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Abstract The phosphatidylinositol cycle (PI-cycle) has a

central role in cell signaling. It is the major pathway for the

synthesis of phosphatidylinositol and its phosphorylated

forms. In addition, some lipid intermediates of the PI-cycle,

including diacylglycerol and phosphatidic acid, are also

important lipid signaling agents. The PI-cycle has some

features that are important for the understanding of its role

in the cell. As a cycle, the intermediates will be regener-

ated. The PI-cycle requires a large amount of metabolic

energy. There are different steps of the cycle that occur in

two different membranes, the plasma membrane and the

endoplasmic reticulum. In order to complete the PI-cycle

lipid must be transferred between the two membranes. The

role of the Nir proteins in the process has recently been

elucidated. The lipid intermediates of the PI-cycle are

normally highly enriched with 1-stearoyl-2-arachidonoyl

molecular species in mammals. This enrichment will be

retained as long as the intermediates are segregated from

other lipids of the cell. However, there is a significant

fraction ([15 %) of lipids in the PI-cycle of normal cells

that have other acyl chains. Phosphatidylinositol largely

devoid of arachidonoyl chains are found in cancer cells.

Phosphatidylinositol species with less unsaturation will not

be as readily converted to phosphatidylinositol-3,4,5-

trisphosphate, the lipid required for the activation of Akt

with resulting effects on cell proliferation. Thus, the

cyclical nature of the PI-cycle, its dependence on acyl

chain composition and its requirement for lipid transfer

between two membranes, explain many of the biological

properties of this cycle.
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Abbreviations

CDP-DAG Cytidine diphosphate-diacylglycerol

CDS CDP-DAG synthase (Phosphatidate

cytidylyltransferase)

DAG Diacylglycerol

DGK Diacylglycerol kinase

LPIAT1 Lysophosphatidylinositol acyltransferase 1

(O-acyltransferase containing domain 7)

(MBOAT7)

PA Phosphatidic acid

PI Phosphatidylinositol

PI-cycle Phosphatidylinositol cycle

PI3K Phosphatidylinositol-4,5-bisphosphate

3-kinase

PI4K Phosphatidylinositol-4-kinase

PI4P Phosphatidylinositol-4-phosphate

PIP2 Phosphatidylinositol-4,5-bisphosphate

PIP3 Phosphatidylinositol-3,4,5-trisphosphate

PIPn Phosphorylated forms of PI

PI4P5K Phosphatidylinositol-4-phosphate 5-kinase

PIS PI synthase (CDP-diacylglycerol-inositol

3-phosphatidyltransferase)

PKC Protein kinase C

PLC Phospholipase C (1-phosphatidylinositol 4,5-

bisphosphate phosphodiesterase)

PLD Phospholipase D
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PTEN Phosphatidylinositol-3,4,5-trisphosphate

3-phosphatase (Phosphatase and tensin

homolog)

TrpC

channel

Transient receptor cation channel

Lipid Synthesis and Signaling Lipids

Lipids serve many roles in biology. The synthesis of lipids

to form cell membranes is often the rate-limiting step in

cell proliferation. Phospholipids are major constituents of

cell membranes and they have roles in the formation of

membrane domains and in the modulation of the activity of

membrane proteins. Triglycerides form fat bodies that can

be later oxidized as a source of metabolic energy. There are

many pathways for lipid synthesis and many species of

signaling lipids.

In the present review we will focus on the phos-

phatidylinositol cycle (PI-cycle) that is the major path-

way for the synthesis of phosphatidylinositol (PI). This

cycle also plays a major role in lipid signaling. We will

discuss some of the properties of the PI-cycle that are

important for signal transduction. These features include

the fact that this is a metabolic cycle with the conse-

quence that intermediates of the cycle will perform a

catalytic role and will tend to remain at a constant

concentration. Thermodynamics requires that the cycle

function in only one direction since it consumes a large

amount of energy. As a metabolic cycle it may be unique

in requiring two different membranes. Hence the transfer

of lipids between these two membranes becomes an

important step in the cycle. In normal cells the cycle

enriches lipid intermediates with 1-stearoyl-2-arachi-

donoyl acyl chains, but it can also produce other

molecular species of PI. In order to maintain a particular

acyl chain composition, the lipid intermediates of the PI-

cycle must be isolated from other lipids of the same type

that are present in the cell.

The Phosphatidylinositol Cycle

The PI-cycle is a series of enzyme-catalyzed biochemical

reactions that form a cyclical process, such that all of the

intermediates of the cycle are regenerated each time the

cycle goes around once. There are many known bio-

chemical metabolic cycles and as cycles they all have the

property that each intermediate in the cycle has a catalytic

role in accelerating the cycle, while the intermediate itself

is never depleted or increased in amount. The particular

example of the PI-cycle is shown in Fig. 1.

The PI-cycle is unique among biochemical cycles in that

it is not located in a single organelle or membrane within

the cell. Phospholipase C (PLC) (1-phosphatidylinositol

4,5-bisphosphate phosphodiesterase (EC:3.1.4.11)) and

phosphatidylinositol-4-phosphate 5-kinase (PI4P5K)

(EC:2.7.1.68) that are involved in the PI-cycle are located

in the plasma membrane, while the enzymes CDP-DAG

synthase (CDS) [Phosphatidate cytidylyltransferase

(EC:2.7.7.41)] and PI synthase (PIS) [CDP-diacylglycerol-

inositol 3-phosphatidyltransferase (EC:2.7.8.11)] are in the

endoplasmic reticulum. This means that lipids have to be

transferred between the endoplasmic reticulum and the

plasma membrane in order to complete the cycle. Portions

of the endoplasmic reticulum are juxtaposed closely to the

plasma membrane (Fig. 2). The routes of lipid transfer will

be discussed below.

Each cycle of the PI-cycle converts 3 ATP ?

CTP ? inositol to 3 ADP ? CMP ? pyrophos-

phate ? inositol triphosphate. Thus the PI-cycle consumes

a fair amount of energy and is required to ‘‘turn’’ in the

clockwise direction, according to the way it is drawn in

Fig. 1. Furthermore, one of the products of the PI-cycle,

pyrophosphate, would be hydrolyzed by endogenous

pyrophosphatases to inorganic phosphate, further making

the cycle uni-directional.

