
Vol.:(0123456789)1 3

J Membrane Biol (2017) 250:133–144 
DOI 10.1007/s00232-017-9954-1

Deficiency in Sperm–Egg Protein Interaction as a Major Cause 
of Fertilization Failure

Soudabeh Sabetian1 · Mohd Shahir Shamsir1 

Received: 23 May 2016 / Accepted: 21 February 2017 / Published online: 9 March 2017 
© Springer Science+Business Media New York 2017

ZP  Zona pellucida
AR  Acrosome reaction
ART  Assisted reproductive technology
ZPIAR  ZP-induced AR
2D  Two-dimension
TMEM190  Transmembrane protein 190
SPESP1  Sperm equatorial segment protein 1
SPACA  Sperm acrosome-associated proteins
SAMP  Sperm acrosomal membrane-associated 

protein
SLLP1  Sperm lysosomal-like protein 1
ADAMs  Disintegrin and metalloproteinase domain
IgSF  Immunoglobulin superfamily
Itg  Integrin
Y2H  Yeast two-hybrid

Introduction

Sperm–egg interaction is a unique cell–cell connection 
process in sexual reproduction that involves two gam-
etes recognizing, binding, and eventually fusing with each 
other (Wortzman et  al. 2006). The potential intermediary 
of molecular process in sperm–oocyte fusion and binding 
has been studied over the past 20 years and is still poorly 
understood (Kaji and Kudo 2004; Primakoff and Myles 
2002; Stein et al. 2004). During this process, many molecu-
lar interactions in the form of protein–protein interactions 
will mediate the sperm–egg binding process. The eluci-
dation of sperm–egg interaction at the molecular level is 
crucial in solving problems in infertility and in  vitro fer-
tilization (IVF) failure (Evans 2012). IVF is implemented 
for couples with no sperm dysfunction and no female infer-
tility elements. Nevertheless, it is surprising that complete 
fertilization failure is still a prevalent event in the process 
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of IVF (Brewis et  al. 2005). This suggests that the sperm 
and egg dysfunctions are not certain even with common 
analyzing, while their protein defects are as considerable 
cause of fertilization failure (Stein et  al. 2004). This phe-
nomenon is called unexplained infertility and remains an 
unknown syndrome and researchers have limited informa-
tion regarding the clinical nature of the sperm and oocyte 
dysfunctions (Brewis et  al. 2005; Hamada et  al. 2012). 
Recent studies have represented that protein deficiencies 
in membrane interaction such as zona binding or the zona-
induced AR (Acrosome Reaction) are significant causes of 
reduced fertilization and total fertilization fail in assisted 
reproductive technologies (Gadella 2008). They suggested 
the major causes of fertilization failure in conventional IVF 
of unexplained male infertile is due to abnormalities of pro-
tein–protein interaction in sperm–oocyte membrane inter-
action (Brewis et  al. 2005; Hamada et  al. 2012; Liu and 
Baker 2000). Due to detection of the molecules that medi-
ate human membrane sperm–oocyte interaction, different 
experimental methods have been applied (Evans 2012). 
This review reflects on current understanding of sperm–egg 
interaction mechanism during fertilization, with particular 
focus on the effects of sperm and oocyte proteins on fer-
tility status. This review also discusses the applied experi-
mental techniques regarding identification of protein–pro-
tein interactions. Because of the difficulties in studying 
membrane protein–protein interactions and the inadequacy 
of materials, many efforts have failed to achieve compre-
hensive data about human sperm–egg interaction. Compu-
tational methods also can explain protein–protein interac-
tions at various levels as moving forward regarding study 
on sperm–egg membrane interaction.

Fertilization

Fertilization is a distinctive cell–cell interaction occur-
rence encompassing two structurally dissimilar gam-
etes that recognize, bind, and eventually fuse with each 
other (Sato 2014). The fertilization process has been 
divided into five steps in order for the eventual entry of 
the sperm nucleus into the ovum cytoplasm. During this 
process, the fertilizing spermatozoon, after capacitation, 
must initially interpenetrate the neighboring cumulus 
layer of oocyte composed of follicular cells disseminated 
in a polymerized matrix constituted primarily of hyalu-
ronic acid (Wortzman et al. 2006; Yu 2008). In order to 
experience a specific gamete recognition process, acro-
some of spermatozoa makes contact with the oocyte in 
most laboratory animals (Abou-haila and Tulsiani 2009). 
This is facilitated by the sperm plasma membrane cover-
ing the acrosomal vesicle and complementary molecules 
allied with the zona pellucida (ZP) of the oocyte. Later 

on, the spermatozoon goes through the acrosome reaction 
(AR) after primary sperm–zona binding. The AR makes 
multiple interactions between the overlying plasma mem-
brane and the outer membrane of acrosome, which dis-
closes the acrosomal substances of the spermatozoa and 
its persistent inner acrosome membrane. During the acro-
some reaction, the contents of the acrosome are released 
outwardly and the cell membrane of the spermatozoon 
fuses with the outer membrane of the acrosome. When 
the acrosome reaction has been completed, the spermato-
zoon is now covered at its upper end only by the former 
inner membrane of the acrosome (Yanagimachi 2011). 
Moreover, the fertilizing spermatozoa undertakes a more 
determined secondary binding after induction of the AR 
between the ZP and the inner acrosomal membrane; this 
is followed by ZP penetration (Tokuhiro et al. 2012; Tul-
siani and Abou-Haila 2012).

