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Abstract Based on the proposed higher order gradient

quasi-continuum model, the numerical investigations of the

basic mechanical properties and deformation behaviors of

human red blood cell (RBC) membrane under large de-

formation at room temperature (i.e., 300 K) are carried out

in the present paper. The results show that RBC membrane

is a nonlinear hyperelastic material. The mechanical

properties of RBC membrane is dominated by isotropic

nature at the stage of initial deformation, however, its

anisotropic material properties emerge clearly with the

loading increasing. The out-of-plane wrinkling of RBC

membrane upon shear loading can be reproduced nu-

merically. With the use of the so-called higher order

Cauchy–Born rule as the kinematic description, the bend-

ing stiffness of RBC membrane can be considered

conveniently.
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Introduction

As the main component of human red blood cells (RBCs),

which are often used as models for investigating the fun-

damental properties of complex nucleated cells, RBC

membrane has attracted more attention in the past years. It

has been confirmed that many hemolytic anemia disorders

such as sickle cell anemia are in close associated with the

deformation characteristics and mechanical properties of

RBC membrane (An and Mohandas 2008; Bratosin et al.

2011; Delaunaya 2004). Therefore, it is very imperative

and important to have a thorough knowledge of the

memchanical properties and deformation behaviors of

RBC.

For the mechanical properties of RBC membrane and

RBCs, many continuum mechanics models have been de-

veloped. Hansen et al. (1996) established a continuum

model for predicting the elastic shear modulus and the area

expansion modulus of RBC membrane skeleton with use of

elastic springs to describe the spectrin molecules. In this

model, the authors applied the treatment of the random

Delaunay triangulation to organize the topology of the

planar spectrin network patch. Boey et al. (1998) studied

the in-plane compression modulus and shear modulus of

RBC spectrin network in the context of continuum

framework with use of three structural models, i.e., the

stress-free model, the prestress model, and the condensed

model. In their work, the cytoskeletal network is equivalent

to a low-temperature Hookean spring system. Subse-

quently, they developed a coarse-grained molecular model

for predicting the mechanical properties of erythrocyte

membrane with involving the two- and three-body effec-

tive potentials in the resulting energy formulation to

overcome the drawbacks of their spring models (Discher

et al. 1998). Lenormand et al. (2001) considered the RBC
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membrane skeleton network as a continuous, homoge-

neous, and isotropic elastic medium to measure its area

expansion and shear moduli. Mukhopadhyay et al. (2002)

proposed a continuum mechanical model to investigate the

shapes of RBC and the mechanical properties of RBC

membrane skeleton. Dao et al. (2003) and Mills et al.

(2004) extracted mechanical properties of RBC membrane

in the context of continuum mechanics with use of the one-

parameter Neo-Hookean form and the two-parameter Yeoh

form, respectively, to construct the corresponding consti-

tutive models.

There are also many worm-like-chain (WLC)-based

coarse-grained, or mesoscopic, models have been devel-

oped for simulating RBC membrane and RBCs. The ad-

vantages of coarse-grained models are that the phenomena

of RBC membrane can be investigated in detail without

any parameter fitting and the computation efforts can be

saved largely. Based on the free energy theory, Dao et al.

(2006) proposed a molecularly based multiscale model for

RBC membrane to predict its several in-plane mechanical

parameters. The shear modulus, the linear area compres-

sion modulus, and the Young’s modulus of RBC mem-

brane obtained are consistent with the results from the neo-

Hookean-based hyperelastic models. In the context of

dissipative particle dynamics, Fedosov et al. (2010) pre-

sented a multiscale mesoscopic model for RBCs where the

RBC membrane is described with WLC model. With the

use of this multiscale model, they studied the motion of

RBC membrane. Hartmann (2010) developed a continuum

multiscale model for mechanics of RBC based on the

theory of C-convergence considering the RBC membrane

as a two-dimensional hypersurface. With the use of the so-

called higher order Cauchy–Born rule (HCB rule), Wang

et al. (2014) proposed a nanoscale quasi-continuum (QC)

model for exploring the mechanical properties and large

deformation behaviors of RBCs. As the second-order de-

formation gradient tensor involving in the constitutive

model, the curvature effect of RBC membrane can be taken

into account naturally.