The cycle also produces inositol triphosphate that is an

important ligand in opening calcium channels in the

endoplasmic reticulum. Hence, indirectly the PI-cycle

contributes, in part, to the regulation of intracellular cal-

cium levels. In addition to inositol triphosphate increasing

cellular calcium levels by opening calcium channels in the

endoplasmic reticulum, the loss of Ca2? from the endo-

plasmic reticulum activates a Ca2?-sensor protein, Stim1

Fig. 1 The phosphatidylinositol cycle. Enzymes involved in the

catalysis of each step in the cycle are written in a blue oval above the

arrow for the reaction, using abbreviations. Each lipid intermediate in

the cycle is written in red (Color figure online)
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that in turn activates a store Orai1 Ca2? channel in the

plasma membrane, resulting in a further increase in the

intracellular calcium through influx into the cell (Putney

and Tomita 2012). PLC, an enzyme of the PI-cycle, can

also activate certain transient receptor potential cation

(TrpC) channels in the plasma membrane, likely as a result

of changes in the PI-cycle intermediates PIP2 and DAG

that are the substrate and product, respectively, of this

enzyme. With some TrpC channels, DAG can act indirectly

by activating PKC that in turn inhibits TrpC channels

(Putney and Tomita 2012).

Lipids that are Derived from or form
Intermediates of the PI-Cycle

Although there is no net synthesis or consumption of any of

the lipid intermediates in the cycle, the lipid intermediates

do have connections with other metabolic pathways that

can consume or synthesize intermediates of the cycle

(Fig. 3). For example, there are many sources of DAG

including the cleavage of phospholipids by different iso-

forms of phospholipase C (PLC), the hydrolysis of PA by

PA phosphohydrolases and lipid phosphate phosphatases,

as a product in the synthesis of sphingomyelin from cer-

amide by sphingomyelin synthase and by the hydrolysis of

triglycerides with lipases (Carrasco and Merida 2007). In

addition, PA, which is an another intermediate in the PI-

cycle, is the precursor for the formation of most phos-

pholipids, including those not made through the PI-cycle.

PA can also be hydrolyzed back to DAG, which is not the

reverse of the step in the PI-cycle, since the hydrolysis of

PA produces inorganic phosphate together with DAG and

does not regenerate ATP. The lipid intermediate in the PI-

cycle, CDP-DAG, is a precursor not only for the formation

of PI but also for the formation of phosphatidylglycerol. In

yeast CDP-DAG is also converted to phosphatidylserine.

Many phosphorylated species of PI exist in the cell as lipid

signaling agents. Only two of them, PI4P and PIP2, are

intermediates in the PI-cycle. There can be interconversion

among PI and its phosphorylated forms through the action

Fig. 2 Close apposition between the endoplasmic reticulum and

plasma membrane. a Schematic model showing the observed

membrane contact sites between the endoplasmic reticulum and

plasma membrane, as well as other organelles. b An electron

microscope tomography of a yeast cell illustrating the close contact

between the peripheral endoplasmic reticulum (shown in blue, labeled

ER) and the plasma membrane (the dark edge, labeled as PM). Taken

from English and Voeltz (2013) (Color figure online)

Fig. 3 Some of the metabolic processes outside the PI-cycle in which

lipid intermediates of the cycle participate. Lipids that are interme-

diates in the PI-cycle are in yellow ovals, lipids made from

intermediates in the PI-cycle or lipids forming these intermediates

are shown in pink rectangles. TAG triacylglycerol, SM sphin-

gomyelin. CDP-DAG is synthesized by both CDS1 and CDS2. We

suggest that the CDP-DAG formed by CDS1 results in the formation

of phosphatidylglycerol, while that formed by CDS2 leads to the

synthesis of PI. CDS does not catalyze the formation of these lipids,

but is shown in brackets to distinguish which CDS isoform catalyzes

the previous step (Color figure online)
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of specific lipid kinases and phosphatases. Thus, in addition

to the energy required to drive the whole PI-cycle, there

can also be combinations of kinases and phosphatases that

can catalyze the interconversion of PI or phosphorylated

forms of PI with other more highly phosphorylated forms

of PI. There is the possibility of futile cycling between any

pair of phosphorylating and dephosphorylating reactions

that will utilize additional ATP.

An important connection with the PI-cycle for cell pro-

liferation and cancer is the phosphorylation of PIP2 to PIP3
by the enzyme phosphatidylinositol 3-kinase (PI3K) (Phos-

phatidylinositol-4,5-bisphosphate 3-kinase, EC:2.7.11.1)

and the hydrolysis of PIP3 to PIP2 by the enzyme Phos-

phatase and tensin homolog deleted on chromosome 10

(PTEN) (Phosphatidylinositol-4,5-bisphosphate 3-kinase,

EC 3.1.3.16, EC:3.1.3.48, EC:3.1.3.67). The interconversion

among PI and phosphorylated forms of PI both within the PI-

cycle and with reactions connected to the cycle is an

important and complex aspect of lipid signaling and will be

discussed in the next section in relation to the PI-cycle.

Phosphorylation of PI

The entire group of phosphorylated PI, having varying

numbers and positions of phosphorylation on the inositol

ring are referred to as PIPn. The concentration of PIPn
species outside the PI-cycle is very low and does not

remove a large fraction of lipid from the cycle (Table 1).

Many species of PIPn play important roles in lipid signal-

ing. Many forms of PIPn bind to specific sites on proteins

(Hammond and Balla 2015). The parent molecule, PI,

represents 10–20 mol% of the total cellular phospholipid.

It is synthesized in the endoplasmic reticulum via the CDS/

PIS pathway, but its distribution among cellular mem-

branes is not yet well established. In the PI-cycle, PI is first

converted to PI4P. At steady state in a typical mammalian

cell, PI4P constitutes only 2–5 % of the PI. PI4P is then

converted in the PI-cycle to PI(4,5)P2. PI(4,5)P2 is known

to be present almost exclusively in the plasma membrane.