However, only one sperm usually transpires into the 
perivitelline space situated between the egg and the ZP, 
and interacts with the oolemma (egg membrane) in a 
sperm–egg binding function, which is immediately con-
tinued by sperm–egg fusion. After sperm entry into the 
oocyte, different events happen, for instance, the quick 
supply of a sperm factor (phospholipase zeta) in inducing 
calcium oscillations and the role of the fertilizing sper-
matozoon (Tokmakov et al. 2014). The egg activation is 
the resultant of these oscillations, which bring about the 
ultimate development of the female pronucleus (Gadella 
2008; Lee et  al. 2010; Nomikos et  al. 2012). Also, the 
development of the male pronucleus and Sperm chroma-
tin decondensation takes place. The two pronuclei ulti-
mately fuse at syngamy from the different gametes; thus, 
fertilization is believed to be completed at this point (van 
der Heijden et al. 2008).

Deficiency in cell–cell adhesion event between sperm 
and egg contributes to unsuccessful fertilization and 
assisted reproductive technology (ART) failure (Swain 
and Pool 2008).

Infertility

Infertility is a common medical problem having an 
impact on 10–15% of couples around the globe. The 
prevalence varies throughout developed and underdevel-
oped countries, being greater in the latter where inad-
equate resources are available for treatment and diagno-
sis (Hamada et  al. 2011; Hotaling et  al. 2011). Reports 
indicate that there are 37–58% of infertile couples. These 
cases remain infertile even past ART (Jungwirth et  al. 
2012; Rowe and Comhaire 2000).
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Fertilization Defects

In conventional IVF, the main cause of fertilization failure 
of unexplained male infertility is because of abnormali-
ties of sperm–oocyte penetration and interaction (Liu and 
Baker 2000). Even though most penetration defects and 
sperm–oocyte binding defect are owing to apparent sperm 
abnormalities, for instance teratozoospermia and astheno-
zoospermia, many patients have regular semen parameters 
and elusive sperm weaknesses that influence sperm–oocyte 
interaction. A routine semen analysis cannot show these 
defects, but they are obvious with sperm–ZP interaction 
examinations (Hamada et al. 2011).

Sperm–ZP Binding Defect

The existence of complementary binding receptors or sites 
on the gamete surface are prerequired for sperm adhesion 
to the ZP of oocyte; usually, these receptors are associ-
ated with a high rate of species specificity (Sinowatz et al. 
2001). Human ZP (hZP) consists of four key glycoproteins 
(hZP4, hZP3, hZP2, and hZP1) where the ZP3 of human 
oocytes is supposed to be the main ZP receptor for capaci-
tated acrosome-intact sperm adhesion. Although the pre-
cise sperm receptors of humans for the hZP have not been 
identified, numerous candidate proteins of sperm have been 
reported to be capable of interacting with either intact or 
solubilized ZP. On the other hand, it is not clear whether 
the reported sperm receptors are the main ones for sperm 
interaction with the ZP or not (Lefievre et  al. 2004; Liu 
et al. 2009; van Gestel et al. 2007). A signal transduction 
cascade inside the spermatozoa is encouraged by the sperm 
binding to ZP3, as shown in Fig.  1, comprising various 
proteins and other aspects such as protein kinases A and C 
pathways that results in the acrosome reaction (AR). ZP2 
is supposed to be bound to spermatozoa, which enables the 
progression into the perivitelline layer and the penetration 
to the zona matrix (Baldi et al. 2000; Sun and Nagai 2003).

In about 25 and 15% of subfertile men with abnormal 
and normal semen analysis, respectively, the defective 
ZP-bound sperm are present. Thus, after undergoing IVF, 
such individuals have a decreasing chance of attaining 
effective fertilization (Liu et  al. 2007). It has been stated 
that with unexplained infertility, two out of 18 men indi-
cated a dearth of sperm binding to the ZP in spite of hav-
ing sperm parameters such as morphology or count like 
fertile men. However, the defective signaling pathways 
of protein kinases C and A could lead to the existence of 
imperfect sperm binding to ZP in infertile individuals with 
regular semen analysis. On the other hand, a lot of imper-
fect sperm–ZP adhesion of infertile men with normal 
semen analysis and those with acute teratozoospermia are 

expected to possess structural deficiencies, or lack of sperm 
receptors for interaction with the ZP (Liu et al. 2009). CaP_
ZP3 protein is primarily detected in stage III oocytes, and 
the protein accumulates as oocytes that develop into stage 
IV oocytes and the transcription of the CaP_ZP3 protein 
occurs prior to its translation in studied triploid fish and it 
has been indicated that the transcription and translation of 
the ZP3 gene in this special triploid fish are asynchronous 
(Shi et al. 2013).