However, to the best of the authors’ knowledge, there

are few works devoted to the investigation of mechanical

properties of RBC membrane at large deformation. In the

present paper, we attempt to use the established higher

order gradient QC model and meshless numerical compu-

tational scheme, of which the HCB rule is utilized to

construct the constitutive model, for the investigation of

large deformation properties of RBC membrane at room

temperature. From the statistical physics point of view,

RBC membrane can be treated as an equivalent 2-dimen-

sional supersurface with no thickness. The representative

cell of the spectrin network underlying in the equivalent

initial/unstressed RBC membrane is assumed with hex-

agonal symmetry and its topological structure is presumed

to be unchanged during deformation. The advantages of the

proposed method: (1) The information of the microscopic

structure of RBC membrane skeleton network can be in-

corporated into the equivalent continuum membrane; (2)

the computational efforts can be saved greatly since the

number of degrees of freedom involving large molecular

systems can be chosen freely; and (3) the bending stiffness

of RBC membrane, which is corresponding to the curvature

effect of the membrane, can be captured in a geometrically

consistent way with the use of HCB rule as the kinematic

description.

The plan of the paper is as follows. In ‘‘Model of Red

Blood Cell Membrane’’ section, the model of RBC mem-

brane based on the WLC is introduced. ‘‘Constitutive

Model for RBC Membrane’’ section is devoted to formu-

late the hyperelastic constitutive model for RBC membrane

with use of HCB rule as the kinematic description. Based

on the proposed constitutive relationship, several in-plane

mechanical properties of RBC membrane under large de-

formation at room temperature are investigated in ‘‘The In-

Plane Elastic Properties of RBC Membrane’’ section.

‘‘Meshless Numerical Computational Scheme’’ section

aims at the construction of the meshless numerical

simulation scheme for the large deformation of RBC

membrane sheets. ‘‘Numerical Examples and Discussion’’

section gives several numerical examples and discussion

for RBC membrane fragments under large deformation at

300 K. Finally, some concluding remarks are given in

‘‘Concluding Remarks’’ section.

Model of Red Blood Cell Membrane

As known to all, human RBC membrane has two main

components: the underlying spectrin network/membrane

skeleton and the phospholipid bilayer which adheres on the

spectrin network. The total Helmholtz free energy of RBC

membrane under large deformation such as under tension

or shear deformation is mainly supplied by the in-plane

energy from spectrin network and lipid bilayer (Dao et al.

2006). The bending energy stored in lipid bilayer, which is

much smaller than the in-plane energy especially at large

tension/shear deformation, is neglected in the present

study. The representative cell of the undeformed spectrin

network is assumed to be a symmetrical hexagon, consid-

ering the fact that the topological structure of the spectrin

network is primarily constructed by hexagonal lattices (Liu

et al. 1987). All the spectrin filaments in the representative

cell have same original length (see Fig. 1 for reference).

The RBC membrane is equivalent to be a 2D surface

without thickness and the topological structure of the

spectrin network is presumed unchanged during deforma-

tion. Based on the preparation made above, the total
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Helmholtz free energy density of a representative cell can

be expressed as

WT F;Gð Þ ¼
1
2

P6
J¼1 UWLC rIJj jð Þ þ 1

3

P6
c¼1 US Ac

� �� �

X0

;

ð1Þ

where X0 ¼
ffiffiffi
3

p
a2

0=2 denotes the area of a representative

cell in which a0 is the length of the spectrin filament (see

Fig. 1 for reference). rIJj jðJ ¼ 1; . . .; 6Þ denotes the length

of the lattice vector rIJ between the junction points I and

J. As mentioned by Arroyo and Belytschko (2002), it is

impossible to correctly describe the curvature effect of a

hyperelastic membrane, which is corresponding to the

bending stiffness, with the only use of the first-order linear

kinematic relationship. Therefore, the standard Cauchy–

Born rule (CB rule), in which only the first-order defor-

mation gradient tensor included, is not suitable for the

kinematic description of RBC membrane. Fortunately, the

curvature effect of a two-dimensional manifold can be

captured conveniently through the so-called higher order

Cauchy–Born rule (HCB rule) proposed by Guo et al.

