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Abstract Antifreeze proteins (AFPs) are indispensable

for living organisms to survive in an extremely cold

environment and have a variety of potential biotechno-

logical applications. The accurate prediction of antifreeze

proteins has become an important issue and is urgently

needed. Although considerable progress has been made,

AFP prediction is still a challenging problem due to the

diversity of species. In this study, we proposed a new

sequence-based AFP predictor, called TargetFreeze. Tar-

getFreeze utilizes an enhanced feature representation

method that weightedly combines multiple protein features

and takes the powerful support vector machine as the

prediction engine. Computer experiments on benchmark

datasets demonstrate the superiority of the proposed Tar-

getFreeze over most recently released AFP predictors. We

also implemented a user-friendly web server, which is

openly accessible for academic use and is available at

http://csbio.njust.edu.cn/bioinf/TargetFreeze. TargetFreeze

supplements existing AFP predictors and will have poten-

tial applications in AFP-related biotechnology fields.

Keywords Antifreeze protein prediction � Multi-view

protein features � Support vector machine � Machine

learning

Introduction

Antifreeze proteins (AFPs) are ubiquitous and indispens-

able in various species, such as animals, plants, microbes,

fishes, etc., that live in cold environments (Kim 2013).

According to a structure and function study on the anti-

freeze protein of the winter flounder, the antifreeze

mechanism was shown to be the result of the polypeptide

or carbohydrate binding to an ice nucleation structure in ice

lattice, subsequently stopping, or retarding the growth of

ice crystals to depress the freeze point (Chou 1992). AFPs

play a vital role in the survival of cold-adapted organisms

in low and subzero temperatures by adsorbing onto and

interacting with the surface of ice (Davies and Hew 1990;

Fletcher et al. 2001). AFPs also have potential applications

in industrial, medical, biotechnological and agricultural

fields, such as food technology, preservation of cell lines,

organs, cryosurgery and freeze-resistant transgenic plants

and animals (Griffith and Ewart 1995; Feeney and Yeh

1998; Breton et al. 2000). Hence, the accurate identifica-

tion of AFPs is of significant importance both for under-

standing the mechanism of protein-ice interactions and

creating new ice-binding domains in other proteins (Kan-

daswamy et al. 2011). Designing accurate and automated

computational methods for AFP identification is highly

desired, especially in the post-genome era in which large

volumes of sequenced proteins quickly accumulate without

being functionally annotated (Mondal and Pai 2014).

Unfortunately, although AFPs in different species have a

common anti-cold functionality that is obtained by
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contributing to freeze avoidance or freeze tolerance or both

(Levitt 1980; Sformo et al. 2009), the sequences and

structures of ice-binding domains differ significantly

among AFPs although they are from closely related species

(Jia and Davies 2002; Griffith and Yaish 2004; Graham

et al. 2008). Consequently, it is challenging to correlate the

relationships between sequences, structures, and functions

(Yu and Lu 2011), which leads to difficulty in developing

effective computational models for the identification and

annotation of AFPs (Zhao et al. 2012). Nevertheless,

researchers in this field have made efforts to develop

computational models for identifying AFPs directly from

protein sequences by utilizing machine-learning methods,

and several promising predictors have emerged. Kan-

daswamy et al. (2011) performed pioneering work in

antifreeze protein prediction from sequences using a

machine-learning technique. In their method, called AFP-

Pred, multiple physicochemical properties were used to

encode the feature of a protein sequence, and the random

forest is used as classifier. However, they do not provide an

online web server, which limits the applicability of AFP-

Pred; subsequently, Yu and Lu (2011) developed a web-

based predictor, called iAFP, which, for the first time,

utilizes multiple sets of n-peptide compositions as features

for antifreeze protein prediction; Zhao et al. (2012)

released AFP_PSSM for antifreeze protein prediction using

a support vector machine (SVM) and position-specific

scoring matrix (PSSM) profiles. Recently, Mondal and Pai

(2014) reported the state-of-the-art sequence-based anti-

freeze protein predictor, called AFP-PseAAC, which uti-

lizes Chou’s pseudo amino acid composition (PseAAC)

and SVM. All these works demonstrate the feasibility of

identifying an antifreeze protein from the shared sequential

features among the various structural types of AFPs with

machine-learning methods.

