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Abstract
Plants have several mechanisms to endure salinity stress. The degree of salt tolerance varies significantly among different 
terrestrial crops. Proteins at the plant’s cell wall and membrane mediate different physiological roles owing to their critical 
positioning between two distinct environments. A specific membrane protein is responsible for a single type of activity, such 
as a specific group of ion transport or a similar group of small molecule binding to exert multiple cellular effects. During 
salinity stress in plants, membrane protein functions: ion homeostasis, signal transduction, redox homeostasis, and solute 
transport are essential for stress perception, signaling, and recovery. Therefore, comprehensive knowledge about plant 
membrane proteins is essential to modulate crop salinity tolerance. This review gives a detailed overview of the membrane 
proteins involved in plant salinity stress highlighting the recent findings. Also, it discusses the role of solute transporters, 
accessory polypeptides, and proteins in salinity tolerance. Finally, some aspects of membrane proteins are discussed with 
potential applications to developing salt tolerance in crops.
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Introduction

Soil salinity is a severe challenge affecting agricultural 
productivity globally. Declining cultivable lands due to 
soil salinization and the increase in food demand due to 
the population surge further worsen the situation (Kumar 
and Sharma 2020). Hence, there is an urgent need to deal 
with the soil salinity problem in the agricultural sector. 
Cultivation of salt-tolerant crop varieties in saline lands 
could be a potential solution to recover the soil quality and 
sustainable agricultural production (Kumar and Sharma 
2020). Na+ is one of the predominant ions responsible for 
salinity. Because excess Na+ interferes with the regular 
metabolic activity in plants, the Na+ level is maintained 
lower than the K+ level in plant cytoplasm.

A simplified scheme of salinity stress in the plant is pre-
sented in Fig. 1. The entire processes of perception, sign-
aling, and response to the salinity stress can be outlined 
as follows. The osmosensory and ion-sensory proteins in 
the cell wall and the plasma membrane perceive salin-
ity in the form of osmotic and ionic stress, respectively. 
Osmotic and ionic stress results in the intracellular Ca2+ 
spike, acting as a signal, initiating several downstream 

processes such as plasma membrane enzyme-dependent 
Reactive Oxygen Species (ROS) production. ROS produc-
tion causes oxidative stress. In response to the signaling 
and oxidative stress, membrane transporters and pumps 
get involved in reducing the salinity stress. The recovery 
from salinity stress is caused by Na+ extrusion, Na+ com-
partmentalization, and partitioning of Na+ across the plant 
organs (Van Zelm et al. 2020). Further, the small molecule 
transporters also transport the phytohormones and compat-
ible solutes during the recovery phase. Hence membrane 
proteins (Table 1.) can be regarded as a checkpoint of the 
pathways that requires connecting external stimuli to the 
intracellular repercussion.

Recent genomic data of different plant species sug-
gested that many membrane proteins in the plant genome 
are involved in abiotic stress tolerance (Tang et al. 2020). 
Despite a large number of membrane proteins in plant salin-
ity stress, they can be categorized into a few basic types 
based on their primary function: ion homeostasis, osmo-
sensing or ion sensing, signaling, redox homeostasis, sol-
ute transport, and accessory membrane polypeptides and 
proteins. In this work, a comprehensive review of plant 
membrane proteins in salinity stress is done. The review 
also discusses the role of solute transporters and accessory 

Fig. 1   Simplified scheme of salinity stress in plants: plants perceive 
salinity as osmotic and ionic stress and is consequently converted 
into Ca2+ signaling. Ca2+ also activates apoplastic ROS production 
through plasma membrane RBoH enzyme. Plant aquaporin transports 
ROS into the cytosol, facilitating oxidative stress. Ca2+ and ROS act 

as long-distance stress signal that activates many pathways to miti-
gate salinity stress. The main job of the signaling is to activate pro-
teins and different transcription factor-mediated gene expressions 
primarily involved in Na+ extrusion, Na+ compartmentalization, Na+ 
distribution, cell damage repair, osmotic balance, and metabolism
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proteins in plant salt tolerance. Finally, the knowledge gap 
in membrane proteins in plant salinity stress response and 
the possibilities to develop salt-tolerant crops based on the 
plant membrane protein are discussed.