(2006) due to involving the second-order deformation

gradient tensor. Consequently, based on HCB rule as the

kinematic description (see Fig. 2 for an illustration), the

lattice vector rIJ can be given as

rIJ ¼ F � RIJ þ
1

2
G : RIJ � RIJð Þ; ð2Þ

with F and G denoting the first- and second-order defor-

mation gradient tensor, respectively. RIJ is the lattice

vector between junction points I and J in the reference/

initial configuration. The area Acðc ¼ 1; . . .; 6Þ in Eq. (1)

between rIL and rIM can be calculated by (see Fig. 2 for

reference)

Ac ¼
1

2
rIL � rIMj j ¼ 1

2
rILj j rIMj j sin rIL; rIMð Þ; ð3Þ

where the subscripts I, L, and M denote different junction

points and are not implied summation.

In Eq. (1), the entropic free energy UWLC stored in

spectrin links can be expressed in terms of the two-body

potential for DNA, i.e., the so-called WLC model (Marko

and Siggia 1995)

UWLC að Þ ¼ kBT

4pamax

� a
2 3amax � 2að Þ
amax � a

; ð4Þ

in which a denotes the chain length and amax is

maximum/contour length of the chain. p represents the

persistence length. kB ¼ 1:38 � 10�23 J K�1 is the Boltz-

mann constant. T is the absolute temperature.

The elastic potential US in Eq. (1) stored in the lipid

bilayer membrane can be calculated in the following form

US Ac
� �

¼ C

A
q
c
; ð5Þ

where the parameter q can be chosen freely for different

models. In the present paper, q is selected as 1. The value

of the constant C can be obtained under the condition that

RBC membrane is initially unstressed (refer to Wang et al.

(2014) for more details).

Constitutive Model for RBC Membrane

Based on the established regular hexagonal RBC mem-

brane network, the formulation of its hyperelastic consti-

tutive model is presented in the present section. Combining

with the free energy density of the representative cell given

in Eq. (1), the first Piola–Kirchhoff stress tensor P and the

higher order stress tensor Q, which are work conjugate to F

and G, respectively, can be derived from

P ¼ oWT

oF

¼
X6

K¼1

1

2X0

X6

J¼1

oUWLC rIJj jð Þ
orIK

þ 1

3X0

X6

c¼1

oUS Ac
� �

orIK

 !

� RIK ;

ð6Þ

Fig. 1 The representative cell corresponding to junction I

,

Fig. 2 Illustration of the so-called higher order Cauchy–Born rule
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Q ¼ oWT

oG

¼ 1

2

X6

K¼1

1

2X0

X6

J¼1

oUWLC rIJj jð Þ
orIK

þ 1

3X0

X6

c¼1

oUS Ac
� �

orIK

 !

� RIK � RIK ;

ð7Þ

where the subscripts I, J, and K denote the junction points.

Furthermore, the tangent modulus tensors can be ob-

tained from the second-order partial derivatives of the free

energy density with respect to the deformation gradient

tensors F and G as

MFF ¼ o2WT

oF� oF

¼
X6

K¼1

X6

L¼1

1

2X0

X6

J¼1

o2UWLC rIJj jð Þ
orIK � orIL

 

þ 1

3X0

X6

c¼1

o2US Ac
� �

orIK � orIL

!

� RIK � RILð Þ;

ð8Þ

MFG ¼ o2WT

oF� oG

¼ 1

2

X6

K¼1

X6

L¼1

1

2X0

X6

J¼1

o2UWLC rIJj jð Þ
orIK � orIL

 "

þ 1

3X0

X6

c¼1

o2US Ac
� �

orIK � orIL

!