All in all, much progress has been achieved in machine-

learning based antifreeze protein prediction. Nevertheless,

the prediction performances of the aforementioned meth-

ods are still not fully satisfactory, and there is still room for

further improvement. Motivated by these considerations,

we thus developed a new sequence-based antifreeze protein

predictor, called TargetFreeze, which utilizes the weighted

combination feature extracted from multi-view protein

feature sources including amino acid composition (AAC),

Chou’s PseAAC, and the pseudo PSSM. Our computer

experimental results on the benchmark dataset showed that

the proposed TargetFreeze outperformed existing

sequence-based antifreeze protein predictors, demonstrat-

ing the feasibility and efficacy of the proposed method.

As demonstrated by a series of recent publications

(Chou 2011; Chen et al. 2014; Ding et al. 2014; Lin et al.

2014; Xu et al. 2014; Liu et al. 2015) in response to the

call (Chou 2011) to establish a really useful sequence-

based statistical predictor for a biological system, we need

to consider the following procedures: (a) construct or

select a valid benchmark dataset to train and test the

predictor; (b) formulate the biological sequence samples

with an effective mathematical expression that can truly

reflect their intrinsic correlation with the target to be

predicted; (c) introduce or develop a powerful algorithm

(or engine) to operate the prediction; (d) properly perform

cross-validation tests to objectively evaluate the antici-

pated accuracy of the predictor; (e) establish a user-

friendly web server for the predictor that is accessible to

the public. Below, let us describe how to address these

steps one by one.

Materials and Methods

Benchmark Datasets

To objectively evaluate the performance of the proposed

method and fairly compare it with existing antifreeze

predictors, the same dataset that has been used in previous

studies (Kandaswamy et al. 2011; Zhao et al. 2012) was

taken as the benchmark dataset in this study. The positive

subset of the benchmark dataset consists of 481 AFPs

constructed with stringent steps as follows: First, an initial

dataset consisting of 221 antifreeze protein sequences was

extracted from the Pfam database (Sonnhammer et al.

1997); then, the initial dataset was enriched by aligning

each sequence in it against a non-redundant sequence

database using PSI-BLAST with E-value (0.001); the

enriched dataset was further manually inspected, and all

those non-AFPs were removed; next, the maximal pairwise

sequence identity of the proteins in the manually inspected

dataset was culled to B40 % using CD-HIT (Li and Godzik

2006); the remaining 481 antifreeze protein sequences

constitute the positive subset. The negative subset was

constructed from 9193 seed proteins of Pfam protein

families, which are unrelated to AFPs (Sonnhammer et al.

1997; Kandaswamy et al. 2011). For further details about

the construction of the benchmark dataset, refer to (Kan-

daswamy et al. 2011).

To make a fair comparison with previously developed

predictors, the benchmark dataset was further divided into a

training set (for cross-validation test purposes) and a corre-

sponding validation set (for independent validation test

purposes) as in AFP-Pred (Kandaswamy et al. 2011) and

AFP_PSSM (Zhao et al. 2012). More specifically, we con-

structed training and validation sets as follows: The training

set was obtained by randomly selecting 300 antifreeze and

300 non-AFPs for three times from the benchmark dataset;

the remaining 181 antifreeze and 8293 = 9193 - 3 *

300 non-AFPs constituted the independent validation set.
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Feature Representation

To develop a machine-learning-based AFP predictor, the

critical step is to represent a protein sequence by a fixed-

length feature vector. In this study, three types of protein

sequential features, i.e., AAC, PseAAC, and pseudo posi-

tion-specific scoring matrix (PsePSSM) were explored for

AFP prediction.

Amino Acid Composition Feature

AAC (Block and Bolling 1951; Ahmad et al. 2004) is a

classic protein feature representation method describing the

composition information of a protein sequence. The AAC

feature of a protein sequence is a 20-dimensional vector

that can be formulated as follows:

AAC ¼ f1; f2; . . .; f20ð ÞT ; ð1Þ

where fiði ¼ 1; 2; . . .; 20Þ represents the occurrence fre-

quency of the 20 native amino acids in a protein sequence.

Pseudo Amino Acid Composition Feature

As shown in Eq. 1, the AAC feature only provides the

composition information of a protein sequence, and all the

sequence-order information is lost. To remedy this short-

coming of AAC, Chou (Chou 2001a, b; Shen and Chou

2008) proposed a PseAAC feature by incorporating protein

sequential information into the traditional AAC feature.

PseAAC has been widely used in protein attribute predic-

tion problems (Huang et al. 2009; Roy et al. 2009;

Jahandideh and Mahdavi 2012; Huang and Yuan 2013; Zou

2014) including AFP prediction (Kandaswamy et al. 2011).