Acrosome Reaction Defect

Acrosome reaction (AR) is the interaction event of plasma 
membrane with the outer acrosome membrane in sperm 
that occurs by secreting of exocytotic proteolytic enzymes 
(hyaluronidase and acrosine) in reaction to sperm–ZP adhe-
sion (Tulsiani and Abou-Haila 2001). In human sperm, the 
natural stimulus for the AR is ZP3 that leads to the proteo-
lytic decomposition of the ZP and the principal binding of 
the ZP with intact acrosome is started. There are two types 
of defective AR that have clinical importance. The first is 
a great amount of spontaneous AR (>20% of spermato-
zoa presenting spontaneous AR) that is due to the prema-
turity of AR and the second is the reduced responsiveness 
to AR stimulants (when <15% of spermatozoa reacted to 
AR stimulants) that is the reason of insufficiency of AR. In 
conventional IVF treatment, both conditions are linked to 
weak fertilization capability (Sigman et al. 2009a).

Moreover, some unexplained infertile men presenting 
normal sperm–ZP adhesion possess imperfect ZP-induced 

Fig. 1  Acrosome–Zp interaction: A signal transduction cascade 
inside the spermatozoa is encouraged by the sperm binding to ZP3, 
comprising various proteins and other aspects such as protein kinases 
A and C pathways that result in the acrosome reaction (AR)
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AR (ZPIAR) that is associated with weak sperm–ZP pen-
etration and the failure of fertilization. A long period of 
infertility, normal semen parameters, and normal sperm–ZP 
adhesion have been demonstrated in patients with unex-
plained infertility but the patients show penetration failure 
of sperm to ZP. Therefore, they show low or zero rates of 
fertilization with conventional IVF (Liu and Baker 2003). 
Although the precise mechanisms of deficient AR are uni-
dentified, imperfect ZPIAR is expected to be highly asso-
ciated with structural sperm head deficiencies, for instance 
small or abnormal acrosomes, or disorders in the overlying 
plasma membrane of subfertile men (Eddy 2006). Defec-
tive ZPIAR was found in 25% of subfertile men with nor-
mal semen parameters and the rate of this deficiency was 
significant in subfertile men with idiopathic teratozoo-
spermia and oligozoospermia (Liu et al. 2007).

Sperm-mediated oocyte-activating factors (SOAF) com-
partmentalize as part of the postacrosomal sheath of sperm 
perinuclear theca (PAS-PT) and trigger intracellular Ca2+-
release upon fusion of spermatozoa/oocyte membranes or 
insemination of spermatozoa into oocyte (Anifandis et  al. 
2016; Sutovsky et al. 2003). Several factors have been con-
sidered as candidate for SOAFs including PLCζ (a sperm-
specific phospholipase C), TR-KIT (a truncated form of 
the KIT receptor), PAWP (postacrosomal sheath WW 
domain-binding protein), and citrate synthase (Albertini 
2015; Tavalaee and Nasr-Esfahani 2016; Yeste et al. 2016). 
Failed fertilization post-ICSI is associated with the lack or 
deficiency of SOAF(s) (Amdani et  al. 2015). Absence of 
SOAF(s) in globozoospermic individuals because of the 
absence of acrosome and PAS-PT and during acrosome 
biogenesis in these individuals may be considered as one 
reason for failed fertilization in globozoospermic men 
(Tavalaee and Nasr-Esfahani 2016).

Fusion Defect of the Acrosome‑Reacted Sperm 
with the Oocyte Plasma Membrane

The fusion capability of the acrosome-reacted human 
sperm equatorial region with the oocyte vitelline mem-
brane is verified utilizing the sperm penetration assay 
(SPA) (Sigman et al. 2009b). This test calculates the ability 
of the spermatozoon to undergo AR, capacitation, fusion, 
and penetration via oocyte plasma membrane. During this 
test, a zona-free hamster oocyte was incubated with human 
spermatozoa and the percent of egg’s penetration; normal 
sperm capable of penetrating 10–30% of hamster oocyte 
was measured. Modern refinement of this test was carried 
out and showed the majority of oocyte to be penetrated if 
the sperm was incubated in more potent capacitating man-
ner. It has been demonstrated that 34.1% of UMI group had 
less than 10% egg penetration compared to 0% of fertile 

men group (Aitken et al. 1982). Also, in order to predict the 
failure or success of IVF, the ability of the SPA has been 
evaluated by numerous studies. Some investigators have 
claimed 100% predictability, while others have revealed no 
association with an abnormal test. In addition, a usual SPA 
might have 70% predictability of IVF by taking an aver-
age from diverse studies. However, semen samples that are 
unable to fertilize hamster oocyte typically fail to fertilize 
human oocyte. Therefore, the SPA is regarded as a research 
device, and it can be used for checking the medical level 
of fertility potential of patients with UMI suffering from 
negligible fertilization value of IVF (Hamada et  al. 2011; 
Hamada et al. 2012; Sigman et al. 2009b).

As demonstrated above, the defection or mutation of dif-
ferent molecules which play some role in sperm–egg inter-
action process is a major cause of unexplained infertility.

