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Abstract

Plants have several mechanisms to endure salinity stress. The degree of salt tolerance varies significantly among different
terrestrial crops. Proteins at the plant’s cell wall and membrane mediate different physiological roles owing to their critical
positioning between two distinct environments. A specific membrane protein is responsible for a single type of activity, such
as a specific group of ion transport or a similar group of small molecule binding to exert multiple cellular effects. During
salinity stress in plants, membrane protein functions: ion homeostasis, signal transduction, redox homeostasis, and solute
transport are essential for stress perception, signaling, and recovery. Therefore, comprehensive knowledge about plant
membrane proteins is essential to modulate crop salinity tolerance. This review gives a detailed overview of the membrane
proteins involved in plant salinity stress highlighting the recent findings. Also, it discusses the role of solute transporters,
accessory polypeptides, and proteins in salinity tolerance. Finally, some aspects of membrane proteins are discussed with
potential applications to developing salt tolerance in crops.
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Introduction

Soil salinity is a severe challenge affecting agricultural
productivity globally. Declining cultivable lands due to
soil salinization and the increase in food demand due to
the population surge further worsen the situation (Kumar
and Sharma 2020). Hence, there is an urgent need to deal
with the soil salinity problem in the agricultural sector.
Cultivation of salt-tolerant crop varieties in saline lands
could be a potential solution to recover the soil quality and
sustainable agricultural production (Kumar and Sharma
2020). Na* is one of the predominant ions responsible for
salinity. Because excess Na* interferes with the regular
metabolic activity in plants, the Na* level is maintained
lower than the K* level in plant cytoplasm.

A simplified scheme of salinity stress in the plant is pre-
sented in Fig. 1. The entire processes of perception, sign-
aling, and response to the salinity stress can be outlined
as follows. The osmosensory and ion-sensory proteins in
the cell wall and the plasma membrane perceive salin-
ity in the form of osmotic and ionic stress, respectively.
Osmotic and ionic stress results in the intracellular Ca>*
spike, acting as a signal, initiating several downstream

processes such as plasma membrane enzyme-dependent
Reactive Oxygen Species (ROS) production. ROS produc-
tion causes oxidative stress. In response to the signaling
and oxidative stress, membrane transporters and pumps
get involved in reducing the salinity stress. The recovery
from salinity stress is caused by Na* extrusion, Na* com-
partmentalization, and partitioning of Na* across the plant
organs (Van Zelm et al. 2020). Further, the small molecule
transporters also transport the phytohormones and compat-
ible solutes during the recovery phase. Hence membrane
proteins (Table 1.) can be regarded as a checkpoint of the
pathways that requires connecting external stimuli to the
intracellular repercussion.

Recent genomic data of different plant species sug-
gested that many membrane proteins in the plant genome
are involved in abiotic stress tolerance (Tang et al. 2020).
Despite a large number of membrane proteins in plant salin-
ity stress, they can be categorized into a few basic types
based on their primary function: ion homeostasis, osmo-
sensing or ion sensing, signaling, redox homeostasis, sol-
ute transport, and accessory membrane polypeptides and
proteins. In this work, a comprehensive review of plant
membrane proteins in salinity stress is done. The review
also discusses the role of solute transporters and accessory
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Fig. 1 Simplified scheme of salinity stress in plants: plants perceive
salinity as osmotic and ionic stress and is consequently converted
into Ca®* signaling. Ca>" also activates apoplastic ROS production
through plasma membrane RBoH enzyme. Plant aquaporin transports
ROS into the cytosol, facilitating oxidative stress. Ca** and ROS act

@ Springer

Osmosensor /

lon-sensor

Na* Compartmentalization
Cell Damage Repair

Osmotic Balance
Metabolism

as long-distance stress signal that activates many pathways to miti-
gate salinity stress. The main job of the signaling is to activate pro-
teins and different transcription factor-mediated gene expressions
primarily involved in Na* extrusion, Nat compartmentalization, Na*
distribution, cell damage repair, osmotic balance, and metabolism
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proteins in plant salt tolerance. Finally, the knowledge gap
in membrane proteins in plant salinity stress response and
the possibilities to develop salt-tolerant crops based on the
plant membrane protein are discussed.