In this study, we generate the PseAAC feature of a protein

sequence by feeding it to our previously developed web

server, available at: http://www.csbio.sjtu.edu.cn/bioinf/

PseAAC/ (Shen and Chou 2008).

When generating the PseAAC feature of a protein, the

following parameter set was applied: (1) The PseAAC mode

was set to Type 2; (2) all of the six amino acid characters,

i.e., hydrophobicity, hydrophilicity, side chain mass, pK of

the a-COOH group, pK of the a-NH3
? group and pI at

25 �C, were selected (n ¼ 6); (3) The weight factor was set

to 0.05; (4) the counted rank (or tier) of the correlation was

set to 20 (k ¼ 20). Accordingly, the dimensionality of the

PseAAC feature is 20 ? n 9 k = 20 ? 6 9 20 = 140. For

details regarding PseAAC and the PseAAC web server,

please refer to Chou (2001a, b) and Shen and Chou (2008).

Pseudo Position-Specific Scoring Matrix Feature

We generate the PSSM for a given protein sequence by

applying the PSI-BLAST (Schäffer et al. 2001) to search

the Swiss-Prot database through three iterations with

E = 0.001 as the cutoff against the query sequence. Then,

we normalize each element in the obtained PSSM with the

logistic function f ðxÞ ¼ 1=ð1þ e�xÞ. Let Spssm ¼ si;j
� �

L�20

be the normalized PSSM of a protein sequence with

L residues; we can calculate its PsePSSM feature as fol-

lows (Wold et al. 1993; Liu et al. 2012; Yu et al. 2012):

First, we compute the 20-dimentional PSSM composi-

tion feature, denoted as Ppssm, by averaging the scores

along each of the 20 columns of Spssm as follows:

Ppssm ¼ �s1; �s2; . . .; �sj; . . .; �s20
� �T

; ð2Þ

where

�sj ¼
1

L

XL

i¼1

si;j: ð3Þ

Second, we compute the PSSM sequence-order feature

buried in the Spssm by calculating the correlation factor of

each column of Spssm as follows:

ld ¼ ld1;l
d
2; . . .; l

d
j ; . . .; l

d
20

� �T

; ð4Þ

where

ldj ¼
1

L� d

XL�d

i¼1
si;j � �sj
� �

� siþd;j � �sj
� �

; ð5Þ

where d (1� d�D) is the rank of correlation along the

protein sequence and D is the maximum rank of

correlation.

Finally, the PsePSSM feature of the protein sequence is

obtained by combining its PSSM composition feature and

PSSM sequence-order features as follows:

PsePSSM ¼

Ppssm

l1

l2

..

.

lD

0

BBBBBBBB@

1

CCCCCCCCA

ð6Þ

In this study, themaximum rank of correlationDwas set to

6, which was optimized on the benchmark dataset over ten-

fold cross-validation. Accordingly, the dimensionality of the

PsePSSM feature is 20 ? D 9 20 = 20 ? 6 9 20 = 140.

Weightedly Combining Multiple Features

AAC and PseAAC represent protein sequential informa-

tion, while PsePSSM encodes the protein evolutionary

information. These features from different views may

potentially complement each other. The most straightfor-

ward and simplest method for utilizing the potential com-

plementary information is to serially combine these multi-
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view features. However, studies have previously demon-

strated that directly combining different features will not

definitely lead to the improvement in prediction accuracy

compared with a single-view feature (Kohavi and John

1997; Yu et al. 2013). One important reason for this phe-

nomenon is that the scale of different features may differ

significantly. In view of this, we will try to weightedly

combine different features to improve the discriminative

capability of the combined feature. How to set the weights

of different features will be further discussed in the sub-

sequent ‘‘Experimental Results and Analysis’’ section.

Classifier Selection

For a machine-learning-based predictor, its prediction

performance will depend not only on the feature repre-

sentation method but also on the classifier used. In this

study, two popular classifiers, i.e., SVM (Vapnik 1998) and

random forests (RFs) (Breiman 2001), were considered

because they have been demonstrated to be extremely

powerful in many protein attribute prediction problems

including AFP prediction (Kandaswamy et al. 2011). Here,

we briefly introduce the basic concepts and the parameter

optimization procedures of the two classifiers.