� RIK � RILð Þ
#

� RIL;

ð9Þ

MGF ¼ o2WT

oG� oF

¼ 1

2

X6

K¼1

X6

L¼1

1

2X0

X6

J¼1

o2UWLC rIJj jð Þ
orIK � orIL

 "

þ 1

3X0

X6

c¼1

o2US Ac
� �

orIK � orIL

!

�� RIK � RIKð Þ
#

� RIL;

ð10Þ

MGG ¼ o2WT

oG� oG

¼ 1

2

X6

K¼1

X6

L¼1

1

2X0

X6

J¼1

o2UWLC rIJj jð Þ
orIK � orIL

þ 1

3X0

 "

�
X6

c¼1

o2US Ac
� �

orIK � orIL

!

�� RIK � RIKð Þ
#

� RIL � RILð Þ;

ð11Þ

where A�B½ �ijkl¼ AikBjl, A ��B½ �ijkl¼ AilBjk. The summation

is not implied on the indices I, J, and K. Obviously, it is a

hyperelastic constitutive model and subsequently it will be

employed to characterize the nonlinear mechanical prop-

erties of RBC membrane.

The In-Plane Elastic Properties of RBCMembrane

Based on the hyperelastic constitutive model established

above, with use of the semi-analytical method, several in-

plane elastic properties such as Young’s modulus, Pois-

son’s ratio, shear modulus, and area compression modulus

of RBC membrane under uniform axial tension are inves-

tigated systematically in this section.

As shown by Zhang et al. (2002), in the context QC

framework, the Young’s modulus and Poisson’s ratio of

thin film/membrane can be calculated by the following

forms, respectively,

E ¼ MFFð Þ1111 � MFFð Þ2
1122

MFFð Þ2222

; ð12aÞ

m ¼ MFFð Þ1122

MFFð Þ1111

; ð12bÞ

The shear modulus and area compression modulus of RBC

membrane can be obtained by the following relationships,

respectively,

K0 ¼ MFFð Þ2222 þ MFFð Þ1122

2
; ð13aÞ

l0 ¼ MFFð Þ2222 � MFFð Þ1122

2
: ð13bÞ

Firstly, we selected a planar equivalent continuum

membrane with the spectrin network with the length L and

width H as the reference configuration (see Fig. 3 for ref-

erence). Obviously, the first-order deformation gradient

tensors of the membrane subjected to uniform axial tension

along the horizontal direction has the following form

Fij ¼
k1 0

k1b k2

� �

; ð14Þ

where k1, k2, and b denoting the longitudinal relaxation

parameter, the lateral relaxation parameter, and the shear

strain, respectively. Clearly, the second-order deformation

gradient tensor G vanishes in this in-plane homogeneous

Fig. 3 Schematic illustration of the rectangular equivalent RBC

membrane with zigzag chirality
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deformation case (it works in nonhomogeneous deforma-

tion, see ‘‘Meshless Numerical Computational Scheme’’

and ‘‘Numerical Examples and Discussion’’). From

Eq. (14), the free energy density WT F;Gð Þ in Eq. (1) can

be rewrited as WT k1; k2; bð Þ and the minimization of the

free energy density with respect to these parameters can be

given as

oWT

ok1

¼ oWT

ok2

¼ oWT

ob
¼ 0: ð15Þ

Subsequently, the bisection method is applied to deter-

mine the minimum of the free energy. The structural pa-

rameters of RBC membrane are taken as p ¼ 8:5 nm,

a0 ¼ 87 nm, and amax ¼ 238 nm in the following study.

The chiral angle h of RBC membranes can be defined as

that of graphene sheet, i.e., h ranges from 0� for zigzag to

30� for armchair (the illustration of equivalent RBC

membrane in Fig. 3 is a zigzag membrane). The system

temperature is chosen as 300 K.

Table 1 shows the optimization parameters k1, k2, and b
of RBC membrane sheets with different chiral angles 0�,
15�, and 30�, respectively, under axial tension deformation

at 300 K. It can be found that with the increase of the k1,

i.e., with the increasing axial tension deformation, the k2

for RBC membranes with different chiral angles decreases

gradually; however, the amount of decrease is different.