Membrane Proteins in Ion Homeostasis

Membrane Proteins in Sodium Homeostasis

Na+ stress in plants is primarily sensed and controlled by 
the roots. No Na+ specific channels on plant root plasma 
membrane are identified to date. A recent proposition sug-
gests that vesicular transport enables a large Na+ influx into 
halophyte cells (Flowers et al. 2019). However, several non-
selective cation channels (NSCC) are also believed to be 
involved in the initial Na+ influx (Demidchik and Maathuis 
2007) (Fig. 2). High Affinity K+ Transporters (HKTs) are 
one group of non-selective ion channel/transporter that 
transport Na+ and K+ (Riedelsberger et al. 2021). Several 
HKT genes and their functions in plants are highly vari-
able, but their primary functions are ion accumulation under 
starved conditions, salt tolerance by ion compartmentaliza-
tion, and partitioning (Hamamoto et al. 2015). Class I HKT 
channels are evidenced to perform K+ and Na+ transport 
(Gassmann et al. 1996). Overexpression of HKT1 has pro-
moted salt tolerance by locally restricting Na+ (Wang et al. 
2019a). Class II HKTs co-transport Na+ and K+ and are acti-
vated during K+ deficiency. One of the members of class II, 
HKT2;1, is responsible for distributing the Na+ from root to 
shoot, thereby enhancing the salt tolerance in barley (Mian 
et al. 2011). HKT2;1 is also responsible for increasing Na+ 
content in plant cell. Excess Na+ is toxic; hence repres-
sion of HKT2;1 gene is also demonstrated to improve salt 
tolerance in rice (Wei et al. 2021). Na+ is also transported 
through the High-Affinity K+ uptake (HAK) family of trans-
porters. For example, a HAK family transporter ZmHAK24 
in maize and its orthologues in rice and wheat specifically 
transport Na+; confer salt tolerance by restricting Na+ in 
the root (Zhang et al. 2019). HAK activity is more relevant 
to the K+ acquisition; therefore will be discussed in the K+ 
homeostasis section. Na+ homeostasis is also controlled by 
the ligand-gated channels such as Cyclic Nucleotide Gated 
Channels (CNGCs) (Jarratt-Barnham et al. 2021). Expres-
sion profiles of CNGCs change with salt stress. A CNGC 
homolog in Arabidopsis thaliana AtCNGC10 contributes to 
the increase in [Na+]cytosol under saline environmental condi-
tions hence it negatively regulates plant salt tolerance (Jin 
et al. 2015). Another group of ligand-gated ion channels, 
ionotropic glutamate receptors channels (iGluRs), are also 
implicated in transporting Na+ and K+. The precise role of 
iGluRs in maintaining the K+/Na+ ratio is not clear but it has Ta
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been regarded as one of the means to tackle salinity stress 
(Demidchik et al. 2004).

Na+ transport by secondary active transporters mainly 
occurs during the recovery phase. The primary Na+ extrud-
ing plant plasma membrane secondary active transporter 
is SOS1 (NHX7 in Arabidopsis) (Wu et al. 1996). It is a 
Na+/H+ antiporter that transports Na+ out of the cytosol in 
exchange for H+. SOS1 is also vital for the root-to-shoot 
distribution of Na+ in plants, thus conferring a long-distance 
salt transport (Shi et al. 2002). Plant intracellular Na+/H+ 
antiporters NHXs also play a significant role in salt tol-
erance. (Apse et al. 1999; Bassil et al. 2019). NHXs are 
involved in Na+ compartmentalization, but their activ-
ity can vary from one plant to the other depending on the 
level of salt tolerance (Rodríguez-Rosales et al. 2009). In 
Arabidopsis, NHX1 and NHX2 can transport Na+ and K+, 
but when the cytoplasmic Na+ concentration increases, 
the transporters participate in the sequestration of Na+ in 
the vacuole; hence contribute to the plant salt tolerance 
(Bassil et al. 2019). NHX5 and NHX6 reside in the endo-
somal membrane to confer protein sorting during salt stress 
(Bassil et al. 2019). The other two NHXs of Arabidopsis, 
NHX3, and NHX4, are more specific toward Na+ and K+, 

respectively, and are mainly involved in vacuole transport 
and pH maintenance (Bassil et al. 2019). The functioning of 
Na+/H+ antiporter is driven by the proton gradient, which is 
established by H+-ATPases and H+-PPases (Shi et al. 2002; 
Silva and Gerós 2009). The fact that the deletion of plasma 
membrane H+-ATPase becomes salt sensitive and the over-
expression of the same with SOS1 increases salinity toler-
ance in Arabidopsis endorse the importance of plasma mem-
brane-H+-ATPase (Fan et al. 2019). Unlike Arabidopsis, the 
expression profile and the regulation of plasma membrane 
H+-ATPase activity of the salt-resistant plant is different. 
The comparison showed that ATPase activity increases upon 
salt exposure in leaves of salt-tolerant plants compared to 
salt-sensitive plants (Sahu and Shaw 2009). Further analysis 
showed that the variability of the H+-ATPase activity could 
be due to the different regulatory networks present in these 
plants (Gévaudant et al. 2007). Vacuolar-H+-ATPase (VHA) 
and H+-pyrophosphatase (H+-PPase) present in tonoplast 
energize the NHXs to compartmentalize salts in tonoplast 
(Kluge et al. 2003). Like plasma membrane H+-ATPase, 
VHA also shows an altered expression profile and activ-
ity level in salt-tolerant plants compared to a salt-sensitive 
plants (Wang et  al. 2001; Jaarsma and De Boer 2018). 