Membrane Proteins in lon Homeostasis
Membrane Proteins in Sodium Homeostasis

Na* stress in plants is primarily sensed and controlled by
the roots. No Na* specific channels on plant root plasma
membrane are identified to date. A recent proposition sug-
gests that vesicular transport enables a large Na™ influx into
halophyte cells (Flowers et al. 2019). However, several non-
selective cation channels (NSCC) are also believed to be
involved in the initial Na*t influx (Demidchik and Maathuis
2007) (Fig. 2). High Affinity K* Transporters (HKTs) are
one group of non-selective ion channel/transporter that
transport Na® and K* (Riedelsberger et al. 2021). Several
HKT genes and their functions in plants are highly vari-
able, but their primary functions are ion accumulation under
starved conditions, salt tolerance by ion compartmentaliza-
tion, and partitioning (Hamamoto et al. 2015). Class  HKT
channels are evidenced to perform K* and Na* transport
(Gassmann et al. 1996). Overexpression of HKT1 has pro-
moted salt tolerance by locally restricting Na* (Wang et al.
2019a). Class I HKTs co-transport Nat and K* and are acti-
vated during K* deficiency. One of the members of class II,
HKT?2;1, is responsible for distributing the Na* from root to
shoot, thereby enhancing the salt tolerance in barley (Mian
et al. 2011). HKT2;1 is also responsible for increasing Na*
content in plant cell. Excess Na™ is toxic; hence repres-
sion of HKT2;1 gene is also demonstrated to improve salt
tolerance in rice (Wei et al. 2021). Na™ is also transported
through the High-Affinity K* uptake (HAK) family of trans-
porters. For example, a HAK family transporter ZmHAK24
in maize and its orthologues in rice and wheat specifically
transport Na™; confer salt tolerance by restricting Na* in
the root (Zhang et al. 2019). HAK activity is more relevant
to the K* acquisition; therefore will be discussed in the K*
homeostasis section. Na™ homeostasis is also controlled by
the ligand-gated channels such as Cyclic Nucleotide Gated
Channels (CNGCs) (Jarratt-Barnham et al. 2021). Expres-
sion profiles of CNGCs change with salt stress. A CNGC
homolog in Arabidopsis thaliana AtCNGC10 contributes to

Junkov4 et al. (2018), Zhou et al. (2018), Khalilova et al. (2020) and
Flowers et al. (2019)

Mitsuya et al. (2005) and Liu et al. (2012)
Yao et al. (2018) and Wang et al. (2021)
Raffaele et al. (2009) and Yue et al. (2014)

References

tides involved in abiotic stress; possibly aiding stability and activity
of membrane protein

ABA-induced wheat plasma membrane polypeptide 19 (AWPM-19)
porters and membrane trafficking; interaction with other membrane

proteins; vesicular transport of Na*
signaling and intricately related to the membrane protein—protein

group of membrane polypeptide; possibly aiding stability and activ-
interaction

ity of membrane protein; associated with ABA signaling

responsible for membrane protein stability
Annexin are peripheral membrane proteins perform Ca®* transport and Huh et al. (2010)

Rare Cold Inducible (RCI) group of small transmembrane polypep-
Accessory membrane proteins does interaction with various ion trans-
Plant-specific microdomain integral membrane protein; could be

Function in salt tolerance

Accessory membrane polypeptide and protein

2 ‘; the increase in [Na*] ., under saline environmental condi-
Z = tions hence it negatively regulates plant salt tolerance (Jin
g % u% f.et al. 20.15). Another group of ligand—gat.ed ion channels,
- : _ ; g . ¥0not.roplc glutamate re.:ceptors channels (1GluRs?, are also
2 g . % 5 e % ¥mp11caFed in trapsportmg Na* and K+ The precise rgle of
[ - & S £ 2 < iGluRs in maintaining the K*/Na™ ratio is not clear but it has
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Solute transporter (in)

1
2
3

5
6

7
8

Fig.2 Ion and solute transporting membrane proteins: Plasma mem-
brane (pm) and intracellular membrane transporters (in) are shown.
The primary function of each type of transporter is numbered, and
corresponding descriptions are enlisted. Plasma membrane (pm)
transporters are mainly responsible for the ion extrusion and distribu-
tion across different plant organs, whereas intracellular (in) transport-

been regarded as one of the means to tackle salinity stress
(Demidchik et al. 2004).

Na* transport by secondary active transporters mainly
occurs during the recovery phase. The primary Na* extrud-
ing plant plasma membrane secondary active transporter
is SOS1 (NHX7 in Arabidopsis) (Wu et al. 1996). It is a
Na*/H" antiporter that transports Na* out of the cytosol in
exchange for H*. SOSI1 is also vital for the root-to-shoot
distribution of Na* in plants, thus conferring a long-distance
salt transport (Shi et al. 2002). Plant intracellular Nat/H*
antiporters NHXs also play a significant role in salt tol-
erance. (Apse et al. 1999; Bassil et al. 2019). NHXs are
involved in Na* compartmentalization, but their activ-
ity can vary from one plant to the other depending on the
level of salt tolerance (Rodriguez-Rosales et al. 2009). In
Arabidopsis, NHX1 and NHX2 can transport Na* and K*,
but when the cytoplasmic Nat concentration increases,
the transporters participate in the sequestration of Na™ in
the vacuole; hence contribute to the plant salt tolerance
(Bassil et al. 2019). NHX5 and NHX6 reside in the endo-
somal membrane to confer protein sorting during salt stress
(Bassil et al. 2019). The other two NHXs of Arabidopsis,
NHX3, and NHX4, are more specific toward Na®™ and K,