However, the enzyme PI4K that catalyzes the conversion

of PI to PI4P is located mainly in the Golgi and endosomal

compartments (Balla and Balla 2006). There are two

classes of PI4K, Type II and Type III, with each of these

having two different isofomrs, a and b (Delage et al. 2013).

Types II and III PI4K differ from one another in their size,

Km values, and sensitivity to inhibitors. The major fraction

of the product of this reaction, PI4P, has recently been

found in the plasma membrane (Hammond et al.

2009, 2014; Sarkes and Rameh 2010). An explanation for

different subcellular location of PI4K and the products of

its catalysis came when it was found that different isoforms

of PI4K are responsible for making PI4P in the two orga-

nelles. PI4KA is present in the plasma membrane where it

generates PI4P, while PI4KB is present in the Golgi (Godi

et al. 1999). PI4P is not detected in the endoplasmic

reticulum but the enzyme PI4KA is present in that orga-

nelle. It is possible that PI4P is located in the endoplasmic

reticulum exit sites (Blumental-Perry et al. 2006). The

other PIPn in the PI-cycle is PI(4,5)P2. It represents 2–5 %

of the total PI. The level of PI(4,5)P2 is maintained in spite

of changes in the concentration of its precursor, PI4P

(Bojjireddy et al. 2014; Hammond et al. 2012). This may

be a result of increased movement of PI from the endo-

plasmic reticulum to the plasma membrane as a result of

lipid exchange when the PI-cycle is activated (see discus-

sion of lipid transfer, below). In addition to being hydro-

lyzed by PLC to form the secondary messengers DAG and

inositol triphosphate, PI(4,5)P2 also has other important

roles in signal transduction as well as in the regulation of

enzymatic activities, membrane transport, the actin

cytoskeleton, and nuclear signaling (Delage et al. 2013).

PI(4,5)P2 affects the actin cytoskeleton by binding to

specific actin-binding proteins (Moseley and Goode 2006;

Saarikangas et al. 2010) as well as affecting membrane

properties including membrane bending, fusion, fission,

and affecting membrane trafficking and signaling (Ische-

beck et al. 2010; Vicinanza et al. 2008). PI(4,5)P2 regulates

a number of ion channels and transporters which are

essential for many signal transduction pathways (Rohacs

2009; Suh and Hille 2008; Suh et al. 2010; Yaradanakul

et al. 2007).

There are also several other PIPn that are present in very

low amounts, generally only a few percent of the concen-

tration of PI4P. Many of these PIPn have roles in signal

transduction (Balla 2013). We will not review all of the

Table 1 Cell content of PI and

PIPn
Lipid % Relative to PI Major cell location PI-cycle intermediate

PI 100a Not known Yes

PI4P 2–5 % Plasma membrane and Golgi apparatus Yes

PI(4,5)P2 2–5 % Plasma membrane Yes

PI(3,4,5)P3 0.0002–0.0025 % Plasma membrane No

a By definition it is 100 %. Relative to other phospholipids, PI is 10–20 % of cell lipids
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species of PIPn, but will consider one of them that is in

higher concentration. This lipid is PI(3,4,5)P3, whose

concentration in the cell is 1–5 % that of PI(4,5)P2.

Because of their important roles in cell signaling, sev-

eral mechanisms exist for the modulation of the activities

of PI4K as well as PI4P5K. The activity of these enzymes

is modulated by small G-proteins in response to extracel-

lular signals (Balla and Balla 2006; Krauss and Haucke

2007; Santarius et al. 2006). There is also evidence for

multimolecular complexes channeling substrate into par-

ticular pathways for end product formation (Balla et al.

2009 125/id; Lee et al. 2004 126/id). In addition to the

kinases, lipid phosphatases exist that can reverse the

direction of the metabolic flow. Both the kinases and the

phosphatases also have their enzymatic activities regulated

by post-translational protein phosphorylation and dephos-

phorylation. In addition, PI4P5K is activated by PA

(Moritz et al. 1992; Jenkins and Frohman 2005). The acyl

chain composition of the PA has a large effect on the extent

of activation. There is a growing realization of the

importance of the whole lipid molecule, including the acyl

chains in the biological activity of certain lipids (Kimura

et al. 2016). The presence of a saturated acyl chain at the

sn-1 position of PA markedly lowers the extent of activa-

tion (Shulga et al. 2012). For example, dioleoyl phospha-

tidic acid is a good activator of PI4P5K, but 1-stearoyl-2-

oleoyl phosphatidic acid hardly activates at all (Shulga

et al. 2012), even though these two forms of PA differ by

only one double bond.

Both PI4P and PA are intermediates in the PI-cycle. The

major acyl chain composition of these lipids as interme-

diates in the PI-cycle in normal cells is 1-stearoyl-2-

arachidonoyl. This provides the possibility that there could

be positive feedback within the cycle, resulting in an

increased rate of interconversions within the cycle (Oude

Weernink et al. 2007). However, 1-stearoyl-2-arachidonoyl

phosphatidic acid is not among the best activators of

PI4P5K; diarachidonoyl phosphatidic acid is a much better

activator (Shulga et al. 2012). Another indication that there

is not a feedback regulation of the PI-cycle is that although

the PA formed by DGKf (Luo et al. 2004), DGKa (Jones

et al. 2000) as well as by phospholipase D (PLD) (Pettitt

et al. 2001) can all increase the activity of PI4P5K. The PA

formed within the PI-cycle by DGKe catalysis, i.e.,

1-stearoyl-2-arachidonoyl phosphatidic acid, does not

produce a product that can activate PI4P5K (Jones et al.

2000). There may however be a positive augmentation in

the rate of the PI-cycle by coupling with PLD. A product of

the PI-cycle, PI(4,5)P2, activates PLD (Hammond et al.

1997; Liscovitch et al. 1994) that generates PA. This PA

product of PLD can then activate PI4P5K resulting in the

feedback acceleration of the PI-cycle.

Increased PIP3 in Cancer Cells

It has recently been shown that transformed mammalian

cells contain little 1-stearoyl-2-arachidonoyl PI, but rather

have species of PI with shorter and less unsaturated acyl

chains compared with normal cells (Naguib et al. 2015).

