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Abstract

We are concerned with the almost automorphic solutions to the second-order
hyperbolic differential equations of type ü(s) + 2Bu̇(s) + Au(s) = f(s) (∗),
where A,B are densely defined closed linear operators acting in a Hilbert space
H, and f : R �→ H is a vector-valued almost automorphic function. Using
invariant subspaces, it will be shown that under appropriate assumptions, every
solution to (∗) is almost automorphic.
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1. Introduction

This paper deals with the almost automorphic solutions to the homogeneous
second-order hyperbolic differential equation of the form

d2

ds2
u(s) + 2B

d

ds
u(s) +A u(s) = 0, (1)

and the associated nonhomogeneous differential equation

d2

ds2
u(s) + 2B

d

ds
u(s) +A u(s) = f(s), (2)

where A,B are densely defined closed linear operators acting in a Hilbert space
H and f : R �→ H is an almost automorphic vector-valued function.

We use invariant subspaces theory to show that under appropriate as-
sumptions, every solution to the equations (1) and/or (2) is an almost auto-
morphic vector-valued function. The idea of using the method of invariant
subspaces to study the existence of almost automorphic solutions is recent and
due to Diagana and N’Guerekata[3].
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Let us indicate that the invariant subspaces method works smoothly in
the framework of abstract differential equations involving the algebraic sum of
unbounded linear operators.

The existence and uniqueness of a solutions to equations (1)-(2) have
been of great interest for many mathematicians in the past decades. Note the
pioneer work of S. G. Krein[6] regarding the solvability to (1)-(2) over s ∈ [0, 1].
Recently, many important contributions to this problem have been made in
([4], [7]). Our interest in paper is to focus on solutions of it that are almost
automorphic.

Now setting v(s) =
d

ds
u(s), the problem (1)-(2) can be rewritten in H×H

of the form

d

ds
U(s) = (A+ B) U(s), (3)

and

d

ds
U(s) = (A+ B) U(s) + F (s), (4)

where U(s) = (u(s), v(s)), F (s) = (0, f(s)) and A,B are the operator matrices
of the form

A =

(
O I
−A O

)
and B =

(
O O
O −2B

)
,

on H × H with D(A) = D(A) × H , D(B) = H × D(B), and O, I denote
the zero and identity operators on H , respectively. Since (1)-(2) is equivalent
to (3)-(4), instead of studying (1)-(2), we will focus on the characterization of
almost automorphic solutions to (3)-(4).

First we recall some tools in section 2, then we use them to prove our
main results in section 3.

2. Preliminaries

2.1. Invariant subspaces

Let H be a Hilbert space and let S ⊂ H be a closed subspace. Let A be a
densely defined closed unbounded linear operator on H and let PS denote the
orthogonal projection onto the closed subspace S .

Definition 2.1. S is said to be an invariant subspace for A if we have the
inclusion A(D(A) ∩ S) ⊂ S .

Example 2.2. Let us mention the following classical invariant subspaces for
a given linear operator A defined in a Hilbert space H .

1. S = N(A) = {x ∈ D(A) : Ax = 0} is an invariant subspace for A .

2. Assume that the operator A is self-adjoint, we may take S as any
eigenspace N(λI −A). Thus, S = N(λI −A) is invariant for A .
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Theorem 2.3. The equality PSAPS = APS is a necessary and sufficient
condition for a subspace S to be invariant for a linear operator A .

Proof. Assume PSAPS = APS and if x ∈ D(A)∩S , then x = PSx ∈ D(A)
and Ax = APSx = PSAPSx ∈ S .

Conversely, if S is invariant for A ; let x ∈ H such that PSx ∈ D(A).
Then APSx ∈ S and then PSAPSx = APSx . Therefore APS ⊂ PSAPS . Since
D(APS) = D(PSAPS), it turns out that APS = PSAPS .

Definition 2.4. A closed proper subspace S of the Hilbert space H is said
to reduce an operator A if PSD(A) ⊂ D(A) and both S and H � S , the
orthogonal complement of S , are invariant for A .

Using Theorem 2.3, the following key result can be proved.

Theorem 2.5. A closed subspace S of H reduces an operator A if and only
if PSA ⊂ APS .

Proof. See the proof in [8, Theorem 4.11., p. 29].

Remark 2.6. In fact the meaning of the inclusion PSA ⊂ APS is that: if
x ∈ D(A) , then PSx ∈ D(A) and PSAx = APSx .

Throughout the paper H , D(C), R(C) and N(C), denote a Hilbert
space, the the domain of C , the range and the kernel of the linear operator C ,
respectively.