Fig. 2   Ion and solute transporting membrane proteins: Plasma mem-
brane (pm) and intracellular membrane transporters (in) are shown. 
The primary function of each type of transporter is numbered, and 
corresponding descriptions are enlisted. Plasma membrane (pm) 
transporters are mainly responsible for the ion extrusion and distribu-
tion across different plant organs, whereas intracellular (in) transport-

ers do the compartmentalization and locally control the ion concen-
tration. Non-selective ion channels do not discriminate between Na+ 
and K+ and can be non-gated or ligand-gated. K+ specific channels 
are mainly voltage-gated. Intracellular Ca2+-ATPase participates 
in Ca2+ homeostasis. Many solute transporters are driven by ions, 
whereas ABC transporters are driven by ATP hydrolysis
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However, research showed that VHA is essential for nutri-
ent storage in tonoplast, whereas H+-PPase creates the H+ 
gradient for salt accumulation (Krebs et al. 2010).

Membrane Proteins in Potassium Homeostasis

Like Na+, K+ absorption and distribution are essential to 
maintain the K+/Na+ ratio. K+ channels (Fig. 2) responsible 
for plant salt tolerance are primarily voltage-gated channels 
and belong to three major groups: inward rectifying—con-
trolling K+ influx (AKT1, KAT1), outward rectifying—
controlling K+ efflux (SKOR and GORK), and weakly volt-
age regulated—direct both in and out K+ transport (AKT2 
and AKT3) (Shabala and Cuin 2008; Dreyer and Uozumi 
2011). These channels are also regarded as shaker-type K+ 
channels. The major inward rectifying K+ channels found 
to enhance salt tolerance are KAT1 and AKT1. KAT1 is 
shown to increase salt tolerance in yeast. KAT1 increases the 
K+ content in cells upon salinity stress (Obata et al. 2007). 
AKT1, on the other hand, is responsible for K+ uptake and 
drought tolerance (Ahmad et al. 2016b). Outward rectify-
ing channels such as GORK response to the salinity stress 
induced depolarization of the plasma membrane. Depo-
larization occurs due to the increasing Na+ influx into the 
cell. In response to the depolarization, GORK maintain the 
plasma membrane potential by removal of cellular K+. This 
destabilizes the cytosolic K+/Na+ ratio. Therefore, to prevent 
depolarization-mediated K+ loss, plant reduces the expres-
sion of GORK (Adem et al. 2020). Another K+ channel of 
the same group, Stelar K+ Outward Rectifier (SKOR), passes 
the K+ to the xylem for its distribution. It is demonstrated 
that a constitutive expression of melon SKOR in Arabidop-
sis improves its salinity tolerance (Long-Tang et al. 2018). 
Outward rectifying K+ channels are also crucial for long-
distance K+ transport, balancing the cytosolic K+/Na+ ratio 
(Wegner and De Boer 1997). The weakly voltage-regulated 
K+ channels AKT2/AKT3 demonstrated that the direction 
of the rectification and the voltage dependency is due to 
the sequence variations among different plants (Huang et al. 
2021). AKT2/AKT3 control K+ content and hence sucrose 
transport in phloem cells (Rubio et al. 2020). In rice, AKT2/
AKT3 expression levels are reduced during salinity stress; 
however, its impotence may vary in plants depending on the 
variations in the direction of the rectification and the voltage 
dependency.

(Schmidt et al. 2013; Huang et al. 2021). Non-voltage 
gated K+ channels in plants are two-pore channels (TPC) 
that are exclusively located in the tonoplast or intracellular 
membrane. The primary function of the K+ specific TPC is 
to transport K+ toward the cytoplasmic direction to stabilize 
the cytoplasm K+/Na+ ratio. Overexpression of K+ specific 
TPC is therefore expected to resist the salt stress. Transgenic 
overexpression of TPCs improves plant salt tolerance (Wang 

et al. 2013; Ahmad et al. 2016a). Recently a structure-based 
study of Arabidopsis two-pore channel AtTPC1 shows that 
the channel is specific to Ca2+ but cannot discriminate 
between monovalent ions (Na+ and K+) (Guo et al. 2017).

Transporter and carrier protein entailing K+ transport 
across plant membrane belongs to KT/HAK/KUP trans-
porter family (Li et al. 2018). HAK transporters are com-
paratively well-characterized members of the KT/HAK/KUP 
transporter family. Although the variation of ion specificity 
has been reported for HAK members in plants, HAK trans-
porters preferably transport K+. Depending on the expres-
sion and localization, it primarily renders a K+ accumulation 
in the plant during low K+ environments and maintains the 
K+/Na+ ratio by redistributing K+ (Nieves-Cordones et al. 
2010; Shen et al. 2015).

Cation/H+ antiporters are a large group of secondary 
active transporters in plants and can be subdivided into three 
main types: NHX, CHX, and KEA (Chanroj et al. 2012; 
Jia et al. 2018). Their functions and physiological roles are 
diverse (Isayenkov et al. 2020; Tsujii et al. 2020). While 
most NHXs preferentially transport Na+, quite a few K+ 
transporting CHXs are known. AtCHX13 and AtCHX14 
are two critical Arabidopsis transporters active during K+ 
deficiency in the environment. AtCHX13 is located in the 
root carrying out the acquisition of K+, whereas AtCHX14 
is expressed in the xylem parenchyma cell controlling the 
root to shoot movement of K+ (Zhao et al. 2015). A cation/
H+ antiporter GsCHX19.3 of Glycine soja shows a relatively 
higher expression in leaf and flower in response to the salin-
ity stress (Jia et al. 2017). GsCHX19.3 shows the highest 
homology with A. thaliana CHX19, and when overexpressed 
in Arabidopsis, it confers salt tolerance. The primary roles 
of K+/H+ transporters are restricting K+ outflow from root 
cells and distributing K+ from root to shoot.