These transformed cells still have a normal content of PI

but the specific species of PI are different. This demon-

strates that the synthesis of PI can be altered so that other

acyl chains besides 1-stearoyl-2-arachidonoyl can be

incorporated into this lipid. There is also recent evidence

that the positions of double bonds in acyl chains of the

same molecular mass (isobaric) differ in cancer cells (Ma

et al. 2016).

Cancer cells have more PIP3 than normal cells. This is

often a consequence of the mutation of PI3K, resulting in

increased activity, as well as the inactivation or gene

deletion of PTEN, the enzyme that catalyzes the hydrolysis

of PI(3,4,5)P3 to form PI(4,5)P2. In addition, there is

another mechanism, through the mutation of the tran-

scription factor p53, that can result in higher levels of

PI(3,4,5)P3. Mutation of p53, which occurs in many cancer

cells, results in an alteration of the acyl chain composition

of several phospholipids. P53 is a repressor of the

expression of stearoyl-CoA desaturase (Rueda-Rincon

et al. 2015). Many cancer cells have inactivating mutations

in p53 leading to an increased expression of stearoyl-CoA

desaturase and an increased amount of monounsaturated

phospholipid species (Igal 2011; Minville-Walz et al. 2010;

Naguib et al. 2015; Rueda-Rincon et al. 2015). The rate

determining step in the synthesis of PIP2 is the phospho-

rylation of PI4P to PI(4,5)P2 catalyzed by PI4P5K. There

are three isoforms of PI4P5K, a, b, and c. There is evi-

dence that these isoforms may have different biological

functions. PI4P5Kb is involved in regulating the pool of

PI(4,5)P2 that controls store-operated Ca2? channels, while

PI4P5Kc catalyzes the formation of inositol triphosphate

(Calloway et al. 2011; Vasudevan et al. 2009). For all three

isoforms of this enzyme, PI4P with no unsaturation is a

very poor substrate compared with PI4P containing one or

more double bonds (Shulga et al. 2012). Increased

expression of p53 causes a shift of phospholipid acyl

chains in the cell from those composed of two monoun-

saturated acyl chains to those with one or no unsaturation

in the two acyl chains (Rueda-Rincon et al. 2015). The

PI4P with fully saturated acyl chains will block the con-

version of PI4P to PI(4,5)P2 (Shulga et al. 2012). Thus,

mutation of p53 in cancer cells causes an increase of

stearoyl-CoA desaturase, in turn increasing the amount of

phospholipids with two monounsaturated acyl chains,

allowing more efficient conversion of PI4P to PIP2 and thus

higher substrate concentration for PI3K to catalyze the
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formation of PIP3. The resulting increase in PIP3 affects

oncogenesis through modulation of the activity of Akt. Akt

is a protein kinase that is recruited to the cell membrane by

interaction with PIP3, resulting in the activation of Akt by

phosphorylation. Increased activation of Akt mediates

downstream responses that are typical of cancer cells

including cell survival, growth, proliferation, and cell

migration (Fig. 4). The increased synthesis of PIP3 in

cancer cells is indirectly a result of an increased level of the

substrate PIP2 caused by changes in the acyl chain com-

position of PI4P (Rueda-Rincon et al. 2015). In support of

this relationship are the findings that inhibition of stearoyl-

CoA desaturase decreases the activity of Akt (Scaglia and

Igal 2008) and that the addition of monounsaturated oleic

acid to cells reverses the p53-induced repression of Akt

activation by phosphorylation (Rueda-Rincon et al. 2015).

Acyl Chain Composition of Other Lipid
Intermediates of the Phosphatidylinositol Cycle

The above discussion demonstrates the importance of the

acyl chain composition of PIPn in determining the rate of

formation of PIP3. The acyl chain composition of all of the

lipid intermediates of the PI-cycle in non-transformed

mammalian cells is predominantly 1-stearoyl-2-arachi-

donoyl. Some of the steps contributing to the enrichment of

these lipids with 1-stearoyl-2-arachidonoyl chains in nor-

mal mammalian cells have been identified. It is at least in

part, the result of the acyl chain dependence of substrate

specificity of two enzymes of the PI-cycle. One of these

enzymes is the epsilon isoform of DGK (DGKe). There are
10 isoforms of DGK, in addition to gene splicing variants

in mammals, each having its own function, subcellular

localization and organ distribution (Shulga et al. 2011).

Among all of these variants of DGK, only one form

exhibits specificity for DAG substrates having an arachi-

donoyl chain at the sn-2 position (Rodriguez de Turco et al.

2001; Milne et al. 2008; Tang et al. 1996) as well as a

stearoyl chain at the sn-1 position (Lung et al. 2009). Other

isoforms of DGK have similar activities against most DAG

species, independent of their acyl chains. Another enzyme

that exhibits specificity for a 1-stearoyl-2-arachidonoyl

lipid substrate is CDS2. CDS has only two isoforms in

mammals; CDS1 and CDS2. There is a marked contrast

between the acyl chain specificities of these two isoforms.

Only CDS2 is highly specific for 1-stearoyl-2-arachidonoyl

phosphatidic acid, while CDS1 shows almost no effect of

the acyl chain composition of the substrate on enzymatic

activity (D’Souza et al. 2014).

The PI-cycle intermediate, CDP-DAG is a precursor for

the synthesis of phosphatidylglycerol as well as PI. Unlike

PI, phosphatidylglycerol is not enriched in 1-stearoyl-2-

arachidonoyl, suggesting that CDS1 may be responsible for

the synthesis of that lipid and CDS2 would pass the CDP-

DAG product to PIS for the synthesis of PI. In the brain, an

organ having a relatively high level of expression of

DGKe, the arachidonoyl content in the sn-2 position of

CDP-DAG, is 44.6 % while that for PI in this organ is

62.6 % (Thompson and MacDonald 1976). This increase in

arachidonoyl content is not a result of the enzyme speci-

ficity in the last step of PI synthesis, catalyzed by PIS, since

that enzyme shows no acyl chain specificity (D’Souza and

Epand 2015). Remodeling of PI by the Lands cycle (see

below) could contribute to the additional acyl chain

enrichment. It is also possible that there is a direct transfer

of 1-stearoyl-2-arachidonoyl-CDP-DAG from CDS2 to

PIS, while other species of CDP-DAG are used for the

synthesis of phosphatidylglycerol (Weeks et al. 1997)

through the action of CDS1 (Fig. 3).