Sperm–Oocyte Interactions

One of the most remarkable processes in sexual reproduc-
tion is sperm–egg interaction. Over the past 20 years, the 
molecular events associated with sperm–oocyte bind-
ing and fusion have been the focus of various and numer-
ous researches, with various sperm proteins associated 
as prospective intermediaries (Kaji and Kudo 2004; Pri-
makoff and Myles 2002; Stein et  al. 2004). Jan Frayne’s 
attempt and other previous studies have introduced the 
sperm–oocyte relations and defined both binding and 
fusion events (Frayne and Hall 1999). The molecular inter-
actions that mediate sperm–oocyte membrane adhesion 
are still poorly described. However, up till now, no certain 
candidate proteins have been described and only a small 
number of sperm proteins have been suggested to have a 
fusogenic role (Brewis et  al. 2005). Figure 2 presents the 
molecules proposed to participate in sperm–egg membrane 
interactions.

Experimental Methodologies to Identify Protein 
Candidates in Sperm–Oocyte Interaction

In order to study the mammalian molecular candidate for 
sperm–egg interaction, the original and unbiased method 
was the utilizing of antigamete monoclonal antibody tech-
niques (typically against sperm) that were implemented in 
IVF test for assessment of their stopping action and also to 
inspect antigen localization. Some sperm proteins includ-
ing ADAM1, ADAM2, and IZUMO1 have been detected 
applying this technique (Evans 2012). A more recent and 
relevant technique has been applied to determine the sperm 
proteome such as proteins in definite subcellular seg-
ments, glycosylated proteins, or proteins that separate into 
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a Triton X-114 detergent phase (Hao et  al. 2002; Wolko-
wicz et  al. 2003). The proteomic methods such as 2D 
electrophoresis followed by mass spectrometry have iden-
tified some sperm proteins including transmembrane pro-
tein 190 (TMEM190), sperm equatorial segment protein 1 
(SPESP1), and four sperm acrosome-associated (SPACA) 
proteins: SPACA1 [sperm acrosomal membrane-associated 
32 (SAMP32)], SPACA4 (sperm acrosomal membrane-
associated 14 (SAMP14)), and SPACA3 (sperm lysosomal-
like protein 1 (SLLP1)) and SPACA6 (Sperm acrosome 
membrane-associated protein 6) (Evans 2012). It has been 
proposed that SPACA6 together with IZUMO1 my mediate 
sperm fusion by binding an as yet unknown egg membrane 
receptor (Lorenzetti et al. 2014).

A grouping of candidate methods and unbiased 
approaches such as advanced proteomic technique linked to 
the mass spectrometric methods have been also useful for 
oocyte proteomics. Applying these methods, some oocyte 
proteins have been identified that mediate sperm–egg inter-
action, for example, integrins on eggs come to mind with 
the detection of an integrin ligand-like domain in a sperm 
protein of mammalian (Blobel et  al. 1992). A significant 
assessment is by evaluating the impacts of genetic mutation 
or deletion on reproductive function. A knockout mouse 
with a failure to generate any offset reveals a crucial task 
for molecular level of reproductive process for the candi-
date molecule. In contrast, if a knockout mouse is fertile 
and produces an offspring, the molecule in question is not 

so critical or may have been provided with a supplementary 
molecule that acts in multiple pathways.

Another kind of significant phenotype that has long been 
studied is synthetic lethality, which occurs if a mutation in 
a single gene has poor to no efficacy on livability but join-
ing with a mutation in other gene(s) may result in a lethal 
phenotype. On the other hand, a defect in a single gene may 
have little efficacy on fertilization, while the integration of 
the defect with other genetic imperfection eventuates in 
total infertility. For example, Cd81−/− females have a slight 
loss of fertilization, knockout female mice with Cd9−/− are 
barely subfertile, whereas Cd9−/−/Cd81−/−females are com-
pletely infertile (Rubinstein et  al. 2006). Mice ovule has 
more oocytes per cycle than the ovulation in human 
females; therefore, a genetic imperfection accounts for 
only a moderate fertilization deficiency in mice. In order to 
make developments related to reproduction, especially in 
humans in spite of the experimental challenges in analysis 
and identification, the evaluation of fertility status is very 
important, both in vivo subfertility and those that revealed 
infertility via in vitro approaches (Ola et al. 2001; Tournaye 
et al. 2002).

Candidate Sperm Proteins in Sperm–Oocyte 
Interaction

To date, some proteins in sperm have been identified that 
mediate sperm–egg binding and fusion, using described 
techniques.

IZUMO1

IZUMO1 is one of the sperm proteins and is a member of 
the immunoglobulin superfamily (IgSF) of proteins. This 
protein was recognized using antisperm monoclonal anti-
bodies by liquid chromatography tandem–mass spectrom-
etry (Anifandis et al. 2014). Mouse IZUMO1 is a 56-kDa 
protein which contains one immunoglobulin-like domain 
including an N-glycosylation site that seems to be testis-
specific. Sperm–egg adhesion with knockout ZP eggs 
was prevented by monoclonal antibody OBF13, against 
IZUMO1, and similarly, the antibodies to the recognized 
human IZUMO1 inhibit the fusion of human sperm to ZP 
knockout hamster eggs (Inoue et al. 2005).

