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Abstract
Shroom is a family of related proteins linked to the actin cytoskeleton, and one of them, xShroom1, is constitutively expressed 
in Xenopus laevis oocytes which is required for the expression of the epithelial sodium channel (ENaC). On the other hand, 
ENaC and the cystic fibrosis transmembrane regulator (CFTR) are co-expressed in many types of cells with a negative or 
positive interaction depending on the studied tissues. Here, we measured the amiloride-sensitive ENaC currents (INaamil) 
and CFTR currents (ICFTR) with voltage clamp techniques in oocytes co-injected with ENaC and/or CFTR and xShroom1 
antisense oligonucleotides. The objective was to study the mechanism of regulation of ENaC by CFTR when xShroom1 was 
suppressed and the endocytic traffic of CFTR was blocked. CFTR activation had a measurable negative effect on ENaC and 
this activation resulted in a greater inhibition of INaamil than with xShroom1 antisense alone. Our results with Dynasore, a 
drug that acts as an inhibitor of endocytic pathways, suggest that the changes in INaamil by xShroom1 downregulation were 
probably due to an increment in channel endocytosis. An opposite effect was observed when ICFTR was measured. Thus, 
when xShroom1 was downregulated, the ICFTR was larger than in the control experiments and this effect is not observed 
with Dynasore. A speculative explanation could be that xShroom1 exerts a dual effect on the endocytic traffic of ENaC and 
CFTR and these actions were canceled with Dynasore. In the presence of Dynasore, no difference in either INaamil or ICFTR 
was observed when xShroom1 was downregulated.
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Introduction

Two main pieces of information are associated with the 
objective of this investigation: the regulation of func-
tion and the interaction of the epithelial sodium channel 
(ENaC) with the cystic fibrosis transmembrane regulator 
(CFTR) channel. ENaC is a member of the ENaC/dege-
nerin ion channel family composed of three homologous 
subunits (α, β, and γ). It mediates entry of Na+ from the 
luminal fluid into the cells in many reabsorbing epithelia, 
it is blocked by the diuretic amiloride, it is sensitive to 
many hormones such as aldosterone, cytosolic, and extra-
cellular pH (Collier and Snyder 2009; Kashlan et al. 2015; 
Reddy et al. 2008), and it is activated by proteases which 
cleave specific sites in the extracellular loops of the α, γ 
subunits but not the β subunit (Gentzsch et al. 2010; Kash-
lan et al. 2011; Zachar et al. 2015). Shroom is a family of 
four different proteins (Shroom1 to Shroom4) involved in 
the regulation of cytoskeletal architecture by binding to 
actin, morphogenesis of embryonic epithelial tissues, and 
neuronal growth (Hagens et al. 2006; Hildebrand et al. 
2021). Of particular interest for us is xShroom1 (APX), 
a large protein constitutively expressed in Xenopus lae-
vis oocytes and initially identified as a molecule required 
in ENaC activity in X. laevis epithelial cells (Staub et al. 
1992). It has been well described that Shroom family pro-
teins influence both microtubules and actin cytoskeletons. 
xShroom1 is associated with α-spectrin, a cytoskeletal 
protein known to shape the plasma membranes of cells 
(Zuckerman et al. 1999), and ectopic expression of xSh-
room1 causes accumulation of γ-tubulin, a microtubule 
nucleating protein, at the apical surface of epithelial cells 
(Lee et al. 2007). In addition, Shroom family genes are 
expressed in many thickened epithelial sheets. xShroom1 
and xShroom2 are expressed in the deep layer of neuroepi-
thelium and control apicobasal cell elongation (Lee et al. 
2009). It has been shown that xShroom1 has a dual action 
on the expression and level of activity of ENaC and CFTR. 
Suppression of xShroom1 resulted in a decrement of ENaC 
function (Assef et al. 2011; Prat et al. 1996; Zuckerman 
et al. 1999), whereas the opposite was found on CFTR in 
X. laevis (Palma et al. 2016).

Second, ENaC and CFTR are co-expressed at the apical 
surface of epithelia and other tissues. CFTR is a cAMP 
activated, ATP-dependent Cl− channel, which transports 
Cl− and also HCO3

− ions from the intracellular to luminal 
space in several tissues. In addition to these functions, 
both ENaC and CFTR channels are involved in cell migra-
tion and proliferation (Liao et al. 2018; del Mónaco et al. 
2009; Marino and Kotsias 2014; Schiller et al. 2010; Sun 
et al. 2011). CFTR is also a regulator of other channels, 
and the modulation of ENaC function serves as a prime 

example of the regulatory function of CFTR in tissues. 
It is also an extracellular chloride sensor (Broadbent 
et al. 2015). The functional positive or negative interplay 
between ENaC and CFTR is complex and incompletely 
understood (see “Discussion”).