@ Springer
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ers do the compartmentalization and locally control the ion concen-
tration. Non-selective ion channels do not discriminate between Na*
and K* and can be non-gated or ligand-gated. K" specific channels
are mainly voltage-gated. Intracellular Ca>*-ATPase participates
in Ca** homeostasis. Many solute transporters are driven by ions,
whereas ABC transporters are driven by ATP hydrolysis

respectively, and are mainly involved in vacuole transport
and pH maintenance (Bassil et al. 2019). The functioning of
Na*/H™" antiporter is driven by the proton gradient, which is
established by H"-ATPases and H*-PPases (Shi et al. 2002;
Silva and Ger6s 2009). The fact that the deletion of plasma
membrane H'-ATPase becomes salt sensitive and the over-
expression of the same with SOS1 increases salinity toler-
ance in Arabidopsis endorse the importance of plasma mem-
brane-H*-ATPase (Fan et al. 2019). Unlike Arabidopsis, the
expression profile and the regulation of plasma membrane
H*-ATPase activity of the salt-resistant plant is different.
The comparison showed that ATPase activity increases upon
salt exposure in leaves of salt-tolerant plants compared to
salt-sensitive plants (Sahu and Shaw 2009). Further analysis
showed that the variability of the H*-ATPase activity could
be due to the different regulatory networks present in these
plants (Gévaudant et al. 2007). Vacuolar-H*-ATPase (VHA)
and H*-pyrophosphatase (H*-PPase) present in tonoplast
energize the NHXs to compartmentalize salts in tonoplast
(Kluge et al. 2003). Like plasma membrane H-ATPase,
VHA also shows an altered expression profile and activ-
ity level in salt-tolerant plants compared to a salt-sensitive
plants (Wang et al. 2001; Jaarsma and De Boer 2018).
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However, research showed that VHA is essential for nutri-
ent storage in tonoplast, whereas H*-PPase creates the H*
gradient for salt accumulation (Krebs et al. 2010).

Membrane Proteins in Potassium Homeostasis

Like Na*, K* absorption and distribution are essential to
maintain the K*/Na™ ratio. K* channels (Fig. 2) responsible
for plant salt tolerance are primarily voltage-gated channels
and belong to three major groups: inward rectifying—con-
trolling K* influx (AKT1, KAT1), outward rectifying—
controlling K* efflux (SKOR and GORK), and weakly volt-
age regulated—direct both in and out K* transport (AKT2
and AKT?3) (Shabala and Cuin 2008; Dreyer and Uozumi
2011). These channels are also regarded as shaker-type K*
channels. The major inward rectifying K* channels found
to enhance salt tolerance are KAT1 and AKT1. KAT1 is
shown to increase salt tolerance in yeast. KAT1 increases the
K* content in cells upon salinity stress (Obata et al. 2007).
AKT1, on the other hand, is responsible for K* uptake and
drought tolerance (Ahmad et al. 2016b). Outward rectify-
ing channels such as GORK response to the salinity stress
induced depolarization of the plasma membrane. Depo-
larization occurs due to the increasing Na* influx into the
cell. In response to the depolarization, GORK maintain the
plasma membrane potential by removal of cellular K*. This
destabilizes the cytosolic K¥/Na™ ratio. Therefore, to prevent
depolarization-mediated K™ loss, plant reduces the expres-
sion of GORK (Adem et al. 2020). Another K* channel of
the same group, Stelar K* Outward Rectifier (SKOR), passes
the K* to the xylem for its distribution. It is demonstrated
that a constitutive expression of melon SKOR in Arabidop-
sis improves its salinity tolerance (Long-Tang et al. 2018).
Outward rectifying K* channels are also crucial for long-
distance K* transport, balancing the cytosolic K*/Na* ratio
(Wegner and De Boer 1997). The weakly voltage-regulated
K* channels AKT2/AKT3 demonstrated that the direction
of the rectification and the voltage dependency is due to
the sequence variations among different plants (Huang et al.
2021). AKT2/AKT3 control K* content and hence sucrose
transport in phloem cells (Rubio et al. 2020). In rice, AKT2/
AKT3 expression levels are reduced during salinity stress;
however, its impotence may vary in plants depending on the
variations in the direction of the rectification and the voltage
dependency.

(Schmidt et al. 2013; Huang et al. 2021). Non-voltage
gated K* channels in plants are two-pore channels (TPC)
that are exclusively located in the tonoplast or intracellular
membrane. The primary function of the K* specific TPC is
to transport K* toward the cytoplasmic direction to stabilize
the cytoplasm K*/Na™ ratio. Overexpression of K* specific
TPC is therefore expected to resist the salt stress. Transgenic
overexpression of TPCs improves plant salt tolerance (Wang

et al. 2013; Ahmad et al. 2016a). Recently a structure-based
study of Arabidopsis two-pore channel AfTPC1 shows that
the channel is specific to Ca** but cannot discriminate
between monovalent ions (Nat and K*) (Guo et al. 2017).

Transporter and carrier protein entailing K™ transport
across plant membrane belongs to KT/HAK/KUP trans-
porter family (Li et al. 2018). HAK transporters are com-
paratively well-characterized members of the KT/HAK/KUP
transporter family. Although the variation of ion specificity
has been reported for HAK members in plants, HAK trans-
porters preferably transport K*. Depending on the expres-
sion and localization, it primarily renders a K+ accumulation
in the plant during low K* environments and maintains the
K*/Na™ ratio by redistributing K* (Nieves-Cordones et al.
2010; Shen et al. 2015).