Membrane Proteins in Chloride and Nitrogen 
Homeostasis

Chlorine and nitrogen are two elements absorbed and trans-
ported in plants as anions. Chloride homeostasis plays a 
significant part in plant salinity tolerance. In some plants, 
such as soybean and avocado, Cl− shows a more toxic effect 
than Na+ because these plants have a robust Na+ exclusion 
system than Cl− (Wu and Li 2019). Chloride transport-
ers (Fig. 2) such as Slow Anion Channels (SLAC/SLAH) 
and Chloride channels (CLC) are documented to affect 
salt tolerance directly. In Arabidopsis, AtSLAH is critical 
in Cl− homeostasis during salinity stress. AtSLAH1 and 
AtSLAH3 heteromer has a significant contribution to the 
chloride distribution from root to shoot under salinity stress. 
During salinity stress, reduced AtSLAH1 expression causes 
decline in Cl− content in xylem sap; preventing Cl− from 
reaching the shoot (Cubero-Font et al. 2016; Qiu et al. 2016). 
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Other chloride channels such as CLCs are intracellular and 
perform variable functions. AtCLCc and AtCLCg are two 
important chloride transporters responsible for salinity tol-
erance in Arabidopsis (Nguyen et al. 2016). The primary 
function of AtCLCg is to reduce the shoot Cl− content by 
compartmentalizing in the parenchyma cell. Cl− exclusion 
from shoot to root has been widely studied in legume plants 
(Teakle and Tyerman 2010). Legume plants are unique due 
to their symbiotic relationship and can better manage chlo-
ride and nitrogen distribution (Vincill et al. 2005). For exam-
ple, the genome-wide association study (GWAS) in soybean 
revealed that the chloride transporter GsCLC-c2 has signifi-
cant role in salinity tolerance in soybean (Wei et al. 2019; 
Luo et al. 2021). In principle, plant chloride channels restrict 
the distribution of Cl− by compartmentalization.

Nitrogen in the form of NO3
− is transported during salin-

ity stress and is often correlated with K+ transport (Raddatz 
et al. 2020). Nitrate transport is partly achieved by anion 
(chloride) channels SLAC/SLAH and CLC. The other two 
nitrate transporters, NTR1 and NTR2, are H+-coupled 
NO3

− symporters native to the plasma membrane. NTR1 and 
NTR2 are suggested to work due to the H+ gradient estab-
lished by plasma membrane H+-ATPase (Liu et al. 2021). 
NRT1 and NRT2, both groups of nitrate transporters, are 
shown to be upregulated under salinity stress (Wang et al. 
2012a; Liu et al. 2021). The NRT group of NO3

− transport-
ers mainly performs nitrogen absorption and distribution.

Membrane Protein in Calcium Homeostasis

Calcium ion transport systems can be subdivided into the 
Ca2+ influx and the Ca2+ efflux (Fig. 2) (Demidchik et al. 
2018). Perception of salinity stress transiently induces Ca2+ 
influx into the cytosol, further amplified by ROS signaling, 
and is fundamentally required for propagating long-distance 
salinity stress signals (Choi et al. 2014). The efflux system 
is essential to move Ca2+ into the subcellular organelle, as a 
high concentration of Ca2+ in cytoplasm is toxic. The influx 
system consists of mechanosensitive channels (OSCA), 
cyclic nucleotide-gated channels (CNGC), two-pore chan-
nels (TPC), and ionotropic glutamate receptor channels 
(iGluRs) essential for an early stage of salinity stress per-
ception. Mechanosensitive Ca2+ channels OSCA in plants 
sense the osmotic stress and are activated by the mechani-
cal tension in the membrane (Hou et al. 2014; Yuan et al. 
2014) (Fig. 3). Transgenic expression of rice OsOSCA1.4 in 
A. thaliana OSCA1.1 mutant can complement salinity and 
osmotic stress response (Zhai et al. 2020). Cyclic nucleotide-
gated channels (CNGCs) are the ligand-gated channels with 
an assigned role in various stress tolerances (Demidchik 
et al. 2018). Most CNGCs are non-selective cation chan-
nels, but A. thaliana CNGC10 has been elucidated to have a 
role in salt tolerance. AtCNGC10 is critical in balancing the 

K+/Na+ ratio; nevertheless, its inactivation to increase the 
root K+/Na+ ratio corroborates that AtCNGC10 negatively 
regulates salt tolerance (Guo et al. 2008; Jin et al. 2015). 
Since CNGCs require cyclic nucleotide for their activation, it 
is possible that AtCNGC10 functions downstream to a mem-
brane-associated osmosensory protein that produces cGMP. 
Similar activation has been reported for AtCNGC2, induced 
by the receptor-like kinase AtPepR1 producing cGMP (Qi 
et al. 2010). Two-pore channels (TPC) are responsible for 
propagating long-distance Ca2+-dependent salinity stress 
signals (Choi et al. 2014). A study on the A. thaliana two-
pore channel shows that AtTPC1 is specific to Ca2+ but less 
specific to Na+ and K+ (Guo et al. 2017).