In a past publication (Palma et al. 2016), we reported 
an increment in CFTR currents and CFTR cell-surface 
expression in oocytes co-injected with xShroom1 antisense 
oligonucleotides, and we suggested a number of factors 
controlling the expression or activity of CFTR including 
membrane insertion, degradation, channel synthesis, intra-
cellular channel trafficking, and open probability. In this 
investigation, we further pursued these experiments using 
oligonucleotides against xShroom1 and Dynasore to block 
the dynamin-dependent endocytosis in oocytes expressing 
the wild-type mouse ENaC and human CFTR. Our results 
suggest that xShroom1 downregulation decreases CFTR 
endocytosis, and in this way, CFTR caused a greater inhibi-
tion of the amiloride-sensitive Na+ currents (INaamil) than 
would be predicted by the downregulation of xShroom1 
alone. In addition, our results also confirm that heterologous 
expression in X. laevis oocytes is a suitable system for the 
study of this interaction.

Material and Methods

Xenopus laevis Oocytes

Adult female Xenopus laevis frogs were anesthetized with 
0.3% tricaine (MS-222), and the oocytes were surgically 
removed from the abdominal incision. Oocytes were defol-
liculated by incubation with 1 mg/ml type IV collagenase for 
40 min. The oocytes were placed in ND96 medium contain-
ing (in mM) NaCl 96, KCl 2, CaCl2 1.8, and HEPES 5 (pH 
7.4) supplemented with 1 μg/ml gentamicin. We synthesized 
complementary RNAs (cRNAs) for human wild-type CFTR 
using the T7 mMessagemMachine kit (Ambion, Austin, 
TX), and for α, β, and γ mouse wild-type ENaC subunits 
using the T3 mMessage mMachine kit (Ambion, Austin, 
TX). We used synthetic oligodeoxynucleotides complemen-
tary to nucleotides + 455 to + 479 of xShroom1 (Zuckerman 
et al. 1999) (sense, 5′-GCA TTA AGC AGA ATC GCC CTA 
ACC AC-3′; antisense, 5′-GTG GTT AGG GCG ATT CTG 
CTT ATG C-3′, Integrated DNA Technologies, Biodynam-
ics SRL). Oocytes were injected with a Drummond injector 
(Drummond, Broomall, PA) with 4 ng of CFTR cRNA, 2 ng 
of α, β, and γ ENaC cRNA and/or 25 ng of xShroom1 sense 
or antisense oligonucleotides (total volume 50 nl).
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Reagents

The reagents used were amiloride 10 μM (Alomone Labs, 
Jerusalem, Israel), forskolin 10 μM (Alomone Labs, Jerusa-
lem, Israel), IBMX 1 mM (Sigma-Aldrich, St. Louis, USA), 
and dynasore 80 μM (Sigma-Aldrich, St. Louis, USA).

Electrophysiology

A standard two-electrode voltage clamp was performed 
using a Warner Oocyte Clamp OC 725C (Warner Instru-
ments, Hamden, CT) with a bath probe circuit. We acquired 
data through Clampex 8.0 (Axon Instruments, Union City, 
CA) using a DigiData 1220A interface at 1 kHz. Micropi-
pettes had resistances of 1–3 MΩ when filled with 3 M KCl. 
We clamped the bath with two chloride silver wires through 
3% agar bridges in 3 M KCl and positioned close to the 
oocyte. In the well with the oocyte, we estimated the bath-
fluid resistance as the resistance between both electrodes 
(about 100–200 Ω). Without the bath probe, this value is 
increased by a factor of 10 or 20. Thus, all the experiments 
were done using the bath probe circuit to keep this resist-
ance in series with the membrane and between electrodes as 
low as possible. We perfused the oocyte chamber (0.6 ml/
min) with a peristaltic pump (Dynamax RP-1; Rainin Instru-
ments, Woburn, MA) and the solution ejected by a needle 
placed on top of the well containing the oocyte. Follow-
ing the insertion of both microelectrodes, we waited for 
5 min before starting the experiment. We ran two sets of 
records with a delay of 5 min to be sure that the currents 
were stable. Then we applied amiloride and we recorded 
the currents at 3 and 5 min, enough time to have a stable 
blocking effect. For activation of CFTR, we applied 10 μM 
of forskolin + 1  mM of IBMX, and the currents were 