Cation/H™ antiporters are a large group of secondary
active transporters in plants and can be subdivided into three
main types: NHX, CHX, and KEA (Chanroj et al. 2012;
Jia et al. 2018). Their functions and physiological roles are
diverse (Isayenkov et al. 2020; Tsujii et al. 2020). While
most NHXs preferentially transport Na*t, quite a few K*
transporting CHXs are known. A\CHX13 and AtCHX14
are two critical Arabidopsis transporters active during K*
deficiency in the environment. AfCHX13 is located in the
root carrying out the acquisition of K*, whereas AtfCHX 14
is expressed in the xylem parenchyma cell controlling the
root to shoot movement of K* (Zhao et al. 2015). A cation/
H* antiporter GsCHX19.3 of Glycine soja shows a relatively
higher expression in leaf and flower in response to the salin-
ity stress (Jia et al. 2017). GsCHX19.3 shows the highest
homology with A. thaliana CHX19, and when overexpressed
in Arabidopsis, it confers salt tolerance. The primary roles
of K*/H" transporters are restricting K* outflow from root
cells and distributing K* from root to shoot.

Membrane Proteins in Chloride and Nitrogen
Homeostasis

Chlorine and nitrogen are two elements absorbed and trans-
ported in plants as anions. Chloride homeostasis plays a
significant part in plant salinity tolerance. In some plants,
such as soybean and avocado, CI~ shows a more toxic effect
than Na* because these plants have a robust Na™ exclusion
system than CI~ (Wu and Li 2019). Chloride transport-
ers (Fig. 2) such as Slow Anion Channels (SLAC/SLAH)
and Chloride channels (CLC) are documented to affect
salt tolerance directly. In Arabidopsis, AtSLAH is critical
in C1™ homeostasis during salinity stress. AtfSLAH1 and
AtSLAH3 heteromer has a significant contribution to the
chloride distribution from root to shoot under salinity stress.
During salinity stress, reduced AfSLAH]1 expression causes
decline in CI™ content in xylem sap; preventing C1~ from
reaching the shoot (Cubero-Font et al. 2016; Qiu et al. 2016).
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Other chloride channels such as CLCs are intracellular and
perform variable functions. AtfCLCc and AtCLCg are two
important chloride transporters responsible for salinity tol-
erance in Arabidopsis (Nguyen et al. 2016). The primary
function of AfCLCg is to reduce the shoot C1~ content by
compartmentalizing in the parenchyma cell. C1~ exclusion
from shoot to root has been widely studied in legume plants
(Teakle and Tyerman 2010). Legume plants are unique due
to their symbiotic relationship and can better manage chlo-
ride and nitrogen distribution (Vincill et al. 2005). For exam-
ple, the genome-wide association study (GWAS) in soybean
revealed that the chloride transporter GsCLC-c2 has signifi-
cant role in salinity tolerance in soybean (Wei et al. 2019;
Luo et al. 2021). In principle, plant chloride channels restrict
the distribution of CI™ by compartmentalization.

Nitrogen in the form of NO; is transported during salin-
ity stress and is often correlated with K* transport (Raddatz
et al. 2020). Nitrate transport is partly achieved by anion
(chloride) channels SLAC/SLAH and CLC. The other two
nitrate transporters, NTR1 and NTR2, are H*-coupled
NO;™ symporters native to the plasma membrane. NTR1 and
NTR2 are suggested to work due to the H" gradient estab-
lished by plasma membrane H*-ATPase (Liu et al. 2021).
NRT1 and NRT?2, both groups of nitrate transporters, are
shown to be upregulated under salinity stress (Wang et al.
2012a; Liu et al. 2021). The NRT group of NO;™ transport-
ers mainly performs nitrogen absorption and distribution.