SVM: Vapnik (1998) proposed the SVM based on the

Vapnik–Chervonenkis theory of statistical learning and the

principle of structural risk minimization. SVM seeks the

best compromise between the computational complexity

and the learning capability to obtain the best generalization

ability (Vapnik 1998; Kecman 2001; Chang and Lin 2011).

SVM can be categorized into two groups, i.e., support

vector classification (SVC) and support vector regression

(SVR). In this study, SVC was applied and the LIBSVM

software package (Fan et al. 2005; Chang and Lin 2011),

which is freely available at http://www.csie.ntu.edu.tw/

*cjlin/libsvm/, was used. Note that to apply SVC, the two

parameters, i.e., the regularization parameter (n) and the

kernel parameter (c), were optimized based on tenfold

cross-validation using a grid search strategy provided in the

LIBSVM software package.

RFs: Breiman (2001) proposed the random forest

learning algorithm, which is an ensemble method that adds

an additional layer of randomness to bagging. In a standard

forest, each node is split using the best split among all

variables, while in a random forest, each node is split using

the best among a subset of predictors randomly chosen at

that node (Liaw and Wiener 2002). Numerous studies have

demonstrated the success of the randomness strategy in

RFs (Breiman 2001; Liaw and Wiener 2002). RFs can be

used to perform both classification and regression. In this

study, a random forest regression algorithm was applied.

The RF code, which is freely accessible at http://scikit-

learn.org/stable/modules/ensemble.html#random-forests, is

used to evaluate and implement the proposed TargetFreeze.

Two parameters should be seriously considered when

applying RFs. The first parameter (mTry) is the number of

dimensions randomly sampled as candidates at each split.

Previous studies have shown that the sqrtðNÞ is a preferred
strategy for setting the value of mTry, where N is the

dimensionality of the feature vector (Breiman 2001; Liaw

and Wiener 2002). Because the dimensionality of the

combined feature is 300 (N = 20 ? 140 ? 140), the

parameter mTry was set to be 17 � sqrt 300ð Þ. The second

parameter is the number of trees to grow (nTree). In this

study, nTree was optimized (under mTry = 17) and set to

500 with a tenfold cross-validation procedure on the

training set.

Workflow of the Proposed TargetFreeze

Figure 1 illustrates the workflow of the proposed Tar-

getFreeze. For a query protein sequence, TargetFreeze first

extracts its AAC, PseAAC, and PsePSSM features and

weightedly combines the extracted features; then, the

combined feature will be fed to the trained SVM model,

which outputs the probability of being an antifreeze protein

of the query protein, denoted as Tp; the query protein will

be predicted as an antifreeze protein if its predicted prob-

ability, i.e., Tp, is larger than the prescribed threshold T;

otherwise, it will be predicted as a non-antifreeze protein.

How to choose the threshold T will be further discussed in

the subsequent section.

Evaluation Indices

In this study, we evaluated the performance of the proposed

method with five routine evaluation indices in this field,

i.e., Sensitivity (Sn), Specificity (Sp), Accuracy (Acc),

Matthew’s Correlation Coefficient (MCC), and Youden’s

Index. The definitions of the five evaluation indices are as

follows:

Sn =
TP

TP + FN
; ð7Þ

Sp =
TN

TN + FP
; ð8Þ

Acc =
TP þ TN

TP + FN + TN + FP
; ð9Þ

MCC

¼ TP�TN�FN�FP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFNÞ� ðTPþFPÞ� ðTNþFNÞ� ðTNþFPÞ

p ;

ð10Þ
Youden’s Index ¼ Snþ Sp� 1; ð11Þ
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where TP, FN, TN, and FP are abbreviations of true pos-

itive, false negative, true negative, and false positive,

respectively.

Although the four metrics (Eqs. 7–10) above were often

used in the literature to measure the prediction quality of a

prediction method, they are no longer the best ones because

they lack intuitiveness and are not easy to understand formost

biologists, particularly the MCC (the Matthews correlation

coefficient). To make it easy to read, we adopt an additional

four metrics proposed by Chou (Chou 2001a, b; Chen et al.