recorded at 15 min of incubation, enough time to have a sta-
ble channel activation effect. For the current–voltage (I–V) 
relationships, we applied a series of 500 ms voltage steps 
from − 140 to + 60 mV in 20 mV increments. The currents 
were measured after 400 ms at a clamp potential of 0 mV. 
ENaC-mediated Na+ currents were defined as the current 
difference measured in the absence versus the presence 
of 10 μM amiloride in the bath solution. CFTR-mediated 
Cl− currents were defined as the current difference measured 
in the absence versus the presence of forskolin + IBMX in 
the bath solution (Kunzelmann 2011; Qadri et al. 2011).

Statistical Analysis

Data were expressed as mean values ± standard error (SE) 
(n = number of cells and repetitions). Statistical analysis for 
differences between experimental groups was performed 
using Graphpad Prism software, applying unpaired Student’s 
t test. Differences were considered statistically significant 
when p < 0.05.

Results

Basic ENaC Currents in Oocytes

The first experiments were done to determine the expres-
sion of ENaC currents in X. laevis oocytes as the basis for 
subsequent experiments. We recorded ENaC currents in 
oocytes co-injected with human CFTR cRNAs and mouse 
ENaC cRNAs and the results are shown in Fig. 1 when 
ENaC was inhibited with amiloride. Under these condi-
tions, only ENaC currents are present because CFTR is 
inactive (Bachhuber et al. 2005; Drumm et al. 1991, see 

Fig. 1   Left panel. Records of ENaC currents in oocytes co-injected 
with human CFTR cRNAs and mouse ENaC cRNAs and the inhibi-
tion of these currents when 10 µM amiloride was added to the bath. 
The potential of the cell was held at 0  mV and switched to values 
of between − 160 and + 40  mV for 500  ms. Under our experimental 

conditions, only ENaC currents are present because CFTR is inactive. 
The right panel shows the I-V plot with the average results of INaamil 
obtained from oocytes after subtracting the current remnant in ami-
loride from the control values
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below). The left panel shows the currents in response to 
negative or positive pulses in the control solution (ND96) 
and after the inhibition with amiloride. After the subtrac-
tion of the blocked component, we obtained amiloride-
sensitive sodium currents (INaamil) and the average results 
obtained from 8 experiments are shown in the right panel 
with the I–V curves. With a pulse of − 100 mV amiloride 
significantly reduced the currents from − 1.96 ± 0.44 to 
− 0.60 ± 0.23 µA (p < 0.05, n = 8).

Activation of CFTR Inhibits Amiloride‑sensitive 
Sodium Currents

The next experiments were done to evaluate INaamil when the 
CFTR channels were active. To do so, we incubated CFTR 
and ENaC co-injected oocytes with 10 μM of forskolin 
and 1 mM of IBMX, both drugs known to stimulate CFTR 
(Bachhuber et al. 2005; Drumm et al. 1991), and the results 
are shown in Fig. 2. As it can be seen, the activation of 
CFTR clearly diminished the INaamil obtained with the same 
protocol as in Fig. 1. With a − 100 mV pulse, the INaamil 
was − 1.38 ± 0.40 μA vs. − 0.67 ± 0.40 μA (n = 8, p < 0.01).

xShroom1 Downregulation Enhances 
Amiloride‑Sensitive Sodium Current Inhibition 
by CFTR

To determine if xShroom1 protein is involved in the CFTR 
and ENaC regulation, we studied oocytes expressing both 
channels and co-injected with xShroom1 antisense oli-
gonucleotides. In Fig. 3a, the I–V curves show that xSh-
room1 downregulation reduced the INaamil in every pulse 
applied. Thus, the INaamil with a − 100 mV pulse was about 
a quarter (− 0.26 ± 0.11 µA, n = 5) with respect to control 
oocytes co-injected with xShroom1 sense oligonucleotides 
(− 1.97 ± 0.62 µA, n = 6, p < 0.05).

