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Abstract Accurately predicting protein–protein interac-

tion sites (PPIs) is currently a hot topic because it has been

demonstrated to be very useful for understanding disease

mechanisms and designing drugs. Machine-learning-based

computational approaches have been broadly utilized and

demonstrated to be useful for PPI prediction. However,

directly applying traditional machine learning algorithms,

which often assume that samples in different classes are

balanced, often leads to poor performance because of the

severe class imbalance that exists in the PPI prediction

problem. In this study, we propose a novel method for

improving PPI prediction performance by relieving the

severity of class imbalance using a data-cleaning procedure

and reducing predicted false positives with a post-filtering

procedure: First, a machine-learning-based data-cleaning

procedure is applied to remove those marginal targets,

which may potentially have a negative effect on training a

model with a clear classification boundary, from the

majority samples to relieve the severity of class imbalance

in the original training dataset; then, a prediction model is

trained on the cleaned dataset; finally, an effective post-

filtering procedure is further used to reduce potential false

positive predictions. Stringent cross-validation and

independent validation tests on benchmark datasets

demonstrated the efficacy of the proposed method, which

exhibits highly competitive performance compared with

existing state-of-the-art sequence-based PPIs predictors

and should supplement existing PPI prediction methods.

Keywords Protein–protein interaction sites � Imbalanced

learning � Data cleaning � Random forests � Post-filtering

Introduction

Protein–protein interactions are responsible for carrying

out biochemical activities in living systems (Ahmed et al.

2015; Marceau et al. 2013). Previous studies have validated

that protein–protein interactions play critical roles in the

life cycles of living cells, such as genetic material dupli-

cation, regulation of gene expression, cell signal trans-

duction, metabolism, organism growth and reproduction,

cell apoptosis, and cell necrosis (Fry 2015; Sharon and Sinz

2015). Therefore, the study of how protein–protein inter-

actions form intermolecular regulatory networks, including

genetic regulatory pathways, metabolism, and signal

transduction pathway, is of great biological significance

(Betel et al. 2007; Hall et al. 2007; Hu et al. 2011; Jia et al.

2015a; Skrabanek et al. 2008). This research will not only

help in further understanding various biological processes

and mechanisms from a systematic point of view (Gromiha

et al. 2009; Yugandhar and Gromiha 2014a, b) but can also

help identify new drug targets and pave the way for the

development of new drugs (Ako-Adjei et al. 2015; Bur-

goyne and Jackson 2006; Russell and Aloy 2008).

In preliminary studies, the determination of whether two

proteins would interact with each other and which residues

were interactive, i.e., protein–protein interaction sites
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(PPIs), was mostly confined to biological experimental

methods (Drewes and Bouwmeester 2003). However, these

wet lab methods are difficult to apply to all living organ-

isms because they are both time- and cost-consuming

(Edwards et al. 2002; Friedrich et al. 2006). In addition,

biological wet lab methods for identifying PPIs tend to

involve risks of high false positive and false negative

results (Ito et al. 2001; Von Mering et al. 2002). In recent

years, researchers have investigated the possibility of uti-

lizing computational approaches to rapidly and accurately

predict PPIs on large-scale protein datasets (Ito et al. 2000).

Over the past decades, a number of machine learning

algorithms, such as neural networks (NNs) (Fariselli et al.

2002), support vector machines (SVMs) (Bradford and

Westhead 2005; Wang et al. 2006; Yan et al. 2004), and

random forests (RFs) (Jia et al. 2015c; Šikic et al. 2009),

have been successfully applied to PPI prediction, and many

PPI predictors have emerged (Dhole et al. 2014; Murakami

and Mizuguchi 2010a; Ofran and Rost 2007; Porollo and

Meller 2007; Singh et al. 2014).

Existing machine-learning-based PPI predictors take

protein sequential features, structural features, or both as the

inputs of prediction models. Because protein 3D structures

can provide intuitive and effective clues, they are generally

preferred for performing PPI prediction (Agrawal et al. 2014;

Cukuroglu et al. 2014; Sudha et al. 2014). For example, Jones

and Thornton (1997a, b) carefully analyzed a series of resi-

due patches on the surface of protein 3D structures using six

parameters (residue interface propensity, solvation potential,

hydrophobicity, planarity, protrusion, and accessible surface

area) and proposed a method for calculating the relative

combined score of a surface patch for forming protein–pro-

tein interactions. Bradford et al. proposed a support vector

machine (SVM) predictor based on surface patch analysis

(Bradford and Westhead 2005) and then further improved

the prediction performance using a Bayesian network

(Bradford et al. 2006). Chen et al. (2012) constructed three-

dimensional probability density maps of non-covalent

interacting atoms on protein surfaces and then applied

machine learning algorithms to learn the characteristic pat-

terns of the probability density maps specific to PPIs.

However, the number of known protein 3D structures is still

considerably smaller than that of sequenced proteins in spite

of great efforts made in determining protein structures,

which significantly limits the applicability of structure-based

PPI prediction (Murakami and Mizuguchi 2010a).