Membrane Protein in Calcium Homeostasis

Calcium ion transport systems can be subdivided into the
Ca”" influx and the Ca®* efflux (Fig. 2) (Demidchik et al.
2018). Perception of salinity stress transiently induces Ca®*
influx into the cytosol, further amplified by ROS signaling,
and is fundamentally required for propagating long-distance
salinity stress signals (Choi et al. 2014). The efflux system
is essential to move Ca** into the subcellular organelle, as a
high concentration of Ca>* in cytoplasm is toxic. The influx
system consists of mechanosensitive channels (OSCA),
cyclic nucleotide-gated channels (CNGC), two-pore chan-
nels (TPC), and ionotropic glutamate receptor channels
(iGluRs) essential for an early stage of salinity stress per-
ception. Mechanosensitive Ca** channels OSCA in plants
sense the osmotic stress and are activated by the mechani-
cal tension in the membrane (Hou et al. 2014; Yuan et al.
2014) (Fig. 3). Transgenic expression of rice OsOSCA1.4 in
A. thaliana OSCA1.1 mutant can complement salinity and
osmotic stress response (Zhai et al. 2020). Cyclic nucleotide-
gated channels (CNGCs) are the ligand-gated channels with
an assigned role in various stress tolerances (Demidchik
et al. 2018). Most CNGCs are non-selective cation chan-
nels, but A. thaliana CNGC10 has been elucidated to have a
role in salt tolerance. AfCNGC10 is critical in balancing the
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K*/Na' ratio; nevertheless, its inactivation to increase the
root K*/Na* ratio corroborates that A*CNGC10 negatively
regulates salt tolerance (Guo et al. 2008; Jin et al. 2015).
Since CNGCs require cyclic nucleotide for their activation, it
is possible that A“*CNGC10 functions downstream to a mem-
brane-associated osmosensory protein that produces cGMP.
Similar activation has been reported for Ai{CNGC2, induced
by the receptor-like kinase AfPepR1 producing cGMP (Qi
et al. 2010). Two-pore channels (TPC) are responsible for
propagating long-distance Ca*"-dependent salinity stress
signals (Choi et al. 2014). A study on the A. thaliana two-
pore channel shows that A/TPC1 is specific to Ca>* but less
specific to Nat and K* (Guo et al. 2017).

Unlike Ca** influx into the cytosol, its efflux is energy-
dependent. The primary contributor to this relatively slow
process is the endomembrane localized Ca?*-ATPase.
Arabidopsis ACA2 and ACA4 are two plant endomembrane
Ca’*-ATPases whose transcript levels increase during salt
stress (Geisler et al. 2000; Anil et al. 2008). Expressing
ACA2 in Ca**-ATPase-devoid yeast cells shows a rapid
decrease in cytosolic Ca®* upon salt stress (Anil et al.
2008). Plasma membrane Ca**-ATPases from other plants
have been demonstrated to function in salt tolerance, as
evidenced by the increased transcript levels during salinity
stress (Huda et al. 2013). Other contributors to the cytoplas-
mic Ca®* restoration are secondary active transporters such
as Ca®*/cation antiporters. Plant Ca>*/cation exchangers are
predominantly localized in the vacuole and have been exam-
ined for their function in yeasts. Ca**/H* exchanger CAX1
of A. thaliana is expressed in mesophyll cells and required
for Ca* storage in the vacuole (Conn et al. 2011). Salin-
ity stress enhances the expression level of both CAX1 and
VHA, corroborating that CAX1 activity is energized by vac-
uolar H*-ATPase (Han et al. 2011). Some Ca’" exchangers
couple Ca>* transport with Na* transport. For instance, A.
thaliana AINCL, a vacuolar Ca**/Na* exchanger sequesters
Ca”* into vacuole and releases Na* into cytosol. Therefore,
unlike CAX, AfNCL negatively influences salt tolerance
(Wang et al. 2012b).

Membrane Proteins in Salinity Stress Signal
Transduction

Changes in osmotic pressure and ionic concentration are two
factors detected by plants to realize salinity stress (Fig. 3).
Osmotic pressure causes several changes to the cellular
structures of root cells, inflicting cell wall damage and an
osmotic imbalance across the cell membrane. Osmosen-
sors located in the plasma membrane can induce tension in
the membrane (Haswell and Verslues 2015). Currently, the
osmosensors in plants those induce membrane tension in
response to salinity stress are not known (Wang et al. 2022).
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Fig.3 Three basic modes of salinity stress perception in plants:
Osmotic stress realized by putative osmosensor induces membrane
tension. Membrane tension activates mechanosensitive Ca2+chan-
nels. Another mechanism involving plasma membrane protein
MOCAL1 synthesizes glycosphingolipids in response to the Na* ion
stress. MOCA1 possibly works via changing the plasma membrane

However, the osmosensing could be due to multiple factors.
One predominant factor is the direct distortion of the plasma
membrane, inducing membrane tension. Mechanosensing
Ca®* channel protein families such as OSCA are activated
due to the plasma membrane tension and initiate Ca>* sign-
aling (Yuan et al. 2014). Other mechanosensing membrane
proteins are predicted to convert the osmotic stress into
cGMP formation (Julkowska and Testerink 2015). Cyclic
GMP is responsible for activating multiple non-selective ion
channels including putative Ca>* channels (Turek and Irving
2021). Na™ sensors are also elucidated in plants. Monoca-
tion-Induced [Ca®*];  .cenulr Increases 1 (MOCAL1) is one
such protein that mediates sensing of extracellular Na* con-
centration and Ca?* signaling (Jiang et al. 2019). MOCA1
is a membrane protein with glucuronosyltransferase activity
and is responsible for glycosphingolipid synthesis. The exact
mechanism of MOCAL1 is unknown, but it is thought to be
responsible for nanodomain formation in plasma membrane.
Nanodomain causes the activation of putative Ca>* channels
(Steinhorst and Kudla 2019).

Receptor-like kinases (RLKSs) are integral membrane or
membrane-associated proteins involved in various functions,

Cell wall

RLK mediated direct/

indirect Ca?* influx

Induce membrane

tension

Q

RSS9
... ...