Figure  3b shows the I-V curve of INaamil in oocytes 
injected with xShroom1 antisense and incubated with 
forskolin and IBMX to induce CFTR activity. The incu-
bation was for 15 min, enough time to stably activate the 
channel (Palma et al. 2016). Under these conditions, i.e., 
downregulation of CFTR by xShroom1, we observed an 
additional reduction in amiloride-sensitive ENaC current 
beyond that observed with xShroom1 alone (100 mV pulse: 

Fig. 2   I-V plot showing the reduction in INaamil when the CFTR 
channels were activated. In these experiments, the CFTR and ENaC 
co-injected oocytes were incubated in 10 μM of forskolin and 1 mM 
of IBMX to stimulate the CFTR channels. The INaamil was obtained 
with the same protocol as in Fig. 1

Fig. 3   Panels a and b show the INaamil in oocytes expressing ENaC 
and CFTR. a I-V curve with the average values when xShroom1 was 
downregulated with antisense oligonucleotides in comparison with 
the control ones (sense). b INaamil when CFTR was activated with 
Forskolin plus IBMX in oocytes with xShroom1 downregulated. 

c Comparison in the reduction of INaamil (pulse −  100  mV) when 
CFTR was activated in oocytes injected with sense or antisense oligo-
nucleotides against xShroom1. It is evident that the INaamil inhibition 
by activation of CFTR was higher when xShroom1 was downregu-
lated
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− 0.07 ± 0.05 µA, n = 8, p < 0.05). Figure 3c shows a sum-
mary of the inhibition of INaamil (− 100 mV pulse) by acti-
vation of CFTR in oocytes injected with sense or antisense 
oligonucleotides against xShroom1.

xShroom1 Downregulation Effects Upon INaamil 
and ICFTR in the Presence of Dynasore

The next experiments were done to compare the effect of 
downregulating xShroom1 on the INaamil and ICFTR and 
also to see the effect of blocking the endocytic traffic of 
these channels by means of Dynasore. ICFTR was recorded 
in oocytes injected with antisense oligonucleotides for xSh-
room1 and incubated for 24 h in the absence or presence 
of 80 μM of Dynasore, a concentration enough to inhibit 
dynamin, a protein necessary for the formation of clath-
rin-coated vesicles and used in endocytic-trafficking stud-
ies of ion channels (Pergel et al. 2021; Wesch et al. 2012; 
Young et al. 2009). The left panels of Fig. 4a and b show 
the effect of downregulation of xShroom1 on the ICFTR 
and INaamil (− 100 mV pulse) in the absence of Dynasore. 

When xShroom1 was downregulated, the currents through 
IBMX/forskolin-activated CFTR were increased by a fac-
tor of 5 over the control. Regarding the effect of xShroom1 
on ENaC, the comparison between Fig. 4a and b (Control) 
shows a dual action of xShroom1 on the level of activity of 
ENaC and CFTR. Suppression of xShroom1 resulted in an 
increment in CFTR function whereas the opposite was found 
for ENaC, although this negative effect of xShroom1 anti-
sense on ENaC was not observed in the presence of Dynas-
ore. In addition, our results also confirm that heterologous 
expression in X. laevis oocytes is a suitable system for the 
study of this interaction.

Dynasore Effect of CFTR Activation on the INaamil

Next, we measured the effect of Dynasore upon the reduc-
tion in INaamil once CFTR was activated. Figure 5a, b shows 
that the reduction in INaamil when CFTR was activated was 
not changed with the xShroom1 antisense. Thus, the nega-
tive effect of CFTR activation on the INaamil is not dependent 
on xShroom1.

Fig. 4   ICFTR and INaamil in oocytes injected with xShroom1 antisense 
or sense oligonucleotides in the absence (control) and presence of 
80 µM Dynasore for 24 h. When xShroom1 was downregulated, the 
ICFTR was increased by a factor of 5 over the control and the opposite 

result was obtained in INaamil (left panels). In the presence of Dynas-
ore, no difference in these currents was recorded in oocytes with xSh-
room1 downregulated (right panels)

Fig. 5   In these sets of panels, 
the INaamil (− 100 mV pulse) 
was recorded when CFTR 
was activated in the presence 
of Dynasore in oocytes with 
xShroom1 expressed (a) and 
when it was downregulated with 
antisense oligonucleotides (b). 
In both conditions, the activa-
tion of CFTR with forskolin 
plus IBMX reduced the INaamil 
(see Fig. 3c for comparison)



66	 A. G. Palma, B. A. Kotsias 

1 3

Discussion

In this work, we analyzed the regulation of the epithelial 
sodium channel (ENaC) by proteins of the Shroom fam-
ily involved in the cytoskeletal function (see “Introduc-
tion”) and the interaction of ENaC with the cystic fibrosis 
transmembrane regulator (CFTR) channel. First, we will 
discuss the role of xShroom1 protein on the activity of 
ENaC and CFTR, second, the interaction between these 
two proteins, then the role of endocytic trafficking in the 
mentioned effects and finally the comparison between dif-
ferent species of these channels.