CDP-DAG is also a precursor for cardiolipin that is syn-

thesized and located in the mitochondria. It is not known if a

mitochondrial CDS1 or a mammalian homolog of the yeast

enzyme Tam41 (Tamura et al. 2013) or a combination of

these paths is involved in cardiolipin synthesis.

Although the major fraction of PI is the 1-stearoyl-2-

arachidonoyl species, there is a minor fraction of PI

(*25 %) that has other acyl chains. Transformed cells

contain little of 1-stearoyl-2-arachidonoyl PI (Naguib et al.

2015). Thus there must also be pathways to synthesize PI

with other acyl chain compositions. The simplest expla-

nation for the incorporation of other acyl chains into PI is

that other isoforms of DGK, besides DGKe and CDS1 in

addition to CDS2 contributes to the respective steps in the

PI-cycle. These other isoforms exhibit little or no acyl

chain specificity for their substrates. The molecular

mechanism controlling the relative contributions of these

other isoforms to the synthesis of PI is yet to be

determined.

Fig. 4 Mechanism connecting reduced p53 activity to increased cell

proliferation as a consequence of changes in the acyl chain

composition of lipid intermediates of the PI-cycle. Progression of

steps indicated by horizontal red arrows. Vertical blue arrows

indicate that as a result of a loss of p53 activity, there is a resultant

increase in a series of enzyme activities or lipid products (Color

figure online)
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Compartmentalization

There is a requirement for substrate channeling or com-

partmentalization in order to explain the observation that

although there are many molecular species of PA in the cell,

predominantly one of these species, the 1-stearoyl-2-

arachidonoyl-PA, is normally converted into PI. Most cells

express both CDS1 and CDS2. Why does so little of other

molecular species of PA normally end up as PI with different

acyl chains? Similarly, if CDS2 contributed to the synthesis

of phosphatidylglycerol, why does this phospholipid not

contain more of the 1-stearoyl-2-arachidonoyl-PA species?

Neither total cellular DAG nor PA is highly enriched

with arachidonoyl-containing forms (Milne et al. 2008).

This is because these lipids are not confined to the PI-cycle,

but are involved in other pathways of lipid metabolism.

Another question is how is the substrate selectivity of

DGKe for acyl chains is maintained in the next step of the

PI-cycle, catalyzed by CDS? If the 1-stearoyl-2-arachi-

donoyl phosphatidic acid synthesized by DGKe mixed with

the large excess of PA from other sources in the cell, the

enrichment with particular acyl chains through catalysis by

DGKe would be lost. Hence there must be some segrega-

tion of the lipid intermediates of the PI-cycle from other

lipids in the cell, either by physical isolation in different

cellular structures or in membrane domains or by the for-

mation of multiprotein complexes containing different

enzymes of the PI-cycle. There has to be some mechanism

to have the product of one step in the PI-cycle passed on

directly to the enzyme catalyzing the next step, without

allowing mixing with other species of the PI-cycle. There

is also the feature that this is a cycle, so that each time the

PI-cycle goes around, the lipid intermediates can become

progressively enriched with specific acyl chains as a result

of the substrate specificities of some of the enzymes in the

cycle, provided that the cycle is largely isolated from other

lipids of the cell. Additional factors contributing to the

extent of acyl chain enrichment in PI are the levels of

expression of DGKe and CDS2. DGKe is found mostly in

the brain (Kohyama-Koganeya et al. 1997) but CDS2 is

very widely expressed. In addition, there is remodeling of

the PI that is formed (see below). In mammalian organs

other than brain, in which the expression levels of DGKe
are low, PI is still found to be highly enriched with the

1-stearoyl-2-arachidonoyl species. A contributing factor to

determine which acyl chains are incorporated into PI may

be compartmentalization. This is supported by the findings

that using special resolution imaging mass spectrometry,

both breast cancer tissue (Kawashima et al. 2013) as well

as tissue from prostate cancer patients (Goto et al. 2014)

have PI species with altered acyl chain compositions that

are spatially clustered.

CDP-DAG is synthesized within the PI-cycle. In normal

mammalian cells this lipid is already significantly enriched

in the 1-stearoyl-2-arachidonoyl species (Thompson and

MacDonald 1976), even though remodeling does not occur

until PI is synthesized. This suggests that most of the CDP-

DAG is synthesized via the reaction catalyzed by CDS2. If

any CDP-DAG is made using CDS1, this CDP-DAG,

without acyl chain enrichment, must be rapidly converted

to other phospholipids so that it does not form a major

fraction of the CDP-DAG intermediate. The species of

CDP-DAG enriched in 1-stearoyl-2-arachidonoyl chains

would be converted to PI by PIS, maintaining the high

enrichment of 1-stearoyl-2-arachidonoyl acyl chains.

Non-Vesicular Lipid Transfer

As discussed above, the PI-cycle can only be completed if

there is transfer of lipid intermediates of the cycle between

the endoplasmic reticulum and the plasma membrane. The

protein Nir2 has been shown to transfer PI between

membranes in vitro (Garner et al. 2012). In addition to

being required to complete the PI-cycle, it is possible that

some of the lipid transfer processes preferentially transfer

lipids with specific acyl chain compositions. The acyl chain

specificity of this exchange has not yet been evaluated.

It has recently been found that Nir2 facilitates the

exchange of PI in the endoplasmic reticulum for PA in the

plasma membrane (Chang and Liou 2015; Kim et al.

2013, 2015). This exchange can account for the rapid

replenishment of PIP2 subsequent to its hydrolysis on the

stimulation of PLC (Chang and Liou 2015; Kim et al.

2015). Another reason that the concentration of PIP2
remains constant is because it is part of a metabolic cycle,

the PI-cycle. Intermediates of a metabolic cycle are

maintained at a constant level and are neither increased nor

decreased in amount. This is particularly true for PIP2 that

is found exclusively in the plasma membrane where it is

likely to be a part of the PI-cycle. However, PI4P is found

in many subcellular compartments, not all of which are

directly associated with the PI-cycle. This could explain

the observation that the concentration of PI4P varies to a

greater extent than that of PIP2. For lipids that are part of

the PI-cycle, each intermediate is buffered by other inter-

mediates of the cycle which can all be interconverted

through the cycle. When the cycle is stimulated, as for

example by the activation of PLC, there can be a brief rise

in the concentration of certain intermediates of the PI-cy-

cle, but levels promptly return to the steady-state levels.