However, the possible relationship between human 
infertility and IZUMO1 abnormality has been considered 
in the previous research and the most significant knowl-
edge about this relationship has been provided by the 
knockout mouse. In fact, Izumo1−/− females act healthy 
and possess normal fertility. Conversely, in spite of the fact 
that Izumo1−/− males have normal ejaculation and mating 
behavior and have regular sperm migration and motility 

Fig. 2  Proteins participated in sperm–egg membrane interaction: 
GPI-anchored protein as known Juno is identified as a receptor for 
IZUMO1 on mouse eggs. ADAMs in sperm membrane interact with 
integrins in egg via their integrin ligand-like disintegrin domain. Sev-
eral tetraspanins are probably involved in the regulation of membrane 
through associating with and/or assisting the function of other mem-
brane proteins including different integrins and other interaction mol-
ecules. Spesp1−/− sperms have represented the reduced capability for 
sperm–oocyte fusion. Other sperm and egg proteins not pictured here 
are summarized in Tables 1 and 2
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into the oviduct, these males are infertile (Granados-Gon-
zalez et al. 2008; Hayasaka et al. 2007; Inoue et al. 2005).

Izumo1-null sperm was able to enter the ZP and then 
penetrates to the perivitelline layer in IVF assays but the 
fertilization failed. Therefore, Izumo−/− sperm has been 
found with deficient interaction through the egg plasma 
membrane. Despite the exact function of IZUMO1 is 
poorly understood and it is not definite that IZUMO1 act 
as an adhesion molecule, as a fusogen, and/or as a fusogen 
regulator, the evidence shows that IZUMO1 is critical for 
sperm–oocyte fusion. IZUMO1 with the immunoglobulin-
like domain probably interacts with other proteins (Brüm-
mendorf and Lemmon 2001). Structure function analysis of 
IZUMO1 is still demanding, as the most interesting assess-
ment on knockout sperm with the Izumo1−/− background. 
Thus far, researchers have revealed that Izumo-null males 
represented significantly decreased value of sperm–egg 
fusion in IVF (Inoue et al. 2008).

ADAMs

The ADAM (contain disintegrin and metalloproteinase 
domain) family was an interesting protein family in repro-
ductive study, where fertilization was blocked using anti-
body against several members. ADAM2 (fertilin β) is one 
of the members that act in fertilization process is sperm. 
Overall, ADAMs in sperm make interaction with numer-
ous members of the integrin family. Many of the integrin 
members are expressed in the egg and may be involved in 
sperm–oocyte interaction. The assessment of the relation-
ship between ADAMs in sperm and the integrin pairs in 
the egg have showed that the integrin α9β1 in the egg spe-
cifically interact with ADAM2 as its binding partner (Desi-
derio et  al. 2010; Eto et  al. 2002; Tomczuk et  al. 2003). 
Despite previous research on the role of ADAMs family in 
sperm–oocyte interaction, the function of several members 
of ADAMs in mammalian fertilization is still poorly deter-
mined. In order to study the function of several ADAMs, 
multiple Adam-null mice have been produced (Kim et  al. 
2006; Nishimura et  al. 2004). In several of these Adam 
knockouts, the sperm showed abnormalities in its surface 
proteins with lack of various ADAMs and reduced penetra-
tion to the zona matrix and/or decreased binding and fusion 
to plasma membrane of the egg. Investigation of gamete 
membrane interactions showed that the Adam2−/− knock-
out relates to functional defects of sperm, while other Adam 
knockouts possess low or no obvious effect on male fertili-
zation (Desiderio et al. 2010; Horiuchi et al. 2003).

Other Sperm Proteins

Biochemical fractions and structures of numerous sperm 
proteins have been revealed in their functions in membrane 

interaction of the gametes. SPESP1 (Sperm equatorial seg-
ment protein 1) is one of the sperm proteins whose function 
in sperm–egg interaction has been studied with generation 
of a knockout mouse. Spesp1−/− sperms have represented 
the reduced capability for sperm–oocyte fusion and also 
showed delayed migration via the reproductive tract of 
female in comparison with sperm of wild-type controls. 
Generally, the fertility level of Spesp1−/− males was slightly 
lower than the wild-type controls (Fujihara et  al. 2010). 
Spesp1 deletion also affects biochemical and localiza-
tion features of the protein that are probably involved in 
sperm–egg membrane interaction such as IZUMO1, equa-
torin, and another sperm proteins. Furthermore, the dele-
tion of Spesp1 affects membrane morphology of sperm; 
in these sperms, evaluation by electron microscopy shows 
damage of the equatorial segment membrane. The con-
siderations of other sperm proteins which are involved in 
sperm–oocyte interaction, comprising SPACA1, SPACA3, 
SPACA4, equatorin, CRISP1 and TMEM190, and numer-
ous enzyme activities and adhesion molecules are summa-
rized in Table 1 (Evans 2012).