2013; Lin et al. 2014; Liu et al. 2014; Guo et al. 2014):

Sn ¼ 1� Nþ
�

Nþ ; ð12Þ

Sp ¼ 1�
N�
þ

N� ; ð13Þ

Acc ¼ 1�
Nþ
� þ N�

þ
Nþ þ N� ; ð14Þ

MCC ¼
1� Nþ

�
Nþ þ N�

þ
N�

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N�

þ�Nþ
�

Nþ

� �
� 1þ Nþ

��N�
þ

N�

� �r ; ð15Þ

where Nþ represents the total number of the antifreeze protein

sequences investigated, while Nþ
� is the number of antifreeze

protein sequences incorrectly predicted as non-antifreeze pro-

tein sequences; N� represents the total number of non-an-

tifreeze protein sequences investigated,whileN�
þ is the number

of non-antifreeze protein sequences incorrectly predicted as

antifreeze protein sequences.We canfind the relations between

Eqs. 7–10 and 12–15 as follows (Chou 2001a, b):

TP ¼ Nþ � Nþ
�

TN ¼ N� � N�
þ

FP ¼ N�
þ

FN ¼ Nþ
�

8
>>><

>>>:

ð16Þ

Obviously, when Nþ
� ¼ 0, it means that none of the

AFPs are incorrectly predicted, and we have the sensitivity

Sn = 1; Nþ
� ¼ Nþ means that all of AFPs are predicted

incorrectly, and the sensitivity is 0 (Sn = 0). Similarly, we

will have the specificity Sp = 1 if N�
þ ¼ 0, and specificity

will be 0 (Sp = 0) if N�
þ ¼ N�. When Nþ

� ¼ 0 and

N�
þ ¼ 0, meaning that all of the proteins are predicted

correctly, we have the accuracy Acc = 1, whereas Nþ
� ¼

Nþ and N�
þ ¼ N� indicate that none of the proteins in the

datasets are correctly predicted, and the accuracy is zero

(Acc = 0). The Matthews correlation coefficient (MCC) is

usually used for measuring the quality of binary (two-class)

classifications. When N�
þ ¼ Nþ

� ¼ 0, showing that the

predictions of all proteins are correct, we have MCC = 1.

If N�
þ ¼ N�=2 and Nþ

� ¼ Nþ=2, we have MCC = 0,

indicating no better than random prediction; and when

N�
þ ¼ N� and Nþ

� ¼ Nþ, meaning the prediction for all the

proteins is wrong, we have MCC = -1. Therefore, as

described above, it is much more intuitive and easier-to-

understand when using Eqs. 12–15 to examine a predictor

with the four metrics, particularly for the Matthews cor-

relation coefficient (Chou 2001a, b). Please note that the set

of metrics defined in Eqs. 12–15 is valid only for single-

label systems. For multi-label systems, which have become

more frequent in systems biology (Lin et al. 2013) and

systems medicine (Xiao et al. 2013), a completely different

set of metrics as defined in Chou (2013) is needed.

On the other hand, the above-mentioned evaluation

indices are threshold-dependent, i.e., their values will be

affected by the threshold used. To fairly compare with

previously developed predictors, we choose the threshold

with the following strategy: we first identify the threshold,

denoted as T, that maximizes the value of MCC of the

predictions on the training set using cross-validation, and

then, the identified threshold T, rather than another

Feature Combination
AAC + PseAAC + w  PsePSSM

PSI-BLAST

V

AAC

PseAAC

S1,1

S2,2

S1,k

Sm,k Sm,20

SL,20

S1,2

S2,1

SL,1

Sm,1

SL,2

Sm,2

SL,k

S2,20

S1,20

S2,k

AFP

PsePSSM

K
N

S

D
Y
H

i

L-1
L

2
3

1

SVM

Query 
Protein

Tp>T

Non-AFP

Fig. 1 Workflow of the proposed TargetFreeze
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optimized one, was used to evaluate the performance of the

proposed method on the corresponding independent vali-

dation set.

Experimental Results and Analysis

In this section, we will perform both a cross-validation test

and independent validation test on the benchmark dataset

to demonstrate the efficacy of the proposed method. As

described in the Benchmark Datasets section, the training

and validation sets were constructed with a random sam-

pling procedure. To objectively evaluate the impact of the

random sampling procedure, we repeated this construction

procedure three times. On each of the constructed training

and validation sets, we performed a cross-validation test

and the corresponding independent validation test. The

final prediction performances of the cross-validation test

and independent validation test of the proposed method

were obtained by averaging the three corresponding per-

formances on training sets and validation sets, respectively.

Which Features Are Beneficial to Antifreeze Protein

Prediction?