Osmosensor

Microdomain
Formation

dynamics to activate a putative Ca** channel. A third mechanism
depends on the plasma membrane receptor-like kinases (RLKs) that
detect damage to the cell wall or are activated by external stimuli
such as ROS. RLKs directly or indirectly activate Ca®>* channels initi-
ating the Ca®* signal

including biotic and abiotic stress perception (Dievart et al.
2020) (Fig. 3). The basic structure of these proteins is com-
posed of a sensory domain, followed by a transmembrane
domain and the cytoplasmic kinase domain (Jose et al.
2020). However, some RLKs might have an extension to the
cell wall, and some RLKSs are only cytoplasmic (Jose et al.
2020). The kinase domain is responsible for phosphorylating
a target protein for signal transduction. RLKs directly sense
the osmotic damage of the cell wall or oxidative damage of
the cell membrane induced by the salinity stress (Ye et al.
2017). RLKSs can be root or shoot specific, and their expres-
sions can be up or down-regulated by the salinity stress.
For instance, the LRR (Leucine-Rich Repeat)-type RLK,
LP2 overexpression in rice is predominantly found in leaves,
reducing salt tolerance (Wu et al. 2015). Many RLKs are
induced by ROS levels and aim to control the ROS-mediated
damage during salinity stress. For instance, the rice RLKs,
OsSlkl, and OsSTLK are induced by salt stress and reduce
the ROS load and lipid oxidation (Ouyang et al. 2010; Lin
et al. 2020). Some RLKSs spanning the cell wall recognize
peptide hormones expressed due to salinity stress. For
instance, overexpression of the small hormone-like peptide
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ArPep3 is the consequence of salinity stress. AfPep3 interacts
through Peptide Receptor 1 (PepR1), a RLK proposed to
confer salt tolerance via ion homeostasis (Nakaminami et al.
2018). Salt stress resulting in damage in the cell wall and
cell—cell interaction is sensed by RLK named FERONIA,
which was also proposed to work toward Ca** ion homeo-
stasis (Feng et al. 2018). FERONIA is linked to the cell wall
residing Leucine—Rich Repeat Extensions (LRX) domain
that senses the cell wall damage (Zhao et al. 2018). Recep-
tor-like kinases might have a link with the plant G-proteins.
G-proteins (G, and Gy) are also upregulated in response to
the increase in salinity stress. It is an enigma if G-proteins
interact with the limited number of G-protein coupled recep-
tors present in the plant (Misra et al. 2007). However, it is
proposed that the G-proteins might just work through RLK
signaling (Pandey 2020).

Membrane Proteins for Reactive Oxygen
Species Scavenging System

Reactive oxygen species (ROS) generated in roots play a
critical role in plants sensing salinity stress. ROS travel from
root to shoot results in several changes in shoot, such as
the closing of the guard cells (Choi et al. 2014). A coor-
dinated movement of ROS and Ca** from root to shoot is
also responsible for stress signaling (Li et al. 2021). Salinity
stress-related ROS is produced by the plant plasma mem-
brane Respiratory Burst Oxidase Homolog (RBoH). Among
the ten RBoHs in Arabidopsis, RBoHD and RBoHF are two
extensively studied enzymes directly involved in salinity
stress (Ma et al. 2012). Activation of RBoH is the down-
stream effect of the early calcium influx into the cytosol,
where the Ca** binding CBL sensors (Calcineurin B-like
calcium sensors) and protein kinase (CIPK) synergistically
activate RBoHs (Ogasawara et al. 2008; Drerup et al. 2013).
RBoHs produce ROS in the apoplastic region to minimize
the negative effect of ROS in the cytosol. However, apoplas-
tic ROS is critical for the activities of the plasma membrane
pumps and voltage-gated ion channels. One known example
is the regulation of the voltage-gated K* channel SKOR.
A cysteine residue located at the apoplastic side of SKOR
undergoes ROS-dependent modification to kick-start the
K* transport (Garcia-Mata et al. 2010). Another target of
apoplastic ROS is HPCA1, which is a receptor-like kinase.
Apoplastic ROS oxidized an extracellular cysteine residue of
HPCAL that activates the protein and relays a putative Ca**
channel opening in guard cells (Wu et al. 2020).