Recently, much attention has been paid to sequence-

based PPI prediction, and some progress has been made

(Bock and Gough 2001; Zhou and Shan 2001). A number

of promising PPI predictors that utilize sequence-derived

features and machine-learning algorithms have emerged

(Jia et al. 2015a, b; Murakami and Mizuguchi 2010a; Ofran

and Rost 2007) (Dhole et al. 2014; Murakami and

Mizuguchi 2010a; Singh et al. 2014). Ofran and Rost

developed a neural network method called ISIS (Ofran and

Rost 2007) for predicting PPIs based on the predicted

structural features and evolutionary information calculated

from the sub-sequences of nine consecutive residues. Por-

ollo and Meller developed a predictor named SPPIDER

(Porollo and Meller 2007) using SVMs and neural net-

works based on relative solvent accessibility (RSA), and

they claimed that the RSA feature possesses a better dis-

crimination capability than that of evolutionary conserva-

tion, physicochemical characteristics, structure-derived

features, and other previously considered features for per-

forming PPI prediction. Murakami and Mizuguchi used

kernel density estimation to construct a naı̈ve Bayesian

classifier named PSIVER (Murakami and Mizuguchi

2010a) with position-specific scoring matrices (PSSM) and

predicted accessibility (PA) as feature sources. Recently,

Dhole et al. implemented SPRINGS (Singh et al. 2014) and

LORIS (Dhole et al. 2014) to identify PPIs by applying

artificial neural networks and L1-regularized logistic

regression, respectively, based on evolutionary conserva-

tion, predicted relative solvent accessibility and averaged

cumulative hydropathy features.

Overall, significant achievements have been made in the

prediction of PPIs. Nevertheless, the performance of PPI

prediction is still far from satisfactory, and there is still

room for further improvement. In addition, we carefully

analyzed the existing machine-learning-based PPIs pre-

dictors and observed that the severe class imbalance phe-

nomenon, in which the number of majority samples (non-

interacting residues) significantly outnumbers that of

minority samples (interacting residues), has not been well

considered (Ofran and Rost 2007; Porollo and Meller 2007;

Šikić et al. 2009), which may potentially deteriorate the

performance of machine-learning-based PPI predictors.

Motivated by all these observations, we proposed a new

machine-learning-based method for further improving the

performance of sequence-based PPI prediction. The pro-

posed method mainly consists of three steps: First, a novel

data-cleaning procedure is developed to relieve the severity

of class imbalance by removing those difficult marginal

targets from the majority samples in the original training

dataset using a machine-leaning model; second, based on the

cleaned dataset, a machine-learning-based PPI prediction

engine is trained; finally, a post-filtering procedure is applied

to the results of the prediction engine to reduce false positive

predictions. We performed stringent computer experiments

on benchmark datasets with both cross-validation and

independent validation tests, and the results demonstrated

the feasibility and efficacy of the proposed method.

According to Chou’s 5-step rule (Chou 2011), which has

been implemented in a series of recent publications (Chen

et al. 2014; Jia et al. 2015b; Lin et al. 2014; Liu et al. 2015a;
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Xu et al. 2014), to establish a useful sequence-based statis-

tical predictor for a biological system, the following five

guidelines should be followed (Chou 2011): (a) construct or

select a valid benchmark dataset to train and test the pre-

dictor; (b) formulate biological sequence samples with an

effective mathematical expression that can truly reflect their

intrinsic correlation with the target to be predicted; (c) in-

troduce or develop a powerful algorithm (or engine) to per-

form the prediction; (d) properly perform cross-validation

tests to objectively evaluate the anticipated accuracy of the

predictor; and (e) establish a user-friendly web server for the

predictor that is accessible to the public. Below, we describe

how to address these steps systematically.

Materials and Methods

Benchmark Datasets

In this study, we benchmarked the proposed method on

three widely used datasets, denoted Dset186, Dtestset72,

and PDBtestset164, to demonstrate the method’s feasibility

and effectiveness. Among the three datasets, Dset186 was

used as a training dataset and the remaining two, i.e.,

Dtestset72 and PDBtestset164, were used as independent

validation datasets. Dset186 was previously constructed by

Murakami and Mizuguchi and consists of 186 non-redun-

dant (sequence identity\25 %), heterodimeric, non-trans-

membrane, and transient protein chains, which have been

structurally resolved by X-ray crystallography with a res-

olution of B3.0 Å (Murakami and Mizuguchi 2010a). The

interacting residue in the protein chains was defined as a

residue that lost absolute solvent accessibility of \1.0 Å2

upon complex formation (Singh et al. 2014).

Dtestset72 (Murakami and Mizuguchi 2010b) consists of

72 non-redundant sequences that are non-overlapping with

sequences in Dset186. Dtestset72 was constructed based on

the protein–protein docking benchmark set version 3.0

(Hwang et al. 2008) using a homology reduction procedure:

Any sequences displaying C25 % sequence identity over a

90 % overlap with any of the sequences in Dset186 were

removed using BLASTClust (Altschul et al. 1997). The

obtained Dtestset72 includes rigid body cases (27 protein

complexes), medium cases (6 protein complexes), and dif-

ficult cases (3 protein complexes). In these cases, each pro-

tein complexes consists of two protein chains.