Candidate Oocyte Proteins in Sperm–Oocyte 
Interaction

To date, some oocyte proteins have been identified that 
mediate sperm–egg binding and fusion, using described 
techniques.

Integrins

The principle role of integrins in the oocyte in 
sperm–oocyte interaction event has been revealed by inte-
grin ligand-like domain in ADAM2 which is an antigen of 
a function-blocking antisperm antibody (Liu et  al. 2010). 
Knockout mouse in several integrins’ backgrounds have 
been studied to consider the significance of integrins in fer-
tilization. Mouse eggs express 8 of 18 integrin α subunits 
and 3 of 8 integrin β subunits (Itgb1, Itgb3, Itgb5, Itga1, 
Itga2, Itga3, Itga5, Itga6, Itga8, Itga9, and Itgav) in mouse 
eggs and therefore at least ten different α-β integrins inte-
gration according to identified heterodimer pairs can be 
expressed (Desiderio et  al. 2010). Several of the integrin 
heterodimer pairs, especially ITGA9-ITGB1 (α9β1), inter-
act with several ADAMs (Edwards et al., 2008).

The certain deletion of egg-expressed integrins (Itga1, 
Itga2, Itgb3, Itgb5) has shown no infertility status, while 
the other seven in this list are lethal for embryos or neo-
nates. For example, the Itga9-defect oocytes have the clear-
est imperfection. Although oocytes defects in Itgb1, Itga3 
or Itga6, can be fertilized in vitro, Itgb1-null eggs display 
delay in time-lapse video analysis and also in modified 
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assays, subtle defects have been detected with Itga3- and 
Itga6-imperfection oocytes. Amount of fertilized eggs 
and sperm–egg binding and fusion have been decreased 
with ITGA9 knockdown egg in comparison with controls. 
ITGA9-null eggs did not show a complete failure of fertili-
zation, possibly due to only partial ITGA9 decrease on the 
surface of oocyte, and it is possible that other egg surface 
molecules have a likely role in gamete membrane interac-
tion (Evans 2012).

Tetraspanins

CD9 is a member of the tetraspanin family and Cd9-null 
mouse showed the significance of this protein in fertiliza-
tion. Cd9−/− females are severely subfertile and create a 
few offspring and in some cases, no offsets. Cd9−/− females 
may be fertile but have a severe delay in pregnancy (Le 
Naour et al. 2000; Rubinstein et al. 2006). In IVF, very few 
Cd9 knockout eggs are able to be fertile. CD9 is extensively 
expressed in the body and the Cd9-null mouse survives and 
is healthy but they have a serious fertility defect. Therefore, 
it has been identified that CD9 has a critical function only 
in the oocyte. More than 30 tetraspanins are expressed in 
mammalians and CD9 is one of the multiple tetraspanins in 

mouse oocytes. Cd9 deletion results a serious decrease in 
fertility and the remaining tetraspanins on the oocyte can-
not retaliate for the lack of CD9. The precise function(s) 
of CD9 in sperm–oocyte interaction is not identified, even 
though the significance of CD9 in mouse sperm–oocyte 
interaction is evidently proven (Miyado et al. 2000; Rubin-
stein et al. 2006).

CD81 is an associated tetraspanin that is 45% similar to 
CD9. The Cd81-null mouse also indicates deficiencies in 
sperm–egg interaction and female fertility with in vitro–fer-
tilized and in vivo–fertilized eggs (Rubinstein et al. 2006). 
Cd9−/−/Cd81−/− female mice are entirely infertile; there-
fore, the combination of these two gene disruptions results 
in severe infertility. In spite of information from antibody 
inhibition researches, the role of tetraspanin participation in 
human fertilization has been poorly recognized. However, 
there is no effect of two diverse anti-CD9 antibodies on the 
fusion of human ZP-free eggs with human sperm, while 
using antibodies to CD9 have inhibitory impacts on sperm 
fusion and binding with pig or mouse ZP-free oocytes. 
A number of tetraspanins, such as CD81 and CD9, have 
seemingly indirect roles in membrane fusion procedures 
but are still poorly described (Fanaei et  al. 2011; Ziyyat 
et al. 2006).

Table 1  Participating sperm proteins in sperm–oocyte membrane interactions

Protein Properties and result of defective proteins

IZUMO1 Sperm-specific (at protein level). Detectable on sperm surface (Nomikos et al. 2012). Izumo-null males 
represented significantly decreased value of sperm–egg fusion in IVF (Liu et al. 2009)

ADAMs Membrane proteins. These proteins have been represented to mediate sperm–egg adhesion by interact-
ing their disintegrin-like domain with an integrin on the egg plasma membrane (Liu and Baker 2003). 
Lack of various ADAMS reduced penetration to the zona matrix and/or decreased binding and fusion 
to plasma membrane of the egg (Liu et al. 2010)

CRISP1 Epididymal protein. Knockouts sire litters of normal sizes in normal time frames in conventional mating 
trials; null sperm have moderate deficiencies in sperm–oocyte interaction in vitro assays (Ola et al. 
2001)