Unlike Ca2+ influx into the cytosol, its efflux is energy-
dependent. The primary contributor to this relatively slow 
process is the endomembrane localized Ca2+-ATPase. 
Arabidopsis ACA2 and ACA4 are two plant endomembrane 
Ca2+-ATPases whose transcript levels increase during salt 
stress (Geisler et al. 2000; Anil et al. 2008). Expressing 
ACA2 in Ca2+-ATPase-devoid yeast cells shows a rapid 
decrease in cytosolic Ca2+ upon salt stress (Anil et  al. 
2008). Plasma membrane Ca2+-ATPases from other plants 
have been demonstrated to function in salt tolerance, as 
evidenced by the increased transcript levels during salinity 
stress (Huda et al. 2013). Other contributors to the cytoplas-
mic Ca2+ restoration are secondary active transporters such 
as Ca2+/cation antiporters. Plant Ca2+/cation exchangers are 
predominantly localized in the vacuole and have been exam-
ined for their function in yeasts. Ca2+/H+ exchanger CAX1 
of A. thaliana is expressed in mesophyll cells and required 
for Ca2+ storage in the vacuole (Conn et al. 2011). Salin-
ity stress enhances the expression level of both CAX1 and 
VHA, corroborating that CAX1 activity is energized by vac-
uolar H+-ATPase (Han et al. 2011). Some Ca2+ exchangers 
couple Ca2+ transport with Na+ transport. For instance, A. 
thaliana AtNCL, a vacuolar Ca2+/Na+ exchanger sequesters 
Ca2+ into vacuole and releases Na+ into cytosol. Therefore, 
unlike CAX, AtNCL negatively influences salt tolerance 
(Wang et al. 2012b).

Membrane Proteins in Salinity Stress Signal 
Transduction

Changes in osmotic pressure and ionic concentration are two 
factors detected by plants to realize salinity stress (Fig. 3). 
Osmotic pressure causes several changes to the cellular 
structures of root cells, inflicting cell wall damage and an 
osmotic imbalance across the cell membrane. Osmosen-
sors located in the plasma membrane can induce tension in 
the membrane (Haswell and Verslues 2015). Currently, the 
osmosensors in plants those induce membrane tension in 
response to salinity stress are not known (Wang et al. 2022). 
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However, the osmosensing could be due to multiple factors. 
One predominant factor is the direct distortion of the plasma 
membrane, inducing membrane tension. Mechanosensing 
Ca2+ channel protein families such as OSCA are activated 
due to the plasma membrane tension and initiate Ca2+ sign-
aling (Yuan et al. 2014). Other mechanosensing membrane 
proteins are predicted to convert the osmotic stress into 
cGMP formation (Julkowska and Testerink 2015). Cyclic 
GMP is responsible for activating multiple non-selective ion 
channels including putative Ca2+ channels (Turek and Irving 
2021). Na+ sensors are also elucidated in plants. Monoca-
tion-Induced [Ca2+]intracellular Increases 1 (MOCA1) is one 
such protein that mediates sensing of extracellular Na+ con-
centration and Ca2+ signaling (Jiang et al. 2019). MOCA1 
is a membrane protein with glucuronosyltransferase activity 
and is responsible for glycosphingolipid synthesis. The exact 
mechanism of MOCA1 is unknown, but it is thought to be 
responsible for nanodomain formation in plasma membrane. 
Nanodomain causes the activation of putative Ca2+ channels 
(Steinhorst and Kudla 2019).

Receptor-like kinases (RLKs) are integral membrane or 
membrane-associated proteins involved in various functions, 

including biotic and abiotic stress perception (Dievart et al. 
2020) (Fig. 3). The basic structure of these proteins is com-
posed of a sensory domain, followed by a transmembrane 
domain and the cytoplasmic kinase domain (Jose et  al. 
2020). However, some RLKs might have an extension to the 
cell wall, and some RLKs are only cytoplasmic (Jose et al. 
2020). The kinase domain is responsible for phosphorylating 
a target protein for signal transduction. RLKs directly sense 
the osmotic damage of the cell wall or oxidative damage of 
the cell membrane induced by the salinity stress (Ye et al. 
2017). RLKs can be root or shoot specific, and their expres-
sions can be up or down-regulated by the salinity stress. 
For instance, the LRR (Leucine-Rich Repeat)-type RLK, 
LP2 overexpression in rice is predominantly found in leaves, 
reducing salt tolerance (Wu et al. 2015). Many RLKs are 
induced by ROS levels and aim to control the ROS-mediated 
damage during salinity stress. For instance, the rice RLKs, 
OsSlk1, and OsSTLK are induced by salt stress and reduce 
the ROS load and lipid oxidation (Ouyang et al. 2010; Lin 
et al. 2020). Some RLKs spanning the cell wall recognize 
peptide hormones expressed due to salinity stress. For 
instance, overexpression of the small hormone-like peptide 