ROS entry to the cytosol occurs via the PLASMAM-
EMBRANE INTRINSIC PROTEINS (PIPs) or aquaporins
(Dynowski et al. 2008) (Fig. 1). ROS molecules such as
hydrogen peroxidase (H,O,) impose oxidative stress by dam-
aging the membrane lipids, DNA, proteins, perturbing the
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cytosolic redox potential, and positively influencing Ca**
signaling (Seifikalhor et al. 2019). A common outcome of
salinity stress is the change in ROS-mediated membrane
permeability caused by lipid peroxidation (Mansour 2013).
Another adverse effect of ROS is the activation of the IAA
pathway, which leads to root growth cessation (Huang et al.
2019a). Plants discharge multiple antioxidative defense
enzymes and compatible solutes to counter oxidative stress
(Apel and Hirt 2004). Studying the salinity tolerance mech-
anisms in halophytes revealed that the better salt-tolerant
plant could better manage oxidative stress (Kumar et al.
2021). Membrane proteins also take part in ROS homeo-
stasis. Arabidopsis mitochondrial voltage-dependent anion
channel (VDAC) manifests salt tolerance by ROS homeosta-
sis (Sanyal et al. 2020). ROS positively contributes to sens-
ing and preventing salt tolerance through Ca** signaling.
Data suggests that ROS indirectly activates the intracellular
K™ channel, TPCI, for cytosolic Ca>* spike and, together,
they are responsible for the propagation of the salinity stress
signal and prevention (Evans et al. 2016). Another instance
that ROS contributes to the increase in salt tolerance could
be comprehended by ROS regulation of plant annexins.
Annexins are the Ca®* binding membrane-associated pro-
teins responsible for intracellular Ca®* transport. Arabidop-
sis Annexins, AtANN1, and AtANN4 negatively regulate
salt tolerance (Huh et al. 2010). AtANNI1 is again negatively
regulated by ROS, implicating that ROS has some positive
affects in salt tolerance (Richards et al. 2014). Regulation of
membrane protein expression by ROS is also demonstrated.
Transcriptome analyses of differentially expressed genes in
pumpkin reveal that ROS-producing RBoHD controls the
expression of plasma membrane H"-ATPase (AHA1) and
the K* channel HAKS contributing to the salt tolerance
(Huang et al. 2019b). Pumpkin-grafted cucumber plants
with inhibited ROS production show compromised salt tol-
erance and reduced plasma membrane H*-ATPase activity
(Niu et al. 2018). These results imply that ROS contributes
to salt tolerance by sounding the alarm of salinity-induced
damage to the cells and regulating the membrane transport-
ers' activities.

Solute Transporters

Salinity stress induces the expression level of certain solute
transporters delineating their importance in salt tolerance.
Solute transporters (Fig. 2) are generally involved during
the recovery phase and transport three basic groups of mol-
ecules: phytohormones, compatible solutes, and metabo-
lites. Phytohormones are essential for signaling growth and
development. ABC (ATP Binding Cassette) transporters
are primarily involved in phytohormone transport (Fig. 2).
For example, Abscisic acids are considered stress response
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hormones transported by ABCG25, which expression level
changes due to the salinity stress (Park et al. 2016). An
Arabidopsis ABC transporter, AtABCG36, is suggested to
transport phytohormones with a putative role in salt toler-
ance (Kim et al. 2010).

Compatible solutes or osmoticum transport is imminent
during osmotic shock. Molecules such as proline, polyam-
ines, and glycinebetaine reduce oxidative stress and provide
osmoprotection under salinity stress; hence called compat-
ible solutes or osmoticum. Only a handful of compatible sol-
ute transporters are currently attributed to the plant's salin-
ity stress response. Proline transporter ProT?2 is one such
membrane protein. ProI2 expression level coincides with the
proline accumulation level in the leaves. ProT2 upregulation
is the consequence of salinity stress that ensures the long-
distance transport of proline (Rentsch et al. 1996). Poly-
amine is another compatible solute that is overproduced in
response to salinity stress. The recent evidence of polyamine
transporter PUT3 physically interacting with Na*/H* anti-
porter SOS1 in plasma membrane shows a possibility of
PUTS3 involvement in salt tolerance (Chai et al. 2020).

A significant amount of energy is invested in the recov-
ery phase of salt-induced damage. Therefore, metabolite
transporters are essential that keep up the supplies of sugars
and other molecules. Numerous studies have identified the
change in plant metabolite transporters' expression profiles
during salinity stress (Hsu et al. 2009). Sugar transporters
STP13 and UPSS5 are shown differential activation pattern
during salt-stressed conditions. STP13 in Arabidopsis root
increases carbohydrate absorption activity of root cells dur-
ing stressed conditions (Yamada et al. 2011). Ureide per-
mease 5 (UPS5) in Arabidopsis confers salt tolerance by
distributing the small molecule allantoin (Lescano et al.
2016). Additionally, UPS5 exhibits salt tolerance by root-
to-shoot transport of allantoin, a metabolite pertinent to
abiotic stress. Plant cell wall and cell membrane synthesis
required a considerable investment of energy. A phosphate
transporter PHT4;6 is essential for recycling phosphate from
glycosylation toward the synthesis of cell walls and mem-
branes (Cubero et al. 2009).