SPACA1 (SAMP32) Inner acrosomal membrane protein. Antibodies reduce binding and fusion of human sperm to ZP-free 
hamster eggs (Inoue et al. 2008)

SPACA3 (S LLP1) Acrosomal matrix protein. Antibodies and recombinant protein reduce sperm–egg binding and fusion 
(Amdani et al. 2015)

SPACA4 (SAMP 14) Inner acrosomal membrane protein. Antibodies reduce binding and fusion of human sperm to ZP-free 
hamster oocytes (Perkins et al. 2010)

Equatorin Novel protein localized in the equatorial segment (Primakoff and Myles 2002)
TMEM190 Identified in a fraction of surface and vesicle proteins (Rowe and Comhaire 2000)
E-cadherin (CDH1) Identified on human sperm. Antibodies reduce the adhesion of human sperm to ZP-free hamster oocytes 

(Rubinstein et al. 2006)
N-cadherin (CDH2) Identified on human sperm. Antibodies reduce the adhesion of human sperm to ZP-free hamster oocytes 

(Sachs et al. 2006)
avβ3 or α6β1 integrin Characterized in mouse sperm; antibody-based inhibition (Sato 2014)
Enzyme activities
 Zinc metalloprotease activity Inhibitors and zinc chelators reduce sperm–oocyte fusion (Shi et al. 2013)
 Protein disulfide isomerases (PDIs) Identified in a fraction of surface and vesicle proteins (Sigman et al. 2009a); inhibitors reduce sperm–

oocyte fusion (Sigman et al. 2009b; Singson et al. 2008)
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CD151 is another membrane of tetraspanin and treating 
human eggs with an antibody against CD151 showed par-
tial inhibition in human sperm–egg fusion. Reproductive 
deficiencies have not been demonstrated in Cd151 knock-
out mice or in humans with mutated forms of CD151, but 
this result may be because of no wide assessment in repro-
ductive function features. The preliminarily data increase 
the probability that sperm–oocyte adhesion in diverse 
mammalian species might depend on several members 
of the tetraspanin family (Sachs et  al. 2006; Takeda et  al. 
2007; Ziyyat et al. 2006).

Several tetraspanins are probably involved in the regula-
tion of membrane through associating with and/or assisting 
the function of other membrane proteins including different 
integrins and other interaction molecules, IgSF members, 
ectoenzymes, and several intracellular signaling molecules 
(Kovalenko et al. 2007; Le Naour et al. 2006). For example, 
IgSF8 coimmunoprecipitates with CD9 in oocyte lysates 
and is absent from the surfaces of Cd9 knockout oocytes. 
An anti-IgSF8 antibody shows a slight inhibitory impact on 
sperm–oocyte adhesion, although Igsf8-null mice have not 
been investigated (Glazar and Evans 2009).

Glycosyl Phosphatidylinositol–Anchored Proteins

The eggs were treated with phosphatidylinositol-specific 
phospholipase C (PI-PLC), which splits GPI-anchored pro-
teins, and the result showed affectedly decreased values 
of sperm–egg binding and fusion (Coonrod et  al. 1999). 

Succeeding researches utilized genetic ways to produce 
oocytes missing GPI-anchored proteins via an oocyte-spe-
cific knockout of the phosphatidylinositol glycan anchor 
biosynthesis, class A (PIG-A); PIG-A is a subunit of an 
N-acetylglucosaminyl transferase that takes part in the ini-
tial stages of GPI synthesis. In mating trials, these PIG-A-
null females showed severely decreased sperm fusion and 
produced no pups. Two-dimensional (2D) gel electropho-
resis of proteins that were isolated from PI-PLC-treated 
eggs has so far revealed that one identified GPI-anchored 
protein, CD55, is reduced on Piga-defective oocytes 
(Alfieri et  al. 2003; Tiede et  al. 2000). Moreover, a GPI-
anchored protein as known Juno is identified as a receptor 
for IZUMO1 on mouse eggs and Juno-null eggs do not fuse 
with normal sperm. Quick lack of Juno from the egg mem-
brane after fertilization provides a possible mechanism for 
the membrane block to polyspermy in mammalian eggs 
(Bianchi et al. 2014). A summary of egg proteins involved 
in sperm–oocyte interaction is represented in Table 2.