Fig. 3   Three basic modes of salinity stress perception in plants: 
Osmotic stress realized by putative osmosensor induces membrane 
tension. Membrane tension activates mechanosensitive Ca2 + chan-
nels. Another mechanism involving plasma membrane protein 
MOCA1 synthesizes glycosphingolipids in response to the Na+ ion 
stress. MOCA1 possibly works via changing the plasma membrane 

dynamics to activate a putative Ca2+ channel. A third mechanism 
depends on the plasma membrane receptor-like kinases (RLKs) that 
detect damage to the cell wall or are activated by external stimuli 
such as ROS. RLKs directly or indirectly activate Ca2+ channels initi-
ating the Ca2+ signal
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AtPep3 is the consequence of salinity stress. AtPep3 interacts 
through Peptide Receptor 1 (PepR1), a RLK proposed to 
confer salt tolerance via ion homeostasis (Nakaminami et al. 
2018). Salt stress resulting in damage in the cell wall and 
cell–cell interaction is sensed by RLK named FERONIA, 
which was also proposed to work toward Ca2+ ion homeo-
stasis (Feng et al. 2018). FERONIA is linked to the cell wall 
residing Leucine–Rich Repeat Extensions (LRX) domain 
that senses the cell wall damage (Zhao et al. 2018). Recep-
tor-like kinases might have a link with the plant G-proteins. 
G-proteins (Ga and Gb) are also upregulated in response to 
the increase in salinity stress. It is an enigma if G-proteins 
interact with the limited number of G-protein coupled recep-
tors present in the plant (Misra et al. 2007). However, it is 
proposed that the G-proteins might just work through RLK 
signaling (Pandey 2020).

Membrane Proteins for Reactive Oxygen 
Species Scavenging System

Reactive oxygen species (ROS) generated in roots play a 
critical role in plants sensing salinity stress. ROS travel from 
root to shoot results in several changes in shoot, such as 
the closing of the guard cells (Choi et al. 2014). A coor-
dinated movement of ROS and Ca2+ from root to shoot is 
also responsible for stress signaling (Li et al. 2021). Salinity 
stress-related ROS is produced by the plant plasma mem-
brane Respiratory Burst Oxidase Homolog (RBoH). Among 
the ten RBoHs in Arabidopsis, RBoHD and RBoHF are two 
extensively studied enzymes directly involved in salinity 
stress (Ma et al. 2012). Activation of RBoH is the down-
stream effect of the early calcium influx into the cytosol, 
where the Ca2+ binding CBL sensors (Calcineurin B-like 
calcium sensors) and protein kinase (CIPK) synergistically 
activate RBoHs (Ogasawara et al. 2008; Drerup et al. 2013). 
RBoHs produce ROS in the apoplastic region to minimize 
the negative effect of ROS in the cytosol. However, apoplas-
tic ROS is critical for the activities of the plasma membrane 
pumps and voltage-gated ion channels. One known example 
is the regulation of the voltage-gated K+ channel SKOR. 
A cysteine residue located at the apoplastic side of SKOR 
undergoes ROS-dependent modification to kick-start the 
K+ transport (Garcia-Mata et al. 2010). Another target of 
apoplastic ROS is HPCA1, which is a receptor-like kinase. 
Apoplastic ROS oxidized an extracellular cysteine residue of 
HPCA1 that activates the protein and relays a putative Ca2+ 
channel opening in guard cells (Wu et al. 2020).

ROS entry to the cytosol occurs via the PLASMAM-
EMBRANE INTRINSIC PROTEINS (PIPs) or aquaporins 
(Dynowski et al. 2008) (Fig. 1). ROS molecules such as 
hydrogen peroxidase (H2O2) impose oxidative stress by dam-
aging the membrane lipids, DNA, proteins, perturbing the 

