not every finite inverse semigroup (in
the type 〈2, 1〉) whose variety contains B1

2 is NFB. M. Sapir [31] has proved
that there are no INFB finite inverse semigroups, so if the answer to Kleiman’s
problem is positive, then B1

2 is SNFB amongst finite inverse semigroups but
not INFB. Kleiman’s problem is restricted to inverse semigroups so is perhaps
weaker than the general SNFB implies INFB problem. A partial solution to
this problem has recently been obtained by Kad’ourek [15] who has shown that
B1

2 is SNFB within any (sufficiently large) inverse semigroup variety whose
groups are solvable. The author and T. Stokes have also recently constructed
a 9-element semigroup with additional binary operation that is not INFB but
is SNFB within a certain finitely based variety [12]. Finally, we note that the
corresponding notions of SNFB and INFB for quasivarieties are known to be
distinct (see [36] for discussion).
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7. Decidability

To conclude this paper we explain how to obtain the undecidability of all of
the finiteness properties we have considered in this paper, at least in the case
of universal algebras. Within semigroups, corresponding solutions are known
for only two of the properties: it is decidable whether or not a finite semigroup
generates a weakly finitely based variety (Property (4) of Section 6; see [27, 28])
or a variety with only finitely many subdirectly irreducibles (Property (2) of
Section 6; see [6, 18]). A solution to the question of decidability for any of the
remaining properties would be of substantial interest.

A celebrated result of R. McKenzie is the undecidability of the FB prop-
erty for finite algebras [20]. That is, there is no algorithm to decide whether
or not an arbitrary finite algebra has a finite basis of identities. McKenzie’s
proof of this result involves a modification of a related undecidability result
(also by McKenzie, and equally celebrated) in [19]. Soon after the appearance
of these results, R. Willard [37] showed that the undecidability of the finite basis
problem can be established directly from [19], without the need of modification.
While the undecidability of the problems we are interested in will follow from
only brief (even trivial) observations of the combined results of [37] and [19],
they do not seem to have been stated elsewhere.

In [19], McKenzie shows how to effectively associate with each Turing
machine program T , a finite algebra A(T ) with the property that A(T )
generates a residually very finite variety (that is, satisfying Property (2) of
Section 6) if and only if T eventually halts when started on the blank tape.
(We do not require a precise definition of a Turing machine here, but the reader
unfamiliar with the concept may think of it as some kind of computer program,
where ‘started on the blank tape’ corresponds to the program being run without
any input). The main difficulties of [37] are showing that in the halting case,
the algebra A(T ) is finitely based. McKenzie already proves in [19] that A(T )
is (inherently) non-finitely based in the case when T does not halt and so the
undecidability of the finite basis problem (as well as the problems of deciding
satisfaction of Properties (2) and (4) of Section 6) then follows because of the
undecidability of the halting problem for Turing machines started on blank
tapes.

We will say that a variety V is hereditarily finitely generated (HFG) if
every subvariety is finitely generated (Property (1) of Section 6). Recall that a
variety is small if it has only finitely many subvarieties (Property (3) of Section
6) and HFB if all its subvarieties are finitely based. In this section our algebras
are not semigroups but we nevertheless use the notation V(A) to denote the
variety generated by an algebra A .

Theorem 7.1. The following decision problems are undecidable: given an
arbitrary finite algebra A , decide whether or not V(A) is HFB, HFG or small.

Proof. Let T be a Turing machine that eventually halts when started on
the blank tape, and consider V(A(T )). This variety is finitely based by [37] and
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contains only finitely many isomorphism types of subdirectly irreducibles (all
finite) by [19]. Every subvariety of V(A(T )) is determined by the subdirectly
irreducibles it contains and therefore V(A(T )) is small and HFG. It is well
known and easy to prove that a finitely based variety that contains a non-
finitely based subvariety has infinitely many subvarieties. As V(A(T )) is small
and finitely based it must also be HFB.

Now consider the case when T does not halt on the blank tape. In this
case V(A(T )) is not HFB since it is non-finitely based by [19]. We now need
to show that V(A(T )) is neither HFG nor small. By Lemma 6.1 it suffices to
show that V(A(T )) contains a non-finitely generated subvariety.

McKenzie [19] shows that V(A(T )) contains a particular algebra QZ
which can be defined as follows. The universe of QZ is the set {0, ai, bi : i ∈ Z} .
The operations are: a product · defined by ai · bi+1 = bi and x · y = 0
otherwise; a meet operation ∧ given by x∧x = x and x∧ y = 0 otherwise; the
nullary operation 0 (actually the algebra has more operations than this, but all
others are term operations in these three). We show that V(QZ) is non-finitely
generated.

Consider a finite algebra A in the variety V(QZ) with, say, n elements.
We need to find an identity satisfied by A that fails on QZ . For any i, j with
1 ≤ i < j ≤ n+ 1, the identity

x1(. . . (xi(. . . (xj−1(xi(xj+1(. . . (xnxn+1) . . .)))) . . .)) . . .) ≈ 0

can be seen to hold on QZ , while x1(x2(. . . (xnxn+1) . . .)) ≈ 0 fails on QZ
because a1(a2(. . . (anbn+1) . . .)) = b1 �= 0. Let c1, . . . , cn+1 ∈ A and consider
the product c1(c2(. . . (cncn+1) . . .)). Since |A| = n , there is i �= j such that
ci = cj and therefore

c1(c2(. . . (cncn+1) . . .)) = c1(. . . (cj−1(ci(cj+1(. . . (cncn+1) . . .)))) . . .) = 0.

Hence A |= x1(x2(. . . (xnxn+1) . . .)) ≈ 0 and so V(A) �= V(QZ) as required.
The undecidability of the three problems now follows immediately from

the undecidability of the halting problem for Turing machines started on blank
tapes.

This proof also shows that the non-halting case is equivalent to V(A(T ))
failing to be SFB and failing to have its lattice of subvarieties satisfy the
ascending chain condition; hence these properties are also undecidable for finite
algebras.
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