In summary, the molecular mechanisms regarding 
sperm–egg membrane fusion and binding are still poorly 
understood. In order to categorize the relevant proteins 
and to support many of the unanswered queries concern-
ing the essential and fascinating human sperm–egg interac-
tion process, a substantial research is required. In addition, 
the focus of most of the presented studies was on utilizing 
animal models to further understand the related molecu-
lar mechanisms, but in order to understand human infer-
tility and fertilization mechanisms, the emphasis must be 
on the human model. The study on human model in this 

Table 2  Participating egg proteins in sperm–oocyte membrane interactions

Protein Family Proteins fertility status in result of defective proteins

Integrins ITGB1 lethal for embryos or neonates, delay and decreased in sperm–egg binding (Tulsiani and Abou-Haila 2001, 
2012)

ITGB3 No infertility status (van der Heijden et al. 2008; van Gestel 2007)
ITGB5 No infertility status (van der Heijden et al. 2008; van Gestel 2007)
ITGA1 No infertility status (van der Heijden et al. 2008; van Gestel 2007)
ITGA2 No infertility status (van der Heijden et al. 2008; van Gestel 2007)
ITGA3 lethal for embryos or neonates; slight delay in sperm–oocyte binding (Tulsiani and Abou-Haila 2001, 2012)
ITGA5 lethal for embryos or neonates (van der Heijden et al. 2008; van Gestel 2007)
ITGA6 lethal for embryos or neonates; slight delay in sperm–oocyte binding (Tulsiani and Abou-Haila 2001, 2012)
ITGA8 lethal for embryos or neonates (van der Heijden et al. 2008; van Gestel 2007)
ITGA9 lethal for embryos or neonates, decreased in sperm–egg binding (Tulsiani and Abou-Haila 2001; van der 

Heijden et al. 2008; van Gestel 2007)
ITGAV lethal for embryos or neonates (van der Heijden et al. 2008; van Gestel 2007)

Tetraspanins CD9 Severe infertility defects and decreased sperm–oocyte fusion (Kaji and Kudo 2004; Stein et al. 2004)
CD81 Deficiency in sperm–egg interaction (Kaji and Kudo 2004)
CD 151 Partly inhibition in human sperm–oocyte fusion (Takeda et al. 2007; Von Mering et al. 2002)

IGSF IgSF8 Associated with CD9; slight inhibitory function on sperm–egg binding (Tokmakov et al. 2014)
GPI-anchored proteins CD55 Severe defects in sperm–egg fusion (Tournaye et al. 2002)
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conception might be a predominantly difficult job because 
of the ethical issues and also because of modicum of human 
oocytes or embryos. Semen parameter analysis is the most 
generally used test to diagnose male-factor infertility as a 
cause of infertility. Common IVF assay is now utilized for 
men with normal or nearly normal semen parameters (mod-
erate male-factor infertility). It is surprising that complete 
fertilization failure is still a quite common occurrence at 
IVF with the overall exclusion of men with sperm dysfunc-
tion (Ola et al. 2001; Tournaye et al. 2002). This highlights 
the fact that common semen analysis, a diagnosis test to 
determine a main reason of failure of fertilization, can-
not display sperm dysfunction; this condition is defined as 
‘hidden’ male-factor infertility or unexplained male infertil-
ity. According to the background of such infertility, the new 
research context on the interactions between sperm and egg 
gametes in order to understand, in cellular and molecular 
terms, has been initiated (Conner et al. 2007).

To date, very little has been understood about the details 
of medical nature of sperm dysfunction in ‘hidden’ male-
factor infertility condition. There is a massive amount of 
human data to display that sperm deficiencies, for instance 
the zona-induced AR or zona binding defect, are substantial 
reasons of total fertilization failure and poor fertilization in 
assisted conception (Barratt and Publicover 2001; Liu and 
Baker 2000). Presently, there is little knowledge about the 
molecular nature of these imperfections in spermatozoa, 
or whether these signify imperfections in individual pro-
teins included in the mechanisms. There is evidence in 
animals that knockouts with individual protein can impact 
sperm–oocyte binding (Ensslin and Shur 2003), and thus 
it is likely that defects in the individual protein in humans 
may also result in failure of fertilization. Therefore, the aim 
of this research study is to identify the membrane proteins 
of human sperm and oocyte and investigate all the potential 
protein interactions between them.

Conclusion and Moving Forward

Recent findings of sperm–egg interaction and different 
aspects of various sperm–egg interaction abnormalities 
have been described in this review. This article also dis-
cussed how defective sperm–egg interaction can be a major 
cause of fertilization failure. Even though experimental 
approaches, for example immunoprecipitation, generated 
great quality outcomes and these approaches have produced 
large volumes of interaction data, they were extremely 
time- and cost-consuming and their outcomes of the high-
throughput techniques contain a great number of false-
negative and false-positive relationships. As discussed, 
the reliability of the experimental approaches utilized to 
identify PPIs can have extensively diverse quality as some 

techniques are linked with high error rates and because 
of the difficulties in studying membrane protein–protein 
interactions and the inadequacy of materials, many efforts 
have failed to achieve comprehensive data about human 
sperm–egg interaction. In addition, the focus of the most 
of the presented studies was on utilizing animal models to 
further understand the related molecular mechanisms; but 
in order to understand the human infertility and fertilization 
mechanisms, the emphasis must be on the human model. 
The study on human model in this conception might be a 
predominantly difficult job because of the modicum of 
human oocytes or embryos. In addition to experimental 
methods, computational methods can explain protein–pro-
tein interactions at various levels. In our new study, we will 
intend to focus on computational methods regarding inves-
tigating the protein–protein interaction in sperm–egg inter-
action. This review paper provides us with comprehensive 
current knowledge regarding sperm–egg interaction and 
will be helpful for future studies.
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