Accessory Membrane Polypeptides
and Proteins

Numerous studies have identified the role of integral mem-
brane polypeptides and proteins in plant salt tolerance.
The primary roles of these proteins are yet to be identified.
However, these proteins may be responsible for the stability,
activity, and targeting of membrane transporters or specific
ions. A group of small transmembrane polypeptides called
RCI (Rare Cold Inducible) are identified in plants contrib-
uting to salt tolerance. RCI polypeptides share significant

homology with the yeast PMP3 (Plasma Membrane Protein
3) peptide, which, when deleted, exhibits a salt-sensitive
phenotype (Navarre and Goffeau 2000). Overexpression of
RCI2A in A. thaliana increases salt tolerance by reducing
the cellular Na* content (Mitsuya et al. 2005). The trans-
genic expression of Musa paradisica RCI gene in A. thali-
ana RCI2 mutant recovered Na* tolerance (Liu et al. 2012).
It has been predicted that RCI enhances Na* tolerance by
reducing Na* content in the shoot, maintaining plasma mem-
brane fluidity, and increasing plasma membrane H™-ATPase
activity. A different group of plasma membrane polypeptide
SALP1 is identified in rice that also functions to reduce Na*
content in the shoot. In addition, SALP1 increases the pro-
line content in rice (Yuan et al. 2016). The third group of
membrane polypeptides, called ABA-induced wheat plasma
membrane polypeptide 19 (AWPM-19) is also linked to the
salt stress in plants. OsPM1, an AWPM-19, has a proven role
in ABA signaling and involvement in stress tolerance (Yao
et al. 2018). However, it has been recently demonstrated
that OsPM1 has a positive role in drought tolerance but a
negative role in salinity tolerance (Wang et al. 2021). Some
accessory integral membrane proteins are also evidenced
in interacting with the ion transporters. For example, Patel-
lin-1, a membrane trafficking protein, interacts with SOS1
Na*/H™ antiporter to negatively regulate its activity (Zhou
et al. 2018). Another membrane trafficking salt-responsive
protein, Flotillin-2, potentially interacts with plasma mem-
brane H*-ATPase as detected in mass spectrometry analy-
sis (Junkova et al. 2018). Flotillins are also predicted to do
intracellular trafficking of Na* and are associated with plant
salt stress tolerance (Flowers et al. 2019; Khalilova et al.
2020). Remorins are another group of accessory membrane
protein usually found in microdomains (Raffaele et al. 2009).
When transiently overexpressed in Arabidopsis, the Remorin
gene SIREMBG6 of Setaria italic enhances salt tolerance (Yue
et al. 2014). However, the precise functions of the accessory
integral membrane proteins are not known.

Future Directions

Membrane proteins play an essential role in plant salinity
stress. Particularly, the ion transporters change their expres-
sion profiles and hence are suggested to be a plausible tar-
get to improve crops for increased agricultural production
(Schroeder et al. 2013). Plasma membrane ion transporters
primarily extrude and transport long-distance Na* and C1".
Plasma membrane transporters are also critical for K acqui-
sition during K* starved conditions. On the contrary, intra-
cellular ion transporters primarily involve the sequestration
of Na* and CI~ and control the cytoplasmic K*/Na™ ratio
by releasing K™ into the cytoplasm. Despite the importance
of the membrane proteins in plant salinity stress response,
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some aspects of the membrane proteins are remained unex-
plored, such as identifying the relevant membrane protein-
lipid and membrane protein—protein interactions. Lipids
are critical for membrane protein function. Salinity stress
induces the restructuring of the plant cell plasma membrane
due to the osmotic imbalance (Mansour et al. 2015). Produc-
tion of ROS due to salinity stress also affects membrane lipid
compositions and structure (Mansour et al. 2015). Lipids in
the membrane control the regulation and activity of mem-
brane protein. Therefore, it is evident that alteration of the
lipid composition and structure in the membrane could regu-
late the membrane protein distribution, function, and activ-
ity. Although plenty of work has been done on protein-lipid
interaction in animal and bacterial systems, such studies are
very limited in plants due to several technical difficulties.
Besides, membrane protein—protein interaction is evident
in salinity stress response. Such protein—protein interaction
in the membrane includes the communications between the
receptor-like kinase and its immediate membrane protein
substrate, membrane remodeling osmo- and ion-sensors
and its subsequent transporters, channels providing ion
gradient for transporter function, and finally, the H*-pump
empowering the secondary active transporters. Identifying
the critical protein—protein interaction in plants could also
provide valuable information about the protein interaction
network responsible for salinity stress response. The mem-
brane protein interaction could be understood by correlating
membrane proteomics and lipidomics data in differential salt
treatment experiments. Another crude yet easy and direct
alternative could be finding the interacting lipids and pro-
tein from the heterologous expression of plant membrane
proteins (Dutta et al. 2020).

Recently, it has been suggested that adopting halophytic
traits in crops could solve the salinity stress problem in agri-
culture (Liu et al. 2020). One significant difference between
halophytes compared to salt-sensitive crops is the differen-
tial expression pattern of the membrane proteins (Assaha
et al. 2017). Changes in protein expression patterns also sug-
gest an altered protein—protein and protein-lipid interaction
network in halophytes. Knowledge of such specific interac-
tions may be essential because they can be targeted, and
strategies could be developed to modulate their interactions.
Additionally, membrane protein distribution in plant organs
and its polarity in a cell could be changed by the distribution
of the lipids. It is possible to target the specific membrane
lipid synthetic pathway and their targeting to alter membrane
protein distribution or polarity.
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