cytosolic redox potential, and positively influencing Ca2+ 
signaling (Seifikalhor et al. 2019). A common outcome of 
salinity stress is the change in ROS-mediated membrane 
permeability caused by lipid peroxidation (Mansour 2013). 
Another adverse effect of ROS is the activation of the IAA 
pathway, which leads to root growth cessation (Huang et al. 
2019a). Plants discharge multiple antioxidative defense 
enzymes and compatible solutes to counter oxidative stress 
(Apel and Hirt 2004). Studying the salinity tolerance mech-
anisms in halophytes revealed that the better salt-tolerant 
plant could better manage oxidative stress (Kumar et al. 
2021). Membrane proteins also take part in ROS homeo-
stasis. Arabidopsis mitochondrial voltage-dependent anion 
channel (VDAC) manifests salt tolerance by ROS homeosta-
sis (Sanyal et al. 2020). ROS positively contributes to  sens-
ing and preventing salt tolerance through Ca2+ signaling. 
Data suggests that ROS indirectly activates the intracellular 
K+ channel, TPC1, for cytosolic Ca2+ spike and, together, 
they are responsible for the propagation of the salinity stress 
signal and prevention (Evans et al. 2016). Another instance 
that ROS contributes to the increase in salt tolerance could 
be comprehended by ROS regulation of plant annexins. 
Annexins are the Ca2+ binding membrane-associated pro-
teins responsible for intracellular Ca2+ transport. Arabidop-
sis Annexins, AtANN1, and AtANN4 negatively regulate 
salt tolerance (Huh et al. 2010). AtANN1 is again negatively 
regulated by ROS, implicating that ROS has some positive 
affects in salt tolerance (Richards et al. 2014). Regulation of 
membrane protein expression by ROS is also demonstrated. 
Transcriptome analyses of differentially expressed genes in 
pumpkin reveal that ROS-producing RBoHD controls the 
expression of plasma membrane H+-ATPase (AHA1) and 
the K+ channel HAK5 contributing to the salt tolerance 
(Huang et al. 2019b). Pumpkin-grafted cucumber plants 
with inhibited ROS production show compromised salt tol-
erance and reduced plasma membrane H+-ATPase activity 
(Niu et al. 2018). These results imply that ROS contributes 
to salt tolerance by sounding the alarm of salinity-induced 
damage to the cells and regulating the membrane transport-
ers' activities.

Solute Transporters

Salinity stress induces the expression level of certain solute 
transporters delineating their importance in salt tolerance. 
Solute transporters (Fig. 2) are generally involved during 
the recovery phase and transport three basic groups of mol-
ecules: phytohormones, compatible solutes, and metabo-
lites. Phytohormones are essential for signaling growth and 
development. ABC (ATP Binding Cassette) transporters 
are primarily involved in phytohormone transport (Fig. 2). 
For example, Abscisic acids are considered stress response 
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hormones transported by ABCG25, which expression level 
changes due to the salinity stress (Park et al. 2016). An 
Arabidopsis ABC transporter, AtABCG36, is suggested to 
transport phytohormones with a putative role in salt toler-
ance (Kim et al. 2010).

Compatible solutes or osmoticum transport is imminent 
during osmotic shock. Molecules such as proline, polyam-
ines, and glycinebetaine reduce oxidative stress and provide 
osmoprotection under salinity stress; hence called compat-
ible solutes or osmoticum. Only a handful of compatible sol-
ute transporters are currently attributed to the plant's salin-
ity stress response. Proline transporter ProT2 is one such 
membrane protein. ProT2 expression level coincides with the 
proline accumulation level in the leaves. ProT2 upregulation 
is the consequence of salinity stress that ensures the long-
distance transport of proline (Rentsch et al. 1996). Poly-
amine is another compatible solute that is overproduced in 
response to salinity stress. The recent evidence of polyamine 
transporter PUT3 physically interacting with Na+/H+ anti-
porter SOS1 in plasma membrane shows a possibility of 
PUT3 involvement in salt tolerance (Chai et al. 2020).

A significant amount of energy is invested in the recov-
ery phase of salt-induced damage. Therefore, metabolite 
transporters are essential that keep up the supplies of sugars 
and other molecules. Numerous studies have identified the 
change in plant metabolite transporters' expression profiles 
during salinity stress (Hsu et al. 2009). Sugar transporters 
STP13 and UPS5 are shown differential activation pattern 
during salt-stressed conditions. STP13 in Arabidopsis root 
increases carbohydrate absorption activity of root cells dur-
ing stressed conditions (Yamada et al. 2011). Ureide per-
mease 5 (UPS5) in Arabidopsis confers salt tolerance by 
distributing the small molecule allantoin (Lescano et al. 
2016). Additionally, UPS5 exhibits salt tolerance by root-
to-shoot transport of allantoin, a metabolite pertinent to 
abiotic stress. Plant cell wall and cell membrane synthesis 
required a considerable investment of energy. A phosphate 
transporter PHT4;6 is essential for recycling phosphate from 
glycosylation toward the synthesis of cell walls and mem-
branes (Cubero et al. 2009).