First, we will try to determine the features that are bene-

ficial to antifreeze protein prediction by performing per-

formance comparisons between different features with RFs

and SVM as classifiers on the training set over both tenfold

cross-validation and leave-one-out cross-validation. In this

experiment, AAC, PseAAC, and PsePSSM were consid-

ered as three basic features. Two weighted combinations of

the three basic features, i.e., PseAAC ? w� PsePSSM and

AAC ? PseAAC ? w� PsePSSM, were also considered to

investigate the complementarity of the three basic features,

where w is the combination weight. In this study, the

combination weight w is 0.8, which was optimized by

varying its value from 0 to 1 with a step size of 0.1 on the

training set over tenfold cross-validation.

Tables 1 and 2 list the results of performance compar-

isons between different features on the training set over

tenfold cross-validation and leave-one-out cross-validation,

respectively. Note that in Tables 1 and 2, for each feature

and classifier, the average performance of each evaluation

index is reported, followed by a standard deviation. Fig-

ure 2a, b plot the receiver operating characteristic (ROC)

curves of the five considered features with classifier RFs

and SVM, respectively.

From Tables 1 and 2, several observations can be made

as follows:

1. Each of the three basic features (i.e., AAC, PseAAC,

and PsePSSM) can be effectively used to predict AFPs

with MCC [0.689 and Youden’s Index [0.686,

indicating that both the protein sequential composition

information and the protein evolutionary information

are important clues for determining whether a protein

is antifreeze. This observation is quite consistent with

previous works (Kandaswamy et al. 2011; Yu and Lu

2011; Zhao et al. 2012; Mondal and Pai 2014).

2. As shown in Tables 1 and 2, for both RFs and SVM,

we can find that the prediction performances were

improved by weightedly combining the two or three

basic features. Improvements of more than 2 % on

both MCC and Youden’s Index were observed. This

observation demonstrates that the three basic features

may contain complementary information for each

other.

3. The best prediction performances on the training set

over both tenfold cross-validation and independent

validation tests were achieved by the method that takes

AAC ? PseAAC ? w� PsePSSM as the input feature

and SVM as the prediction engine. For the conve-

nience of the subsequent description, we will refer to

this method as TargetFreeze.

Comparisons with Existing Antifreeze Protein

Predictors

In this section, we will compare the proposed TargetFreeze

with popular sequence-based antifreeze protein predictions

by performing both cross-validation and independent val-

idation tests.

As described in the Introduction section, researchers in

this field have made efforts to develop computational

models for identifying AFPs and several promising pre-

dictors have emerged. In this study, we compared the

proposed TargetFreeze with three sequence-based anti-

freeze protein predictors, i.e., AFP-Pred (Kandaswamy

et al. 2011), iAFP (Yu and Lu 2011), and AFP-PseAAC

(Mondal and Pai 2014), because they are the three most

recent ones.

Comparisons with the State-of-the-Art Predictor

Over the Cross-Validation Test

First, we will compare TargetFreeze with other predictors

over the cross-validation test. On the one hand, among the

three methods [i.e., AFP-Pred (Kandaswamy et al. 2011),

iAFP (Yu and Lu 2011), and AFP-PseAAC (Mondal and

Pai 2014)] used for comparison, AFP-PseAAC (Mondal

and Pai 2014) is the most recently released predictor; on

the other hand, only AFP-PseAAC (Mondal and Pai 2014)

provides both tenfold cross-validation and leave-one-out

cross-validation performances on the same benchmark

dataset used in this study. In view of this, here, we only
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perform comparisons between TargetFreeze and AFP-

PseAAC (Mondal and Pai 2014).

Table 3 lists the performance comparisons between

TargetFreeze and AFP-PseAAC over tenfold cross-vali-

dation and leave-one-out cross-validation.

From Table 3, we can find that TargetFreeze achieves

very comparable or even slightly better performances than

AFP-PseAAC concerning all the five evaluation indices

under tenfold cross-validation. On the other hand, Tar-

getFreeze outperforms AFP-PseAAC with improvements of

[4 % on both MCC and Youden’s Index under leave-one-

out cross-validation. Considering that leave-one-out cross-

validation is the most rigorous cross-validation method, we

thus can claim that TargetFreeze is superior to AFP-

PseAAC, at least for the considered benchmark dataset.

Comparisons with Existing Predictors Over

the Independent Validation Test

In statistical prediction, the sub-sampling or K-fold cross-

validation test, jackknife test and independent dataset test

are three often used cross-validation methods to examine a

predictor for its effectiveness in practical application. Of

the three test methods, the jackknife test is considered as

the least arbitrary, because it can always yield a unique

result for a given benchmark dataset as described in Chou

(2011) and demonstrated by Eqs. 28–30 in (Chou 2011).