To further explore the prediction performance of PPI

prediction models on newly annotated proteins, another

independent validation dataset, denoted PDBtestset164,

built by Singh et al. (2014) was also used. The PDBtest-

set164 dataset was obtained using newly annotated proteins

from June 2010 to November 2013. The same filter used to

obtain Dset186 and Dtestset72 was applied to create

PDBtestset164 (Singh et al. 2014). PDBtestset164 consists

of non-redundant 164 protein chains extracted from newly

deposited proteins (from June 2010 to November 2013) in

the Protein Data Bank (PDB) with the same filters that

were applied to construct Dset186 and Dtestset72. The

software PSAIA (Protein Structure and Interaction Ana-

lyzer) (Mihel et al. 2008) was used to identify interacting

residues of the protein sequences in PDBtestset64. Because

PDBtestset164 consists of new proteins released after the

construction of Dset186, we used it as the second inde-

pendent validation dataset to further evaluate the general-

ization capability of the proposed method. For details about

PDBtestset164, please refer to (Dhole et al. 2014; Singh

et al. 2014). Table 1 summarizes the statistics of the three

benchmark datasets.

Feature Extraction

To develop a machine-learning-based PPI predictor, a

critical step was to represent each residue as a discrimi-

native feature vector. In this study, three feature sources,

i.e., position-specific scoring matrix, averaged cumulative

hydropathy, and predicted relative solvent accessibility,

that have been demonstrated to be useful for PPI prediction

were used to construct the discriminative feature for each

sample (i.e., a residue in a protein sequence).

Evolutionary information contained in a protein

sequence has been demonstrated to be useful for many

protein attributes prediction problems, including PPI pre-

diction (Chen and Jeong 2009; Dhole et al. 2014; Mur-

akami and Mizuguchi 2010a; Yan et al. 2003; Yu et al.

2013a). Position-specific scoring matrix (PSSM) obtained

by multiple sequence alignment can partially provide the

evolutionary information of a protein sequence (Yu et al.

2011). For a given protein sequence, we generated a cor-

responding L 9 20 PSSM using PSI-BLAST (Schäffer

et al. 2001) to search the Swiss-Prot database through three

iterations, with 0.001 as the E value cutoff for multiple

sequence alignment against the sequence (He et al. 2015;

Xiao et al. 2015b), where L is the length of the protein

sequence. The original PSSM of a protein sequence with L

residues generated by PSI-BLAST, denoted as

Poriginal pssm, can be formulated as follows:

Poriginal pssm ¼

p1;1 p1;2 � � � p1;20

p2;1 p2;2 � � � p2;20

..

. ..
. ..

. ..
.

pk;1 pk;2 � � � pk;20

..

. ..
. ..

. ..
.

pL;1 pL;2 � � � pL;20

2
666666664

3
777777775
; ð1Þ

where pk;j represents the score of the residue k in the

protein sequence being mutated to residue type j during the
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evolution process. A positive score indicates that the cor-

responding mutation occurs more frequently than expected

by chance, whereas a negative score indicates the opposite.

Note that here we use the numerical code 1, 2, …, 20 to

represent the 20 native amino acid types according to the

alphabetical order of their single character codes (Zou and

Xiao 2015). After obtaining the original PSSM, we further

normalized each element of Poriginal pssm to the range (0, 1)

with the following logistic function:

f ðxÞ ¼ 1

1 þ e�x
; ð2Þ

where x is the score in the original PSSM.

A sliding window of size W was then applied to the

normalized PSSM to extract feature vectors for each resi-

due of the protein sequence. According to (Dhole et al.

2014), W = 9 is a better choice for performing PPI pre-

diction. Therefore, we set W = 9 in this study. Accord-

ingly, the dimensionality of the obtained PSSM feature

vector for a residue is 9 9 20 = 180-D.

Researchers have found that protein–protein interaction

interfaces are generally hydrophobic patches on the sur-

faces of proteins (Chothia and Janin 1975; Jones and

Thornton 1995, 1997a). Hence, the hydropathy index

should be beneficial to the identification of protein–protein

interaction sites, which has been demonstrated by related

studies (Dhole et al. 2014; Singh et al. 2014). In this study,

the hydropathy index proposed by Kyte and Doolittle

(1982) was used. The hydropathy index of a residue rep-

resents the hydrophobic or hydrophilic properties of a

residue’s side chain. The hydropathy index of residue is an

indicator of hydrophilic and hydrophobic properties (Gallet

et al. 2000). We explored the hydropathy indices of a

residue and its neighborhood to extract the residues aver-

aged cumulative hydropathy (ACH) feature. More specifi-

cally, for a target residue, its five ACH indices

corresponding to five windows of different sizes (i.e., sizes

of 1, 3, 5, 7, and 9) centered on the residue were calculated

using the Python codes provided by Dhole et al. (2014); the

five ACH indices were then concatenated to form a 5-D

feature vector for the target residue.

We extracted the predicted relative solvent accessibility

(PRSA) features of residues with the SANN web server

developed by Joo et al. (2012). The SANN web server is

freely available at http://lee.kias.re.kr/*newton/sann/. For

a given protein sequence, SANN predicts the discrete states

(two or three states) and a continuous value of solvent

accessibility for each residue in the sequence (Dhole et al.

2014). In this study, we used the predicted continuous

value of solvent accessibility to encode each residue into a

1-D PRSA feature.

Finally, a residue can be encoded into a 186-D feature

vector by serially combining its 180-D PSSM feature, 5-D

ACH feature and 1-D PRSA feature.

Data-Cleaning Procedure

The purpose of data cleaning is to remove marginal targets

that are difficult to classify from the majority samples to

relieve the severity of class imbalance of the original

training dataset. Figure 1 illustrates the workflow of the

proposed machine-learning-based data-cleaning (DC)

procedure.