Let A and B be densely defined closed unbounded linear operators on
H . Recall that their algebraic sum is defined by

D(A+B) = D(A) ∩D(B) and (A+B)x = Ax+Bx, ∀x ∈ D(A) ∩D(B).

Since both A and B are densely defined, then the algebraic sum of A
and B , S = A+ B is also a densely defined operator and

D(A+ B) = D(A)×D(B), and (A+ B)U = AU + BU .

Throughout the paper, A and B will play similar roles.

2.2. Almost automorphic functions

Definition 2.7. A continuous function f : R �→ H is said to be almost au-
tomorphic if for every sequence of real numbers (σn), there exists a subsequence
(sn) such that

g(t) = lim
n �→∞

f(t+ sn)

is well defined for each t ∈ R and

f(t) = lim
n �→∞

g(t− sn)

for each t ∈ R .
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The range of an almost automorphic function is relatively compact on
H , therefore it is bounded. Almost automorphic functions constitute a Banach
space AA(H) under the supnorm. They generalize naturally the concept of
almost periodic functions as introduced by Bochner in the early sixties. For
applications to differential equations, it is necessary to study derivatives and
integrals of almost automorphic functions. This is well presented in [10]. We
recall some results we need in the sequel:

Theorem 2.8. Let f : R �→ R be an almost automorphic function. Then
the function F defined by F (t) =

∫ t
0
f(s)ds, t ∈ R is almost automorphic iff

its range is bounded in H .

The integral here is understood in Bochner’s sense for vector-valued func-
tions. Detailed proofs of these results can be found in [10].

Setting our main result, instead of assuming that similar assumptions
hold as in [10, Theorem 4.4.1], the following assumptions will be made:

The operators A and B are infinitesimal generators of C0 -groups of
bounded operators (T (t))s∈R , (R(t))s∈R , respectively, such that

(i) T (s)U : s �→ T (s)U is almost automorphic for each U ∈ H×H , R(s)V :
s �→ R(s)V is almost automorphic for each V ∈ H×H , respectively.

(ii) there exists S ⊂ H×H, a closed subspace that reduces both A and B .

We denote by PS , QS = (I × I − PS) = P[H×H]�S , the orthogonal
projections onto S and [H×H]� S , respectively.

(iii) R(A) ⊂ R(PS) = N(QS)

(iv) R(B) ⊂ R(QS) = N(PS)

Remark 2.9. 1. Recall that if A,B generate C0 -groups, their sum A + B
need not be a C0 -group generator.

2. The assumption (ii) implies that both S and [H×H�S] are invariant
for the algebraic sum (it is well-defined as stated above)A+ B .

3. The main results

3.1. Almost automorphic solutions to (3)-(4)

We have the following result.

Theorem 3.1. Under assumptions (i)-(ii)-(iii)-(iv), every solution to the
differential equation (3) is almost automorphic.

Proof. Let X(s) be a solution to (3). Clearly X(s) ∈ D(A)∩D(B) = D(A)×
D(B) (notice that the algebraic sum S = A+ B exists since D(S) = H×H).
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Now decompose X(s) as follows

X(s) = PSX(s) + (I × I − PS)X(s), (5)

where PSX(s) ∈ R(PS) = N(QS), and QSX(s) ∈ N(PS) = R(QS).

We have

d

ds
(PSX(s)) = PS

d

ds
X(s)

= PSAX(s) + PSBX(s)

= APSX(s) + PSBX(s) (according to(ii))

= APSX(s) (according to(iv))

From
d

ds
(PSX(s)) = APSX(s), it follows that

PSX(s) = T (t)PSX(0). (6)

Now according to (i), the vector-valued function s �→ PSX(s) = T (t)PS
X(0) is almost automorphic.

In the same way, since [H×H]� ([H×H]� S) = S . It follows that the
closed subspace S reduces A and B if and only if [H×H]� S does. In other
words, [H×H]� S reduces A and B . That is, a similar remark as remark 2.6
holds when S is replaced by [H×H]� S . Thus, we have

d

ds
(QSX(s)) = QS

d

ds
X(s)

= QSAX(s) +QSBX(s)

= QSAX(s) + BQSX(s) (according to(ii))

= BQSX(s) (according to(iii))

From the equation
d

dt
(QSX(s)) = BQSX(s), it follows that s �→ QSX(s)

= R(s)QSX(0) is almost automorphic (according to (i)).

Therefore X(s) = PSX(s) + QSX(s) is also almost automorphic as the
sum of almost automorphic vector-valued functions.