Accordingly, the jackknife test has been widely recognized

and increasingly used by investigators to examine the

quality of various predictors (Xu et al. 2013; Chen et al.

2014; Ding et al. 2014; Lin et al. 2014; Dehzangi et al.

Table 1 Performance comparisons between different features with RFs and SVM as classifiers on the training set over tenfold cross-validation

Feature Classifier Sn (%) Sp (%) Acc (%) MCC Youden’s Index

AAC RFs 80.55 (±1.35) 89.89 (±3.79) 85.22 (±1.93) 0.708 (±0.041) 0.704 (±0.039)

SVM 84.22 (±0.69) 88.67 (±3.48) 86.45 (±1.49) 0.730 (±0.032) 0.729 (±0.030)

PseAAC RFs 78.33 (±4.93) 90.33 (±3.06) 84.33 (±1.04) 0.693 (±0.016) 0.687 (±0.021)

SVM 86.56 (±1.26) 86.89 (±3.67) 86.72 (±1.41) 0.735 (±0.029) 0.734 (±0.028)

PsePSSM RFs 78.45 (±6.26) 91.78 (±6.24) 85.11 (±1.65) 0.712 (±0.032) 0.702 (±0.033)

SVM 85.78 (±6.77) 91.00 (±5.17) 88.39 (±2.12) 0.772 (±0.039) 0.768 (±0.042)

PseAAC ? w� PsePSSMa RFs 83.67 (±2.91) 90.89 (±2.11) 87.28 (±1.18) 0.748 (±0.023) 0.746 (±0.024)

SVM 88.89 (±4.50) 91.44 (±1.83) 90.16 (±1.89) 0.804 (±0.037) 0.803 (±0.038)

AAC ? PseAAC ? w� PsePSSMa RFs 84.67 (±4.51) 89.89 (±4.44) 87.28 (±1.18) 0.748 (±0.025) 0.746 (±0.024)

SVM 90.11 (±2.50) 91.78 (±0.51) 90.95 (±1.07) 0.819 (±0.021) 0.819 (±0.021)

For each feature and classifier, the average performance of each evaluation index is reported, followed by a standard deviation
a The weight (w = 0.8) is optimized by varying its value from 0 to 1 with a step size of 0.1 on the training set over tenfold cross-validation

Table 2 Performance comparisons between different features with RFs and SVM as classifiers on the training set over leave-one-out cross-

validation

Feature Classifier Sn (%) Sp (%) Acc (%) MCC Youden’s Index

AAC RFs 76.22 (±7.93) 93.22 (±3.56) 84.72 (±2.37) 0.707 (±0.034) 0.694 (±0.047)

SVM 84.11 (±1.35) 88.67 (±3.18) 86.39 (±1.11) 0.729 (±0.024) 0.728 (±0.022)

PseAAC RFs 80.34 (±5.13) 88.22 (±2.99) 84.28 (±1.27) 0.689 (±0.021) 0.686 (±0.025)

SVM 86.33 (±2.61) 87.44 (±3.91) 86.89 (±1.86) 0.739 (±0.037) 0.738 (±0.037)

PsePSSM RFs 79.78 (±6.55) 91.45 (±3.97) 85.61 (±1.50) 0.720 (±0.022) 0.712 (±0.030)

SVM 82.44 (±7.72) 94.89 (±3.56) 88.67 (±2.08) 0.783 (±0.033) 0.773 (±0.042)

PseAAC ? w� PsePSSMa RFs 82.00 (±2.73) 92.00 (±3.84) 87.00 (±1.00) 0.745 (±0.022) 0.740 (±0.020)

SVM 87.67 (±5.51) 92.67 (±2.33) 90.17 (±1.69) 0.806 (±0.031) 0.803 (±0.034)

AAC ? PseAAC ? w� PsePSSMa RFs 83.00 (±2.00) 92.33 (±2.00) 87.67 (±1.00) 0.757 (±0.020) 0.753 (±0.020)

SVM 88.22 (±1.84) 93.44 (±1.02) 90.83 (1.17) 0.818 (±0.023) 0.817 (±0.023)

For each feature and classifier, the average performance of each evaluation index is reported, followed by a standard deviation
a The weight (w = 0.8) is optimized by varying its value from 0 to 1 with a step size of 0.1 on the training set over tenfold cross-validation
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2015; Khan et al. 2015; Mandal et al. 2015). However, to

reduce the computational time, we adopted the independent

dataset test in this study as performed by many investiga-

tors, with SVM as the prediction engine.