However, when the cycle is broken, as for example by

eliminating exchange of PA and PI between the endo-

plasmic reticulum and the plasma membrane, the
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concentration of intermediates of the cycle markedly fall

for a more prolonged period of time.

Binding of Nir2 to the endoplasmic reticulum is also

associated with another protein of the endoplasmic reticu-

lum, VAP-B (Kim et al. 2015). VAP-B expression

increased the association of Nir2 to the endoplasmic

reticulum. Furthermore after stimulation, Nir2 and VAP-B

showed colocalization in contact sites between the plasma

membrane and endoplasmic reticulum. In addition, Nir2,

that is difficult to detect by fluorescence microscopy in

resting cells, rapidly forms puncta that localize between the

endoplasmic reticulum and the plasma membrane, colo-

calizing with CDS2 after stimulation (Kim et al. 2015).

These results provide evidence that both Nir2 and CDS2

are closely associated with the PI-cycle. There is also

another isoform, Nir3, which is a homolog of Nir2. These

two proteins appear to be related, but somewhat play dif-

ferent roles. While Nir2 functions to transfer PI so as to

maintain PIP2 signaling capacity in the plasma membrane,

Nir3 maintains the basal level of PIP2 in the plasma

membrane in the resting state (Chang and Liou 2015). Both

Nir2 and Nir3 are sensors for PA formed from the

hydrolysis of PIP2 and the phosphorylation of the resulting

DAG by DGK. Of the two Nir proteins, Nir3 has a stronger

binding affinity for PA and may serve to maintain the basal

level of PIP2. By contrast, Nir2 has a weaker translocation

to the endoplasmic reticulum–plasma membrane junction

following receptor stimulation and appears to have a higher

capacity to transfer PI, while at the same time avoiding the

formation of excess PIP2 at the plasma membrane. The

importance of PI transfer from the endoplasmic reticulum

membrane to the plasma membrane to enable continued

PIP2 signaling is shown by the observation that depletion of

PI at the plasma membrane results in defective PIP2
replenishment at the plasma membrane. However, initial

signaling from PIP2 at the plasma membrane can occur

even after acute depletion of PI from the endoplasmic

reticulum. It is suggested that PIP2 can be regenerated from

a small pool of precursors in the plasma membrane but this

regeneration of PIP2 cannot be sustained without the

presence of the Nir proteins. These studies also suggest that

both Nir2 and Nir3 function by binding PA and translo-

cating to the endoplasmic reticulum–plasma membrane

contact sites, where they can facilitate the exchange of PA

and PI. Thus receptor activation of PLC to hydrolyze PIP2
will produce PA that can then activate the movement of the

Nir proteins to be non-vesicular lipid exchange proteins. It

is possible that one of the Nir proteins functions to transfer

lipids with 1-stearoyl-2-arachidonoyl chains, while the

other is not specific for the acyl chain, as we have seen with

other steps of the PI-cycle catalyzed by more than one

isoform of the enzyme involved. Since Nir2 maintains the

basal level of PIP2 in the plasma membrane, we suggest

that it is the isoform specific for binding 1-stearoyl-2-

arachidonoyl-PA. Its lower binding affinity may be a

consequence of non-optimal species of PA being used for

the binding studies.

It has been shown that the molecular species of PI and

PA are similar in the endoplasmic reticulum and in the

plasma membrane. However, the PI:PA ratio is [1 for

34:2, 36:1, 38:3, and 38:4, while for most other species it is

\1 (Shulga et al. 2010). This demonstrates a selective

enrichment of PI with 1-stearoyl-2-arachidonoyl (38:4) and

related acyl chains from its precursor PA. There are also

short chain PA species 30:1 and 30:0 making up 21 % of

the PA in the endoplasmic reticulum, but apparently they

do not get converted to PI since no PI with this acyl chain

composition is found (Shulga et al. 2010). Furthermore,

these species of PA are twice as abundant in the endo-

plasmic reticulum as in the plasma membrane, suggesting

that not only they are not metabolized to PI, but they also

are not as likely to be exchanged between the endoplasmic

reticulum and the plasma membrane. It is possible that they

are required to stabilize regions of high curvature in the

endoplasmic reticulum. There are also species of PI for

which there is no corresponding PA (Shulga et al. 2010).

These PI species are found equally prevalent in the endo-

plasmic reticulum and in the plasma membrane. The most

abundant of these species of PI is 38:5 PI that comprises

about 17 % of the PI of both the endoplasmic reticulum

and the plasma membrane. 38:5 PI is quite similar to the

most abundant 1-stearoyl-2-arachidonoyl (38:4) species,

but apparently is not acted on by PLC. These results also

suggest that these species of PI for which there is no cor-

responding PA are readily exchanged between the two

membranes. The endoplasmic reticulum is the site of

synthesis of PI, so that lipid would be present in the

endoplasmic reticulum for exchange with PA in the plasma

membrane. In order to form PA in the plasma membrane as

part of the PI-cycle, to complete the lipid exchange, would

require the presence of DGK in the plasma membrane.

There are several isoforms of DGK that partition to the

plasma membrane, in some cases after stimulation (Shulga

et al. 2011). However, for the acyl chain-specific formation

of 1-stearoyl-2-arachidonoyl phosphatidic acid, the DGK

isoform has to be DGKe. Most of the DGKe is found in the

endoplasmic reticulum (Kobayashi et al. 2007; Matsui

et al. 2014), although there is evidence for some of this

isoform to be in the plasma membrane (Decaffmeyer et al.