Let S ¼ s1; s2; � � � ; si; � � � ; sNf g be the set of N protein

sequences in the original dataset, where si is the ith

sequence. We use ‘?’ and ‘-’ to represent the class labels

of minority and majority residues (i.e., interactive and non-

interactive residues), respectively.

The proposed DC procedure removes potential marginal

targets from one protein sequence each time. For the i-th

sequence si 2 S, the proposed DC procedure first trains a

prediction engine, denoted Mi, based on the samples from

S� sif g with a machine learning algorithm; then, the

trained prediction engine Mi is used to predict the class

labels of residues of sequence si; each majority residue

(labeled ‘-’) of si will then be screened to determine

whether it is a marginal target (a majority residue is con-

sidered marginal if it is predicted to belong to the minority

class by the prediction engine Mi); the cleaned sequence sc
i

is obtained by removing all the marginal targets from si;

this procedure will be repeated N times until all of the N

sequences in S have been cleaned. The cleaned dataset is

denoted Sc ¼ sc
1; s

c
2; � � � ; sc

i ; � � � ; sc
N

� �
.

In essence, any machine learning algorithm can be used

to construct the prediction engine for data cleaning. In this

study, the random forest (RF) (Breiman 2001) algorithm

was used as an example to implement the proposed DC

procedure.

We explain the rationality of the proposed DC procedure

as follows. Clearly, for each sequence si 2 S, the prediction

Table 1 Composition of the

training dataset and the two

independent validation datasets

Dataset No. of sequences (No. of interacting residues, no.

of non-interacting residues)

Dset186 186 (5517, 30,702)

Dtestset72 72 (1923, 16,217)

PDBtestset164 164 (6096, 27,585)
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engine is trained on an imbalanced dataset S� sif g, where

the number of majority samples is significantly larger than

that of minority samples. In other words, the trained model

Mi will be biased towards the majority class. Consequently,

it is reasonable to consider a majority residue in si as a

marginal target if it is still being predicted as minority

under the majority-prone model Mi.

We processed the original dataset Dset186 with the

proposed DC procedure. It was observed that 13,450

majority residues were cleaned. The ratio between the

number of majority samples and that of minority samples

was decreased from 5.56 to 3.13, demonstrating that the

severity of data imbalance was reduced.

To better understand the proposed DC procedure, we

took a sequence (PDB ID: 1AY7_A) from Dset186 as an

example to vividly illustrate the effect after data cleaning,

as shown in Fig. 2. The images in Fig. 2 were generated

using PyMOL (DeLano 2002).

Figure 2a, b shows images of the 3-D structures of

1AY7_A in sphere style and cartoon style, respectively,

before the DC procedure; on the other hand, Fig. 2c, d

shows images of the 3-D structures of 1AY7_A in sphere

style and cartoon style, respectively, after the DC proce-

dure. In Fig. 2, interactive and non-interactive residues are

highlighted in yellow and cyan, respectively. Note that

residues highlighted in red are also non-interactive ones

located inside the inner compartment of a protein. These

non-interactive residues are also called non-surface resi-

dues. In this study, non-surface residue were determined by

calculating their relative solvent accessibility (RSA) using

NACCESS (Hubbard and Thornton 1993). A residue was

considered to occur on the surface if its RSA was \5 %

(Jones and Thornton 1997a, b).

From Fig. 2, two observations can be made: (1) These

non-surface residues are spatially located inside the inner

compartment of a protein and thus cannot interact with

other proteins. On the other hand, these non-surface resi-

dues (highlighted in red) are locate close to those interac-

tive residues (highlighted in yellow) and thus could have a

negative effect on training a machine-learning prediction

model with a clear classification boundary. (2) Parts of the

non-interactive residues (highlighted in cyan) are also

located close to those interactive residues (highlighted in

yellow) and thus could have the same negative effect as the

non-surface residues.

In this study, we referred to these non-interactive and

non-surface residues, which are spatially located close to

interactive residues and have a negative effect on training a

machine-learning prediction model with a clear classifica-

tion boundary, as marginal residues. As previously men-

tioned, on the one hand, removing these (or parts of)

marginal residues can reduce the severity of data imbalance

in the original training dataset; on the other hand, removing

the residues can help construct a much more compact

Fig. 1 Workflow of the proposed machine-learning-based data-cleaning procedure

G.-H. Liu et al.: Prediction of Protein–Protein Interaction Sites with Machine-Learning-Based… 145

123



prediction model with a clear classification boundary. As

an example, it was observed that 6 out of 9 non-surface

residues (highlighted in red) and 5 out of 67 non-interactive

residues (highlighted in cyan) were successfully removed

after applying the proposed DC procedure on 1AY7_A, as

shown in Fig. 2c, d.

It should be noted that there are many other methods for

addressing highly imbalanced or skewed dataset, and sev-

eral of which have been successfully applied to bioinfor-

matics problems (Ertekin et al. 2007a; Ertekin et al. 2007b;

Estabrooks et al. 2004; Hong et al. 2007; Hu et al. 2014;

Kang and Cho 2006; Laurikkala 2001; Ting 2002; Wang

and Japkowicz 2010; Wu and Chang 2005; Zhou and Liu

2010). For example, Liu et al. (2015c) developed a pre-

dictor called iDNA-Methyl for identifying DNA methyla-

tion sites with a ‘‘neighborhood cleaning rule’’ to address

class imbalance; Xiao et al. (2015a) developed iDrug-

Target, which can predict the interactions between drug

compounds and target proteins using a ‘‘synthetic minority

over-sampling technique’’.