More specifically, we will demonstrate the better gen-

eralization capability of TargetFreeze by comparing it with

other predictors on an independent validation set. Perfor-

mance comparisons between TargetFreeze, AFP-PseAAC

(Mondal and Pai 2014), AFP-Pred (Kandaswamy et al.

2011), and iAFP (Yu and Lu 2011) on the independent

validation set are listed in Table 4. Note that for Tar-

getFreeze, the results were obtained by testing the protein

sequences in the independent validation set on the model

trained with the training set; and the results for AFP-

PseAAC, AFP-Pred, and iAFP were obtained by feeding

the protein sequences in the independent validation set to

their web servers.

By observing the results listed in Table 4, we can clearly

find that TargetFreeze outperforms all the three other pre-

dictors with the highest MCC (0.398) and Youden’s Index

(0.837) and acts as the best performer. Improvements of

[12 and [13 % for MCC and Youden’s Index, respec-

tively, were observed when compared with the second-best

performer, i.e., AFP-PseAAC. It has not escaped our notice

that iAFP achieves the best performances for Sp (97.09 %)

and Acc (95.30 %); however, the Sn of iAFP is only

13.26 %, which is significantly lower than that of other

predictors. In other words, iAFP predicts too many false

negatives, leading to extremely lower MCC (0.086) and

Youden’s Index (0.10), which are two overall measure-

ments of the quality of predictions. In summary, Tar-

getFreeze has better generalization capability than iAFP,

AFP-Pred, and AFP-PseAAC. We believe the better gen-

eralization capability of TargetFreeze benefits from the

improved discriminative performance obtained by weight-

edly combining multiple protein sequential and evolu-

tionary features.
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Fig. 2 Receiver operating characteristic (ROC) curves for the five

considered features with a RFs and b SVM as classifier

Table 3 Performance comparisons between TargetFreeze and AFP-PseAAC over tenfold cross-validation and leave-one-out cross-validation

Method Sn (%) Sp (%) Acc (%) MCC Youden’s Index

TargetFreezea 90.11 (±2.50) 91.78 (±0.51) 90.95 (±1.07) 0.819 (±0.021) 0.819 (±0.021)

AFP-PseAACa,c 88.89 (±1.835) 91.00 (±0.330) 89.69 (±0.706) 0.800 (±0.0095) 0.799 (N/A)

TargetFreezeb 88.22 (±1.84) 93.44 (±1.02) 90.83 (±1.17) 0.818 (±0.023) 0.817 (±0.023)

AFP-PseAACb,c 87.89 (±1.261) 89.22 (±0.840) 88.56 (±1.019) 0.771 (±0.0203) 0.771 (N/A)

a Results over tenfold cross-validation
b Results over leave-one-out cross-validation
c Results excerpted from reference Mondal and Pai (2014)

Table 4 Performance

comparisons between

TargetFreeze, AFP-PseAAC,

AFP-Pred, and iAFP on the

independent validation set

Method Sn (%) Sp (%) Acc (%) MCC Youden’s Index

TargetFreeze 92.45 (±1.39) 91.27 (±2.07) 91.30 (±2.00) 0.398 (±0.036) 0.837 (±0.010)

AFP-PseAACa 85.08 84.74 84.75 0.270 0.70

AFP-Preda 91.16 77.04 77.34 0.230 0.68

iAFPa 13.26 97.09 95.30 0.086 0.10

a Results were obtained by feeding the protein sequences in the independent validation set to the web

servers of AFP-PseAAC, AFP-Pred, and iAFP
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Conclusions

Accurate prediction of antifreeze protein is a challenging

problem because of the biological diversity of different

species. In this study, we developed a new sequence-based

antifreeze protein predictor, called TargetFreeze, with high

prediction performance obtained by effectively utilizing

multiple protein features and a powerful SVM classifier.

Computer experiments for both cross-validation and inde-

pendent validation tests on the benchmark dataset demon-

strate the superiority of TargetFreeze over existing

predictors. To help potential users of TargetFreeze, we

have implemented a user-friendly web server, which is

freely available at http://csbio.njust.edu.cn/bioinf/Target

Freeze. We believe that the proposed TargetFreeze will

supplement the existing AFPs predictors and can facilitate

faster and broader applications of AFPs in biotechnology.
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