2008). These findings would suggest that DGKe in the

endoplasmic reticulum might function as a reservoir form

to be transferred to the plasma membrane upon stimulation

of PLC. An observation linking DGKe with the fraction of

PA that participates in the in the PI-cycle is the finding that

the content of PA in the plasma membrane is decreased by

3-fold in mouse embryo fibroblasts knocked out for DGKe
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(Shulga et al. 2010). This could be explained by the

removal of DGKe disrupting the PI-cycle and the genera-

tion of PA in the plasma membrane. This change in lipid

composition in the plasma membrane occurs despite the

fact that the total cellular PA is unaffected in these cells

(Milne et al. 2008).

Alternatively, in addition to the PA-PI transfer process

there may also be some DAG that is transferred from the

plasma membrane to the endoplasmic reticulum where it is

phosphorylated by DGKe. In addition to the lipid transfer

from the plasma membrane to the endoplasmic reticulum,

there also has to be lipid transfer in the opposite direction

to complete the PI-cycle. With the Nir proteins the reverse

lipid movements are coupled by the lipid exchange process.

PI synthesized in the endoplasmic reticulum is exchanged

for PA in the plasma membrane. There may also be other

ways to deliver PI to the plasma membrane. There are PI-

specific lipid transfer proteins that could perform this

function (Cockcroft and Garner 2011; Routt and Bankaitis

2004). It has also been shown that in cells that overexpress

PIS, highly mobile membrane compartments form at the

endoplasmic reticulum that can deliver PI to various

membranes by vesicular transport (Kim et al. 2011). There

are also contact sites between the endoplasmic reticulum

and plasma membrane through which lipids can be trans-

ferred (Henne et al. 2015). At these sites, the movement of

PI from the endoplasmic reticulum to the plasma mem-

brane can be balanced by movement of DAG and/or PA in

the opposite direction.

It has been shown that the lipid transfer protein Nir2

enhances the epithelial–mesenchymal transition and facil-

itates breast cancer metastasis mediated through the PI3K/

Akt pathway (Keinan et al. 2014). We discussed above

how the acyl chain composition of PI could affect cancer

progression by affecting the phosphorylation of Akt. Nir2

may have a role in this process by completing the PI-cycle

and allowing more rapid formation of PIP2, the substrate of

PI3K to form PIP3 and activate Akt (final steps in Fig. 4).

Lipid Remodeling

All phospholipids undergo acyl chain remodeling through

the actions of acyl transferases and phospholipases. This

process is collectively known as the Land’s cycle (Lands

1958, 1960; Lands and Merkl 1963; Lands et al. 1982).

Remodeling allows certain lipids to attain a specific acyl

chain composition, which is important for signaling func-

tions. Several classes of enzymes that are needed for

remodeling have been characterized. Lysophospholipid

acyltransferases are enzymes that transfer an acyl group

from acyl-CoA to a lysophospholipid (Matsuda et al.

2008). Other enzymes required for remodeling include the

phospholipase A1 and A2 families, which cleave acyl

chains off the phospholipid to produce the lysophospho-

lipid that can accept an acyl chain from an acyl-CoA (Aoki

et al. 2002; Puttmann et al. 1993). The Land’s cycle could

result in acyl chain enrichment through the selective

incorporation and/or removal of acyl chains.

There is a specific mechanism for enriching PI with

arachidonoyl chains. Lysophosphatidylinositol acyltrans-

ferase 1 (LPIAT1), also known as membrane bound O-

acyltransferase containing domain 7 (also referred to as

MBOAT7), catalyzes the transfer of an acyl group from

acyl-CoA to lysoPI (Gijon et al. 2008). LPIAT1 has a high

specificity for arachidonoyl-CoA (Gijon et al. 2008). Thus,

LPIAT1’s arachidonoyl specificity contributes to the

enrichment of PI with an arachidonoyl chain (Fig. 5).

Knocking out LPIAT1in mice with the same genetic

background (C57/B16) was found independently by two

groups to significantly decrease arachidonoyl-containing PI,

and PI(4,5)P2 (Anderson et al. 2013; Lee et al. 2012).

LPIAT1 is critical for neural development of mice;

LPIAT-/- mice were viable up to 30 days after birth, but

exhibited a smaller, atrophied cerebral cortex, and hip-

pocampus. The laminal structure of the neocortex was also

disordered due to delayed neural migration, which indicated

a role for LPIAT1 in cortical lamination (Lee et al. 2012).

Other lipid products can form arachidonic acid that is

released from the sn-2 position of lipid intermediates in the

PI-cycle by the action of phospholipase A2. The arachi-

donic acid released can be further metabolized to form

signaling eicosanoids. Another lipid signaling product

could be formed by the hydrolysis of the stearoyl group of

1-stearoyl-2-arachidonoyl glycerol by phospholipase A1.

Fig. 5 The Land’s cycle of acyl chain remodeling of PI. The acyl

chains of PI can be remodeled through phospholipases (PLA2) and

acyltransferases (LPIAT1). PLA2 exhibits little acyl chain specificity,

while LPIAT1 is highly specific for transferring an acyl chain from

arachidonoyl-CoA to lysophosphatidylinositol (LPI). The combina-

tion of these two steps results in the enrichment of PI with

arachidonoyl chains at the sn-2 position
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The resulting product of this reaction is 2-arachidonoyl

glycerol that is an endogenous endocannabinoid ligand.

The resulting 2-arachidonoyl glycerol can no longer effi-

ciently enter the PI-cycle as a lysophosphatidic acid

(Gantayet et al. 2011). In addition to remodeling with an

arachidonoyl group at the sn-2 position, the sn-1 position is

also remodeled with a stearoyl group, catalyzed by the

enzyme that was originally named lysocardiolipin acyl

transferase (Imae et al. 2012).

Roles of the Acyl Chains of PI-Cycle Intermediates
and Lipid Signaling

Thepredominantmolecular species of PI(4,5)P2 has 1-stearoyl-

2-arachidonoyl acyl chains in normal mammalian cells and

tissues. PI(4,5)P2 has many functions, making it complex to

assess the role of acyl chains in the signaling by PI(4,5)P2. One

role ofPI(4,5)P2 is as aprecursor ofPI(3,4,5)P3 that is important

for the activation of Akt. The rate of formation of PI(4,5)P2 and

PI(3,4,5)P3 is acyl chain dependent as described above.