Training a PPI Prediction Model on the Cleaned

Dataset

Based on the cleaned dataset, we can train a PPI prediction

model using any suitable machine learning algorithms. For

consistency with the algorithm used in the section titled ‘Data-

Cleaning Procedure’ and considering the fact that random

forest algorithms have been demonstrated to be particularly

useful for performing PPI predictions (Jia et al. 2015c; Šikić

et al. 2009), we also used a random forest algorithm as an

engine for constructing a PPI prediction model.

Taking Dset186 as an example, we first obtained a

cleaned dataset, denoted Dset186c, with the proposed DC

procedure. As calculated in the section titled ‘Data-

Cleaning Procedure’, the ratio of the number of majority

samples to that of minority samples was decreased from

5.56 to 3.13. Nevertheless, a data imbalance still exists.

Therefore, we further used a random under-sampling

technique to balance the majority and minority samples in

the cleaned training dataset, i.e., Dset186c. In this case, the

ratio of the number of majority samples to that of minority

samples was set to 1:1. Finally, we could train a random

forest algorithm based on the balanced training dataset with

all residues represented by the feature vector we developed

in the section titled ‘Feature Extraction’.

During the prediction stage, for each residue in an

unseen protein sequence, the trained prediction model first

predicts its possibility of being interactive; then, a pre-

scribed threshold T is applied to determine whether it is an

interactive residue: a residue with a possibility of being

larger than T will be predicted as interactive. The value of

T is optimized by choosing the one that maximizes the

value of Matthews correlation coefficients (MCC) of pre-

dictions on Dset186 over leave-one-out cross-validation.

Post-Filtering Procedure

To further improve the PPI prediction performance, a post-

filtering (PF) procedure is applied to the initial predictions

to reduce potential predicted false positives. This PF pro-

cedure is motivated by the following observations made in

previous studies (Ofran and Rost 2003; Yan et al. 2004):

From the distribution of the number of interactive residues

in a window of consecutive residues centered on an inter-

active residue, approximately 98 % of the observed inter-

active residues were observed to have at least one

additional interactive residue and approximately 76 % had

at least four interactive residues in a window of nine

consecutive residues (within four residues on either side)

(Murakami and Mizuguchi 2010a; Ofran and Rost 2003;

Yan et al. 2004). These observations indicate that interac-

tive residues tend to form clusters in sequences (Ofran and

Rost 2003; Yan et al. 2004), and neighboring residues of an

Fig. 2 Visualization of the effect of the proposed DC procedure for

protein 1AY7_A. a and b are images of 3-D structures of 1AY7_A in

sphere style and cartoon style, respectively, before the DC procedure;

c and d are images of 3-D structures of 1AY7_A in sphere style and

cartoon style, respectively, after the DC procedure. Interactive and

non-interactive residues are highlighted in yellow and cyan, respec-

tively. Marginal residues are highlighted in red. The images were

generated using PyMOL (DeLano 2002) (Color figure online)
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actual interactive residue have a high potential of being

interactive residues (Murakami and Mizuguchi 2010a).

Thus, an isolated interactive residue predicted by a model

may potentially be a false positive. Therefore, we use a

window-based post-filtering (PF) procedure to eliminate

those isolated predicted interactive residues to reduce

potential false positives.

Figure 2 illustrates the workflow of the proposed PF

procedure. More specifically, for each interactive residue

predicted by the model, we place a window of size

W centered on the residue; then, we calculate the number of

predicted interactive residues in the window; if this number

is less than m, the prediction is considered a false positive.

In this study, we optimized the values of W and m by

varying W from 3 to 11 and m from 1 to 5 (Murakami and

Mizuguchi 2010a; Ofran and Rost 2003; Yan et al. 2004).

In this study, the optimized values of W and m were set to

11 and 3, respectively (Fig. 3).

We acknowledge that the proposed post-filtering pro-

cedure may also reassign a true positive as a false negative.

Nevertheless, the following experimental results statisti-

cally demonstrate that the overall prediction performance

can be further improved by incorporating the proposed

post-filtering procedure.

Evaluation Indices

Six routine evaluation indices, i.e., Recall, Precision,

Specificity, Accuracy, and F-measure, were used to eval-

uate the prediction performance and are defined as follows:

Recall ¼ TP

TP þ FN
ð3Þ

Specificity ¼ TN

TN þ FP
ð4Þ

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
ð5Þ

MCC ¼ TP �TN�FP �FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ � TPþFNð Þ � TNþFPð Þ � TNþFNð Þ

p

ð6Þ

Precision ¼ TP

TP þ FP
ð7Þ

F-measure = 2 � Recall � Precision

Recall þ Precision
ð8Þ

where TP, FP, TN, and FN denote the numbers of true

positives, false positives, true negatives, and false nega-

tives, respectively.