Accessory Membrane Polypeptides 
and Proteins

Numerous studies have identified the role of integral mem-
brane polypeptides and proteins in plant salt tolerance. 
The primary roles of these proteins are yet to be identified. 
However, these proteins may be responsible for the stability, 
activity, and targeting of membrane transporters or specific 
ions. A group of small transmembrane polypeptides called 
RCI (Rare Cold Inducible) are identified in plants contrib-
uting to salt tolerance. RCI polypeptides share significant 

homology with the yeast PMP3 (Plasma Membrane Protein 
3) peptide, which, when deleted, exhibits a salt-sensitive 
phenotype (Navarre and Goffeau 2000). Overexpression of 
RCI2A in A. thaliana increases salt tolerance by reducing 
the cellular Na+ content (Mitsuya et al. 2005). The trans-
genic expression of Musa paradisica RCI gene in A. thali-
ana RCI2 mutant recovered Na+ tolerance (Liu et al. 2012). 
It has been predicted that RCI enhances Na+ tolerance by 
reducing Na+ content in the shoot, maintaining plasma mem-
brane fluidity, and increasing plasma membrane H+-ATPase 
activity. A different group of plasma membrane polypeptide 
SALP1 is identified in rice that also functions to reduce Na+ 
content in the shoot. In addition, SALP1 increases the pro-
line content in rice (Yuan et al. 2016). The third group of 
membrane polypeptides, called ABA-induced wheat plasma 
membrane polypeptide 19 (AWPM-19) is also linked to the 
salt stress in plants. OsPM1, an AWPM-19, has a proven role 
in ABA signaling and involvement in stress tolerance (Yao 
et al. 2018). However, it has been recently demonstrated 
that OsPM1 has a positive role in drought tolerance but a 
negative role in salinity tolerance (Wang et al. 2021). Some 
accessory integral membrane proteins are also evidenced 
in interacting with the ion transporters. For example, Patel-
lin-1, a membrane trafficking protein, interacts with SOS1 
Na+/H+ antiporter to negatively regulate its activity (Zhou 
et al. 2018). Another membrane trafficking salt-responsive 
protein, Flotillin-2, potentially interacts with plasma mem-
brane H+-ATPase as detected in mass spectrometry analy-
sis (Junková et al. 2018). Flotillins are also predicted to do 
intracellular trafficking of Na+ and are associated with plant 
salt stress tolerance (Flowers et al. 2019; Khalilova et al. 
2020). Remorins are another group of accessory membrane 
protein usually found in microdomains (Raffaele et al. 2009). 
When transiently overexpressed in Arabidopsis, the Remorin 
gene SiREM6 of Setaria italic enhances salt tolerance (Yue 
et al. 2014). However, the precise functions of the accessory 
integral membrane proteins are not known.

Future Directions

Membrane proteins play an essential role in plant salinity 
stress. Particularly, the ion transporters change their expres-
sion profiles and hence are suggested to be a plausible tar-
get to improve crops for increased agricultural production 
(Schroeder et al. 2013). Plasma membrane ion transporters 
primarily extrude and transport long-distance Na+ and Cl−. 
Plasma membrane transporters are also critical for K+ acqui-
sition during K+ starved conditions. On the contrary, intra-
cellular ion transporters primarily involve the sequestration 
of Na+ and Cl− and control the cytoplasmic K+/Na+ ratio 
by releasing K+ into the cytoplasm. Despite the importance 
of the membrane proteins in plant salinity stress response, 
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some aspects of the membrane proteins are remained unex-
plored, such as identifying the relevant membrane protein-
lipid and membrane protein–protein interactions. Lipids 
are critical for membrane protein function. Salinity stress 
induces the restructuring of the plant cell plasma membrane 
due to the osmotic imbalance (Mansour et al. 2015). Produc-
tion of ROS due to salinity stress also affects membrane lipid 
compositions and structure (Mansour et al. 2015). Lipids in 
the membrane control the regulation and activity of mem-
brane protein. Therefore, it is evident that alteration of the 
lipid composition and structure in the membrane could regu-
late the membrane protein distribution, function, and activ-
ity. Although plenty of work has been done on protein-lipid 
interaction in animal and bacterial systems, such studies are 
very limited in plants due to several technical difficulties. 
Besides, membrane protein–protein interaction is evident 
in salinity stress response. Such protein–protein interaction 
in the membrane includes the communications between the 
receptor-like kinase and its immediate membrane protein 
substrate, membrane remodeling osmo- and ion-sensors 
and its subsequent transporters, channels providing ion 
gradient for transporter function, and finally, the H+-pump 
empowering the secondary active transporters. Identifying 
the critical protein–protein interaction in plants could also 
provide valuable information about the protein interaction 
network responsible for salinity stress response. The mem-
brane protein interaction could be understood by correlating 
membrane proteomics and lipidomics data in differential salt 
treatment experiments. Another crude yet easy and direct 
alternative could be finding the interacting lipids and pro-
tein from the heterologous expression of plant membrane 
proteins (Dutta et al. 2020).

Recently, it has been suggested that adopting halophytic 
traits in crops could solve the salinity stress problem in agri-
culture (Liu et al. 2020). One significant difference between 
halophytes compared to salt-sensitive crops is the differen-
tial expression pattern of the membrane proteins (Assaha 
et al. 2017). Changes in protein expression patterns also sug-
gest an altered protein–protein and protein-lipid interaction 
network in halophytes. Knowledge of such specific interac-
tions may be essential because they can be targeted, and 
strategies could be developed to modulate their interactions. 
Additionally, membrane protein distribution in plant organs 
and its polarity in a cell could be changed by the distribution 
of the lipids. It is possible to target the specific membrane 
lipid synthetic pathway and their targeting to alter membrane 
protein distribution or polarity.
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