PI(4,5)P2 plays a major role in endocytosis in the synapse

(Haucke 2005). To end this process, synaptojanin-1 dephos-

phorylates PI(4,5)P2 (Wenk and De Camilli 2004). In vitro

studies have shown that natural PI(4,5)P2 (largely the 1-stear-

oyl-2-arachidonoyl form) is hydrolyzed more rapidly than the

dipalmitoyl form of PI(4,5)P2 (Schmid et al. 2004), demon-

strating a role for the acyl chains in modulating this process.

In addition to PI(4,5)P2, the PI-cycle also includes other

lipid signaling intermediates such as DAG and PA. There are

twomajor signaling routes for the formation of DAG and PA

that are activated by the stimulation of cells with certain

agonists. One is the hydrolysis of PI by PLC to produce

DAG, as part of the PI-cycle (Fig. 1). The DAG formed by

PLC hydrolysis uses predominantly inositol phospholipids

as substrate and produces DAG enriched with 18:0/20:4 and

18:0/20:3 species (Pettitt and Wakelam 1993). This DAG

can be converted to PA by most mammalian DGK isoforms,

including DGKe, the isoform that has specificity for

1-stearoyl-2-arachidonoyl glycerol (D’Souza and Epand

2014). The other pathway for the formation of PA is by PLD

hydrolysis of phospholipids, mostly phosphatidylcholine.

There may be a crosstalk between the two pathways since

PI(4,5)P2 from the PI-cycle activates PLD and PA from the

PLD pathway activates PI4P5K, an enzyme of the PI-cycle,

to form more PIP2. The PA can also be hydrolyzed by

phosphatidate phosphohydrolase to produce DAG. The

DAG species produced from PC through this pathway has

distinct acyl chain compositions compared with the DAG

produced from PI(4,5)P2 (Madani et al. 2001; Pettitt et al.

1997). It has been shown that in endothelial cells, activation

of PLD by lysophosphatidic acid produces DAG that does

not activate protein kinase C (PKC) (Pettitt et al. 1997).

In vitro studies of PKC activation with DAG confirms

that the nature of the acyl chains on DAG determines its

potency in stimulating PKC (Marignani et al. 1996; Madani

et al. 2001). Sustained PKC activation has been shown to

be oncogenic and contributes to malignant phenotypes seen

in cancers (Koivunen et al. 2006; Rajotte et al. 1992).

PKC-bII is maximally activated by 1-stearoyl-2-arachi-

donoyl glycerol (Deacon et al. 2002) and expression of this

PKC isoform is required for the proliferation of human

leukemic cells (Thompson and Fields 1996). PKC-bII is

targeted to the nucleus during the G2/M phase of the cell

cycle (Deacon et al. 2002). The translocation of PKC-bII to
the nucleus during the G2/M is triggered in part by the

buildup of 1-stearoyl-2-arachidonoyl glycerol in the

nucleus (Deacon et al. 2002). This DAG species arises

from the hydrolysis of PI(4,5)P2 in the nucleus (Cocco

et al. 1987; Irvine and Divecha 1992) as part of the PI-

cycle that is also known to be present in the nucleus,

independently of the cycle occurring in the endoplasmic

reticulum/plasma membrane (Cocco et al. 1989).

Other evidence of acyl chain specificity of DAG comes

from recent studies of the activation of caged DAGs with

different acyl chains (Nadler et al. 2013). It was demon-

strated that the photoactivation to liberate 1-stearoyl-2-

arachidonoyl glycerol, and not other DAGs, resulted in a

massive increase of intracellular Ca2? levels. This can be

understood in terms of the intermediates of the PI-cycle

having a catalytic role as well as the fact that a product of

the cycle is inositol triphosphate that is a ligand capable of

opening Ca2? channels in the endoplasmic reticulum.

Thus, these experiments tie in specific acyl chains of DAG

with signaling resulting from the PI-cycle.

Another signaling lipid intermediate of the PI-cycle is

PA. PA plays an important role in activating PI4P5K with

some dependence on its acyl chain composition (Shulga

et al. 2012). PA also activates a protein kinase in platelets

(Khan et al. 1994); PA has modulatory effects on membrane

fusion (Rogasevskaia and Coorssen 2015); PA regulates the

formation of actin stress fibers (Cross et al. 1996). Less is

known about the influence of the acyl chains of PA on its

various functions. Recently it has been shown that PA binds

to the transcriptional repressor Opi1 in a manner that dis-

tinguishes between PA with a C16 versus a C18 acyl chain

(Hofbauer et al. 2014). In addition, the activation of DNA

synthesis by lysophosphatidic acid is dependent on the acyl

chain composition of this lipid (van Corven et al. 1992).

Conclusions

The PI-cycle has particular properties as a consequence of

the fact that it is a cycle so that all of the lipid intermediates

of the cycle are regenerated and the intermediates can act
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as catalysts. The PI-cycle consumes a large amount of

energy and can thus proceed only in one direction. The PI-

cycle is the major pathway for the synthesis of PI from

which the signaling PIPn lipids are derived. In addition,

some lipid intermediates of the cycle are also important in

signaling, including DAG and PA. The PI-cycle requires

transfer of lipid to and from the endoplasmic reticulum and

the plasma membrane. This is facilitated by the Nir pro-

teins that exchange PI formed in the endoplasmic reticulum

with PA formed in the plasma membrane. The substrate

specificity of two enzymes in the PI-cycle contributes to

the enrichment of PI with 1-stearoyl-2-arachidonoyl acyl

chains in normal mammalian cells. Some of the interme-

diates in the PI-cycle are common to other lipid metabolic

pathways. In order for the acyl chain composition to be

maintained by the intermediates of the cycle, they must be

isolated from the same lipids having different acyl chains.

This suggests that the PI-cycle is largely isolated from the

lipid metabolic processes occurring outside the cycle.

However, at least 15 % of PI in these cells has other acyl

chains and with cancer cells, as a consequence of alter-

ations in lipid metabolism, PI is even less enriched with the

1-stearoyl-2-arachidonoyl acyl species. The arachidonoyl

content of PI in transformed cells is very low, yet the same

amount of PI is still synthesized. This suggests that there

can be alternative isoforms of DGK and CDS that allow the

completion of the PI-cycle.
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