Although the four abovementioned metrics (Eqs. 3–6)

have often been used in the literature to measure the pre-

diction quality of a prediction method, they are no longer

the best ones because they lack intuitiveness and are not

easy to understand for most biologists, particularly the

MCC (the Matthews correlation coefficient). For clarity,

we adopt an additional four metrics proposed by Chou

(Chou 2001; He et al. 2015; Lin et al. 2014; Liu et al. 2014;

Guo et al. 2014; Chen et al. 2013):

Recall ¼ 1 � Nþ
�

Nþ ð9Þ

Fig. 3 Workflow of the

proposed post-filtering

procedure
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Specificity ¼ 1 �
N�
þ

N� ð10Þ

Accuracy ¼ 1 � Nþ
� þ N�

þ
Nþ þ N� ð11Þ

MCC ¼
1 � Nþ

�
Nþ þ N�

þ
N�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ N�
þ �Nþ

�
Nþ

� �
� 1 þ Nþ

� �N�
þ

N�

� �r ; ð12Þ

where Nþ represents the total number of the interacting resi-

dues investigated, whereas Nþ
� is the number of interacting

residues incorrectly predicted as non-interacting residues;N�

represents the total number of non-interacting residues

investigated, whereas N�
þ is the number of non-interacting

residues incorrectly predicted as interacting residues. We can

find the relations between Eqs. 3–6 and Eqs. 9–12 as follows

(Chou 2001; Lin et al. 2014; Guo et al. 2014):

TP ¼ Nþ � Nþ
�

TN ¼ N� � N�
þ

FP ¼ N�
þ

FN ¼ Nþ
�

8>>><
>>>:

ð13Þ

For a detailed understanding of Eqs. 9–12 and 13), please

refer to (Chou 2001; He et al. 2015; Lin et al. 2014; Liu et al.

2014; Guo et al. 2014; Chen et al. 2013). Please note that the

set of metrics defined in Eqs. 9–12 is valid only for single-

label systems. For multi-label systems, which have become

more common in systems biology (Lin et al. 2013) and

systems medicine (Xiao et al. 2013), a completely different

set of metrics, as defined by (Chou 2013), is needed.

On the one hand, the six evaluation indices (Eqs. 3–8)

defined above are threshold dependent, i.e., their values will

depend on the threshold chosen for a given prediction model.

On the other hand, PPI prediction is a typical imbalanced

binary prediction problem; hence, over-pursuing Accuracy

is not appropriate (He and Garcia 2009a). Considering that

the MCC index provides an overall measurement of the

quality of binary predictions (Baldi et al. 2000), we reported

these indices for a prediction model with a threshold that

maximizes the MCC value of predictions.

Results and Discussion

Effectiveness of Data-Cleaning and Post-filtering

Procedures

In this section, we demonstrate the effectiveness of the

proposed data-cleaning and post-filtering procedures for

improving the prediction performance of PPI predictions.

First, we constructed a benchmark PPIs predictor using a

random forest algorithm. To eliminate the severe

imbalance in the training dataset, the random under-sam-

pling technique (RUS) was used to balance the majority

and minority samples in the training dataset. In this case,

the ratio of the number of majority samples to that of

minority samples was set to 1:1. For convenience, we

termed this benchmark prediction model RF-RUS, which

indicates a model trained with the RF algorithm and ran-

dom under-sampling technique (RUS).

Second, we demonstrate the efficacy of the proposed

data-cleaning procedure by incorporating it into the

benchmark prediction model. More specifically, we first

obtained a cleaned dataset by applying the proposed data-

cleaning procedure on the original training dataset; then we

performed the benchmark model, i.e., RF-RUS, on the

cleaned training dataset. We denoted the RF-RUS proce-

dure featuring a data-cleaning procedure as DC-RF-RUS.

Third, we incorporated the proposed post-filtering pro-

cedure into DC-RF-RUS; the resulting procedure was ter-

med DC-RF-RUS-PF.

We performed stringent leave-one-out cross-validation

tests on Dset186 for RF-RUS, DC-RF-RUS, and DC-RF-

RUS-PF. Performance comparisons between the three

methods are listed in Table 2. Please note that in each round

of cross-validation for DC-RF-RUS and DC-RF-RUS-PF,

only the sequences in the training subsets were cleaned and

the sequence in the testing subset was not cleaned.

Table 2 shows that DC-RF-RUS outperforms RF-RUS

with respect to all six considered evaluation indices except for

Recall. DC-RF-RUS achieves a 1.7 % improvement on MCC,

which is an overall measurement of the quality of binary

predictions. The performance comparison between DC-RF-

RUS and RF-RUS demonstrates that the proposed data-

cleaning procedure improves the data quality, which will

facilitate the training of a machine-learning-based PPI pre-

diction model. We also find that the prediction performance is

further improved, although not significantly, by incorporating

a post-filtering procedure into DC-RF-RUS. We also find that

the value of Specificity was increased by 2.8 %, which sup-

ports the argument we made that the proposed post-filtering

procedure can help reduce the number of false positive pre-

dictions. We note that the value of Recall was reduced by

2.2 %; the underlying reason is that the post-filtering proce-

dure mistakenly reassigned true positive predictions to false

negatives. Nevertheless, the overall performances, e.g., Ac-

curacy, F-measure, and MCC, were still improved by incor-

porating post-filtering, as shown in Table 2.