It is evident from our previous results (Assef et  al. 
2011; Palma et  al. 2014, 2016) and the comparison 
between Fig. 4a and b (Control) that there is a dual action 
of xShroom1 on the level of activity of ENaC and CFTR 
in oocytes from X. laevis. Much to our surprise, suppres-
sion of xShroom1 resulted in an increment in CFTR func-
tion whereas the opposite was found for ENaC. Many of 
the functions of ENaC and CFTR are through interactions 
with actin, actin-binding proteins, or scaffolding proteins 
(Karpushev et al. 2010; Santos et al. 2020). Thus, several 
ENaC-regulatory proteins function within a multiprotein 
complex which controls the channel expression and activ-
ity. This is the case of CNK3, a scaffold protein which has 
a PDZ domain and serves as a stimulatory factor for ENaC 
(Soundararajan et al. 2012). On the other hand, Boucherot 
et al. (2001) found that a CFTR mutant, which lacks the 
last six amino acids encoding the PDZ-binding domain, 
resulted in a larger current than wild-type CFTR.

CFTR activation had a measurable negative effect on 
ENaC as it is shown in Fig. 3, and this activation resulted 
in a greater inhibition of INaamil than the one obtained with 
the xShroom1 antisense alone. The interplay between 
CFTR and ENaC is complex and incompletely under-
stood. Tissues and species differences may account for the 
discrepant findings reported in the literature. For exam-
ple, activation of ENaC requires CFTR function in sweat 
ducts (Reddy et al. 1999; Reddy and Quinton 2005) and 
in human alveolar type II cell (Bove et al. 2010), whereas 
Na+ absorption is elevated in defective airways in cystic 
fibrosis (see Collawn et al. 2012; Strandvik 2021, for ref-
erences). There are reports showing that CFTR activation 
by cAMP caused an inhibition of INaamil in oocytes co-
expressing rat α, β, and γ ENaC and CFTR (Bachhuber 
et al. 2005; Briel et al. 1998; Chabot et al. 1999), and 
similar results were obtained with mouse α,β,γ ENaC co-
expressed with CFTR (Yan et al. 2004) but not in human 
α,β,γ ENaC when co-expressed with CFTR (Nagel et al. 
2005; Yan et al. 2004; see references in Rauh et al. 2017). 
In addition, we showed that the inhibition of ENaC by the 
activation of CFTR is greater when xShroom1 is blocked 

with the antisense oligonucleotides, and this is also in 
agreement with the results of Boucherot et al. (2001), 
showing that inhibition of ENaC was linked to Cl− cur-
rents generated by CFTR and was observed in the presence 
of Cl−, I−, or Br− but not gluconate, although Suaud et al. 
(2007) found that chloride transport is not necessary for 
inhibition of ENaC.

Third, we will discuss the effects of Dynasore upon the 
interplay between ENaC and CFTR. Dynasore acts as a 
potent inhibitor of endocytic pathways known to depend 
on dynamin, essential for clathrin-dependent coated vesi-
cle formation, by rapidly blocking coated vesicle formation 
(Macia et al. 2006). It has been previously used (at the same 
concentration as in our experiments) to probe the role of 
dynamin in the endocytic trafficking of CFTR and ENaC by 
Young et al. and Wesch et al. with similar results. Our exper-
iments support the idea that CFTR and ENaC undergo endo-
cytosis, at least in part, through the classically described 
dynamin-dependent, clathrin-mediated endocytosis. The 
results presented in Figs. 4 and 5 with Dynasore suggest 
that the changes in INaamil by xShroom1 downregulation 
were probably due to an increment in the endocytosis of the 
channels. In other words, xShroom1 impairs in some man-
ner the endocytic traffic of ENaC, and this effect is antago-
nized with Dynasore. Unexpectedly, an opposite effect was 
observed when ICFTR was measured. Thus, when xShroom1 
was downregulated, the ICFTR was larger than in the control 
experiments and this effect is not observed with Dynasore 
(Fig. 4a).

Finally, the use in the present study of two channels from 
different species to analyze the interaction between them 
will be discussed.