We now get a slightly different version of N’Guerekata’s result (see [10,
Theorem 4.4. 1, p. 84]); in the case where B : H �→ H is a bounded linear
operator on H (this implies that B is bounded on H×H).

Corollary 3.2. Let B : H �→ H be a bounded linear operator in the Hilbert
space H . Under assumptions (i)-(ii)-(iii)-(iv). Then every solution to the
equation (3) is almost automorphic.

Proof. This an immediate consequence of the Theorem 3.1 to the case where
B is a bounded linear operator, it is straightforward.
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Consider the nonhomogeneous equation (4). Assume that the vector
valued function f : R �→ H is almost automorphic. In fact, this implies that
F : s �→ (0, f(s)) is in AA(H×H).

We have

Theorem 3.3. Under assumption (i)-(ii)-(iii)-(iv), assume that f ∈ AA(H)
∩ L1(R,H) . Then every solution to the equation (4) is almost automorphic.

Proof. Let X(s) be a solution to (4). As in the proof of Theorem 3.1, the
solution X(s) ∈ D(A)∩D(B). Now express X(s) as X(s) = PSX(s)+QSX(s),
where PS , QS = (I×I−PS) = P[H×H]�S are the orthogonal projections defined
above.

We have

d

ds
(PSX(s)) = PS

d

ds
X(s)

= PSAX(s) + PSBX(s) + PSF (s)

= APSX(s) + PSBX(s) + PSF (s) (according to(ii))

= APSX(s) + PSF (s) (according to(iv))

From
d

ds
(PSX(s)) = APSX(s) + PSF (s); it follows that

PSX(s) = T (s)PSX(0) +

∫ s

0

T (s− σ)PSF (σ)dσ.

Set G(s) =
∫ s

0
T (s − σ)PSF (σ)dσ . First observe that σ �→ T (−σ) PS

F (σ) is almost automorphic. Moreover the function x(s) =:
∫ s

0
T (−σ)PSF (σ)

dσ is bounded (as it can be easily proved), thus it is almost automorphic by
Theorem 2.8 above. Now T (s) x(s) = G(s) is almost automorphic.

According to assumption (i), the vector-valued function s �→ PSX(s) =
T (s)PSX(0) is almost automorphic. Therefore s �→ PSX(s) is almost auto-
morphic as the sum of almost automorphic vector-valued functions.

In the same way, it is not hard to see that

d

ds
(QSX(s)) = BQSX(s) +QSF (s),

and that QSX(s) can be expressed as

QSX(s) = R(s)QSX(0) +

∫ s

0

R(s− σ)QSF (σ)dσ.

Using similar arguments as above, it can be shown that s �→ QSX(s) is
almost automorphic. Therefore X(s) = PSX(s) + QSX(s) is also an almost
automorphic vector-valued function.
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Remark 3.4. Let us notice that the previous results (Theorem 3.1 and
Theorem 3.3) still hold in the case where A,B : H×H �→ H×H are bounded
linear operator matrices on H×H . In such a case, the similar assumptions are
required, that is, (i)-(ii)-(iii) and (iv).

Acknowledgement

The author wants to express many thanks to the referee for his/her comments
and suggestions on the first version of this paper. Also, the author wants to
thank Professor Goldstein for his latest suggestions that significantly improved
the paper.

References

[1] Diagana, T., and G. M. N’Guerekata, On some perturbations of some
abstract differential equations, Commentationes Mathematicae, to appear.

[2] Diagana, T., and G. M. N’Guerekata, Some extension of the Bohr-
Neugebauer-N’Guerekata theorem, Preprint.

[3] Diagana, T., and G. M. N’Guerekata, Some remarks on some abstract
differential equations, Far East J. of Math. Sci. 8(3) (2003), 313–322.

[4] El Haial, A., and R. Labbas, On the ellipticity and solvability of an ab-
stract second-order differential equation, Electron. J. Differential Equations
2001(57) (2001), 1–18.

[5] Goldstein, J. A., Convexity, boundedness and almost periodicity for differ-
ential equations in Hilbert Spaces, Int. J. Math. and Math. Sci. 2 (1979),
1–13.

[6] Krein, S. G., “Linear Differential Equations in Banach Spaces”, Moscow,
1967. Translated from the Russian by J. M. Danskin. Translation of Math-
ematical Monographs, Vol. 29, American Mathematical Society, Rhode Is-
land (1997), 390 pp.

[7] Labbas, R., Equation elliptique abstraite du second ordre et équation
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