Comparisons with Existing PPIs Predictors Over

Cross-Validation Test

In this section, we compare the proposed method, i.e., DC-

RF-RUS-PF, with two of the most recently released

sequence-based PPIs predictors on Dset186 over a stringent
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leave-one-out cross-validation test. The first predictor

compared is LORIS (Dhole et al. 2014), which identifies

PPIs from protein sequences using an L1-regularized

logistic regression under the same feature set applied in this

study; the second one is PSIVER (Murakami and Mizu-

guchi 2010b), which is also a sequence-based PPIs pre-

dictor but uses a naı̈ve Bayesian classifier with position-

specific scoring matrices (PSSM) and predicted accessi-

bility (PA) as feature sources.

Table 3 summarizes the performance comparisons

between the proposed method, LORIS, and PSIVER. The

table shows that the proposed method significantly out-

performed PSIVER with respect to all evaluation indices

except for Specificity. Improvements of 7.8 and 2.9 % on

MCC and F-measure, respectively, were achieved by the

proposed method relative to the values measured for

PSIVER. We also observed that the value of Specificity

for PSIVER is 7.7 % higher than that of the proposed

method. However, the value of Recall of PSIVER is only

41.6 %, which is 19.6 % lower than that of the proposed

method, indicating that too many false negatives were

incurred during the predictions of PSIVER. Regarding

LORIS, which is a recently reported PPI predictor, the

proposed method achieves comparable performance.

Because the proposed method and LORIS used the same

feature set, we can argue that the proposed DC procedure

and post-filtering procedure are effective for PPI

prediction.

Comparisons with Existing PPIs Predictors Over

Independent Validation Test

In this section, we explore the generalization capability of

the proposed method, i.e., DC-RF-RUS-PF, by comparing

it with existing PPIs predictors on two independent test

datasets, i.e., Dtestset72 and PDBtestset164. In addition to

LORIS (Dhole et al. 2014) and PSIVER (Murakami and

Mizuguchi 2010b), several other existing sequence-based

PPIs predictors, including SPRINGS (Singh et al. 2014),

ISIS (Ofran and Rost 2007), and SPPIDER (Porollo and

Meller 2007), were used.

Table 4 lists the performance comparisons between the

proposed method and five other sequence-based PPIs pre-

dictors on the independent validation dataset Dtestset72.

To fairly compare with previously developed predictors,

for Dtestset72, we calculated the individual prediction

performances for the 27 rigid body cases, the 6 medium

cases, the 3 difficult cases (Murakami and Mizuguchi

2010b), and the overall averaged prediction performance

on the entire dataset.

Table 4 shows that the proposed method outperformed

five other PPIs predictors for each of the three cases.

Regarding the overall prediction performance, average

improvements of 2.7 and 1.2 % on MCC and F-measure,

respectively, were achieved by the proposed DC-RF-RUS-

PF compared with LORIS, which is the most recently

released sequence-based PPIs predictor.

We acknowledge that ISIS exhibits the best perfor-

mance in terms of Accuracy. However, under the class

imbalance scenario, over-pursuing overall accuracy is not

appropriate and can be deceiving in evaluating the per-

formance of a predictor/classifier (He and Garcia 2009b;

Yu et al. 2013b, c). As shown in Table 4, the Recall value

of ISIS is only 35.0 %, which is the lowest of the six

consider predictors. In other words, ISIS predicts too

many false negatives, leading to a very small value of

MCC, which is the overall measurement of the quality of

binary predictions.

Table 5 lists the performance comparisons between the

proposed method and other four sequence-based PPIs

predictors on the independent validation dataset PDBtest-

set164. Table 5 shows that the DC-RF-RUS-PF method

again achieved the best performance on PDBtestset164.

Moreover, DC-RF-RUS-PF is significantly better than

SPRINGS (Singh et al. 2014), PSIVER (Murakami and

Mizuguchi 2010b), and SPPIDER (Porollo and Meller

Table 2 Performance

comparisons between RF-RUS,

DC-RF-RUS, and DC-RF-RUS-

PF on Dset186 over leave-one-

out cross-validation

Method MCC Precision (%) Recall (%) Specificity (%) Accuracy (%) F-measure (%)

RF-RUS 0.202 28.6 64.3 61.7 61.8 37.3

DC-RF-RUS 0.219 30.1 63.4 63.8 63.3 37.9

DC-RF-RUS-PF 0.229 31.7 61.2 66.6 65.1 38.2

Table 3 Performance comparisons between the proposed method, LORIS, and PSIVER on Dset186 over leave-one-out cross-validation

Method MCC Precision (%) Recall (%) Specificity (%) Accuracy (%) F-measure (%)

Proposed method (DC-RF-RUS-PF) 0.229 31.7 61.2 66.6 65.1 38.2

LORIS (Dhole et al. 2014) 0.221 28.7 69.8 58.6 60.4 38.4

PSIVER (Murakami and Mizuguchi 2010b) 0.151 30.6 41.6 74.3 67.3 35.3
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2007). Compared with LORIS (Dhole et al. 2014), which

outperformed other existing methods, DC-RF-RUS-PF also

makes an improvement of 3.7 % on MCC and F-measure.

Clearly, the test results demonstrate that the general-

ization capability of the proposed method outperforms that

of the previously reported methods. The good performance

on an independent test further demonstrates the effective-

ness of the proposed method for protein–protein interaction

prediction.