Although there is a possibility that the relationship 
between CFTR and ENaC channels from same species may 
be different to the found in our investigation, it has been 
well described that αβγ-ENaC subunits are highly conserved 
between different species, including rat and human ENaC 
(Hanukoglu and Hanukoglu 2017; Voilley et al. 1994). Addi-
tionally, β and γ rat ENaC share sequence identity to human 
ENaC in the proline-rich P2 regions (Staub et al. 1996), 
which have been shown to bind the E3 ubiquitin ligases 
Nedd4 suppressing ENaC activity by decreasing its cell-
surface stability (Lu et al. 2007).

Moreover, the literature shows that mouse ENaC has sev-
eral characteristics in common with human ENaC that could 
suggest that the relationship between human CFTR and 
mouse ENaC could be the same as the relationship between 
human CFTR and human ENaC.

In previous studies, it was reported that the relationship 
between CFTR and ENaC is inhibitory in human cells, as 
the results presented here. In human primary culture from 
airways, it was shown that CFTR impedes the proteolytic 
processing of ENaC, regulating the channel negatively 



67The Effect of Dynasore Upon the Negative Interaction Between ENaC and CFTR Channels in Xenopus…

1 3

(Gentzsch et al. 2010). Besides, Mall et al. (1999) found 
that the amiloride-sensitive sodium currents are inhibited by 
CFTR activation in normal human colon biopsies but not in 
tissue biopsies from cystic fibrosis patients.

In addition, both human and mouse ENaC are endocyted 
from the plasma membrane through clathrin-mediated endo-
cytosis; thus, we would expect the same results from human 
and mouse ENaC. Evidence from oocytes studies demon-
strate that the process is dynamin dependent, consistent with 
a role for clathrin-mediated endocytosis. With the use of two 
different tools, Pitstop-2, an inhibitor of the clathrin-medi-
ated endocytosis or mutating clathrin adaptor protein 2 (AP-
2) recognition motifs in the C-termini of β- and/or γ-ENaC, 
it was shown that ENaC endocytosis is clathrin mediated in 
X. laevis oocytes injected with human ENaC cRNA (Ilyaskin 
et al. 2021). Moreover, Shimkets et al. (1997) found that rat 
ENaC channels are also removed from the plasma membrane 
through clathrin-mediated endocytosis in X. laevis oocytes. 
Wang et al. (2006) demonstrated that ENaC is present in 
clathrin-coated vesicles in mouse mpkCCDc14 cells and 
is efficiently endocytosed. They also showed in X. laevis 
oocytes that the co-expression of mouse ENaC and epsin, a 
clathrin adaptor protein, resulted in the downregulation of 
the channel activity.

Furthermore, several studies demonstrated that the 
endocytosis inhibitor used in the present study, Dynasore, 
blocked both human and mouse ENaC endocytosis, as would 
be expected for a channel whose surface expression is regu-
lated by clathrin-mediated endocytosis. ENaC endocytosis 
was inhibited with dynasore in X. laevis oocytes injected 
with rat ENaC cRNAs and in mouse M1 cortical-collecting 
duct cells (Almaça et al. 2009). In addition, Wesch et al. 
(2012) showed a significant increase of amiloride-sensitive 
sodium current due to blocked endocytosis of the channel in 
the presence of dynasore, in X. laevis oocytes injected with 
human ENaC cRNAs.

The number of channels at the cell surface is determined 
by the balance between insertion of new channels into the 
plasma membrane and the endocytosis and degradation of 
channels from the membrane, whereas other additional fac-
tors influence the amount, stability, half-life, and activity of 
CFTR and ENaC at the surface membrane (see Butterworth 
2010; Farinha et al. 2013 for references). In this context, 
a speculative explanation could be that xShroom1 exerts a 
dual effect on the endocytic traffic of ENaC and CFTR, a 
negative action upon ENaC and a positive one with CFTR, 
and both of these actions were canceled with Dynasore. 
In its presence no difference in either INaamil or ICFTR was 
observed when xShroom1 was downregulated.

For the maintenance of cellular homeostasis a coordi-
nated interaction between ENaC and CFTR is necessary. 
The importance of a correct balance of these channels' 
activity is demonstrated in several pathologies. Therefore, 

it is essential to understand the mechanism of regulation 
of ENaC by CFTR. Our data show an interaction between 
CFTR and ENaC and suggest that xShroom1 regulates both 
channels, indicating that xShroom1 could have a role in the 
channels' deregulation in several pathologies.
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