Conclusions

In this study, we developed a DC-RF-RUS-PF algorithm

for protein–protein interaction prediction. Experimental

results obtained for benchmark datasets demonstrate the

superiority of the proposed method over the existing PPI

predictors. The good performance of the proposed method

is derived from the use of the combined discriminative

feature of protein residues and the powerful RF

Table 4 Performance comparisons between the proposed method and other sequence-based PPIs predictors on the independent validation

dataset Dtestset72

Method MCC Precision (%) Recall (%) Specificity (%) Accuracy (%) F-measure (%)

Rigid body cases (27)

DC-RF-RUS-PF 0.193 24.7 62.2 63.8 63.3 32.4

LORIS (Dhole et al. 2014) 0.175 23.2 63.8 60.3 60.9 32.0

SPRINGS (Singh et al. 2014) 0.167 23.5 59.2 62.5 62.1 31.3

PSIVER (Murakami and Mizuguchi 2010b) 0.127 23.9 46.5 68.8 65.5 27.3

ISIS (Ofran and Rost 2007) 0.110 22.0 37.9 75.7 70.9 25.9

SPPIDER (Porollo and Meller 2007) 0.087 20.4 44.7 65.2 62.9 24.4

Medium cases (6)

DC-RF-RUS-PF 0.256 29.1 64.5 68.1 67.5 36.7

LORIS (Dhole et al. 2014) 0.187 25.0 60.9 63.4 63.3 32.9

SPRINGS (Singh et al. 2014) 0.197 26.2 59.1 65.6 64.9 33.7

PSIVER (Murakami and Mizuguchi 2010b) 0.171 28.9 43.5 75.3 70.2 27.1

ISIS (Ofran and Rost 2007) 0.050 18.4 23.0 82.6 75.2 19.0

SPPIDER (Porollo and Meller 2007) 0.055 19.4 36.1 68.4 62.7 18.4

Difficult cases (3)

DC-RF-RUS-PF 0.231 29.8 64.5 66.2 65.3 39.0

LORIS (Dhole et al. 2014) 0.174 26.5 61.1 62.7 61.8 35.5

SPRINGS (Singh et al. 2014) 0.143 24.9 57.7 62.3 60.3 32.8

PSIVER (Murakami and Mizuguchi 2010b) 0.139 26.9 53.2 61.9 62.8 33.2

ISIS (Ofran and Rost 2007) 0.001 17.8 33.5 67.7 62.4 23.0

SPPIDER (Porollo and Meller 2007) 0.070 22.1 70.4 41.3 49.3 32.7

Overall average performance (72)

DC-RF-RUS-PF 0.204 25.6 62.7 64.6 64.0 33.6

LORIS (Dhole et al. 2014) 0.177 23.8 63.1 61.0 61.4 32.4

SPRINGS (Singh et al. 2014) 0.170 24.1 59.0 63.0 62.4 31.8

PSIVER (Murakami and Mizuguchi 2010b) 0.135 25.0 46.5 69.3 66.1 27.8

ISIS (Ofran and Rost 2007) 0.091 21.0 35.0 76.2 70.9 24.5

SPPIDER (Porollo and Meller 2007) 0.081 20.4 45.4 63.7 61.7 24.1

Table 5 Performance comparisons between the proposed method and other predictors on the independent validation dataset PDBtestset164

Method MCC Precision (%) Recall (%) Specificity (%) Accuracy (%) F-measure (%)

Proposed method (DC-RF-RUS-PF) 0.148 32.4 52.6 65.3 61.1 36.0

LORIS (Dhole et al. 2014) 0.111 26.3 53.8 60.9 58.8 32.3

SPRINGS (Singh et al. 2014) 0.108 26.8 40.7 64.8 60.6 31.1

PSIVER (Murakami and Mizuguchi 2010b) 0.078 25.3 46.4 63.4 59.6 29.5

SPPIDER (Porollo and Meller 2007) 0.015 23.1 16.2 85.1 71.6 12.9
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classification algorithm, particularly a data-cleaning pro-

cedure that can remove marginal targets and a post-pro-

cessing procedure that can potentially reduce predicted

false positives. Because PPI prediction is a typical imbal-

anced learning problem, our main focus is on cleaning

‘harmful’ non-interactive residues. In this respect, the aim

is to eliminate classification bias in training models caused

by class overlap attributed to class imbalance. The results

of cross-validation and independent validation tests indi-

cate the efficacy of the method. Our method is not limited

to PPI prediction and can be applied to other bioinformatics

problems in which serious class imbalance exists. As

demonstrated in a series of recent publications (Chen et al.

2014, 2015; Ding et al. 2014; Jia et al. 2015b; Lin et al.

2014; Liu et al. 2015b, c; Guo et al. 2014; Chen et al.

2013), in developing new prediction methods, user-friendly

and publicly accessible web servers will significantly

enhance the effects of this imbalance (Chou 2015). There-

fore, we will make efforts in our future work to provide a

web server for the prediction method presented in this paper.

Nevertheless, the benchmark datasets and the source code

for the proposed method and have been made available at

http://csbio.njust.edu.cn/bioinf/PPIS for free academic use.

Our future work will focus on further enhancing the

accuracy with which protein–protein interaction sites are

predicted by incorporating new discriminative features and

powerful classification algorithms. Currently, the proposed

method requires approximately 100 s for predicting a

sequence with 300 residues. We will further optimize the

method to improve the computational efficiency.
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