The parameter b remains unchanged for RBC membranes

with 0� and 30� chiral angle, but increases for 15� chiral

angle. It means that the mechanical properties of RBC

membrane can be determined by both the amount of de-

formation and its chirality. For obtained further details, five

types of RBC membranes with 0�, 7.5�, 15�, 22.5�, and 30�
chiral angle, respectively, are investigated here.

Figure 4 shows the variation of Young’s moduli of RBC

membranes with different chirality versus axial tensile

strain at 300 K. It can be found that although the Young’s

moduli have slightly decrease when the axial tensile strain

e B 0.3, the variations of the Young’s moduli are quite

gentle and the difference between Young’s moduli for

different chiral angles are pretty small. However, when

e[ 0.3, the Young’s moduli increase rapidly with the in-

creasing of the deformation and the difference between the

Young’s moduli for five types of RBC membranes be-

comes larger. For example, the Young’s moduli are 18.5,

18.6, 18.8, 18.9, and 19.0 lN/m for RBC membranes with

chiral angles of 0�, 7.5�, 15�, 22.5�, and 30�, respectively,

at e = 0.3, while those are 29.5, 30.6, 33.3, 36.3, and

37.6 lN/m for chiral angles of 0�, 7.5�, 15�, 22.5�, and 30�,
respectively, at e = 0.8. These datum suggest that the axial

tensile strain and chiral angle have little effect on the

Young’s moduli when e B 0.3, but, as long as e[ 0.3, they

both have an increasing effect on the Young’s moduli.

Figure 5 shows the dependence of the Poisson’s ratio on

the chirality of RBC membrane at different axial tension

strain at 300 K. Obviously, the Poisson’s ratios decrease

rapidly from 1/3 with the increasing of the deformation.

Simultaneously, the chirality also has a declining effect on

Table 1 The optimization

parameters k1, k2, and b of RBC

membranes with different chiral

angles 0�, 15�, and 30�,
respectively, under axial tension

deformation at 300 K

k1 (0�) k2 (0�) b (0�) k1 (15�) k2 (15�) b (15�) k1 (30�) k2 (30�) b (30�)

1 1 1.04E-17 1 1 1.04E-17 1 1 1.04E-17

1.05 0.98373 1.04E-17 1.05 0.98375 3.88E-05 1.05 0.98376 1.04E-17

1.1 0.96820 1.04E-17 1.1 0.96825 0.00018 1.1 0.96830 1.04E-17

1.15 0.95332 1.04E-17 1.15 0.95343 0.00044 1.15 0.95355 1.04E-17

1.2 0.93901 1.04E-17 1.2 0.93922 0.00089 1.2 0.93943 1.04E-17

1.25 0.92521 1.04E-17 1.25 0.92555 0.00156 1.25 0.92589 1.04E-17

1.3 0.91186 1.04E-17 1.3 0.91236 0.00251 1.3 0.91287 1.04E-17

1.35 0.89889 1.04E-17 1.35 0.89959 0.00381 1.35 0.90032 1.04E-17

1.4 0.88625 1.04E-17 1.4 0.88721 0.00555 1.4 0.88821 1.04E-17

1.45 0.87390 1.04E-17 1.45 0.87516 0.00782 1.45 0.87650 1.04E-17

1.5 0.86178 1.04E-17 1.5 0.86340 0.01074 1.5 0.86515 1.04E-17

1.55 0.84985 1.04E-17 1.55 0.85189 0.01441 1.55 0.85413 1.04E-17

1.6 0.83808 1.04E-17 1.6 0.84058 0.01901 1.6 0.84342 1.04E-17

1.65 0.82640 1.04E-17 1.65 0.82945 0.02469 1.65 0.8330 1.04E-17

1.7 0.81478 1.04E-17 1.7 0.81844 0.03166 1.7 0.82283 1.04E-17

1.75 0.80317 1.04E-17 1.75 0.80752 0.04014 1.75 0.81291 1.04E-17

1.8 0.79153 1.04E-17 1.8 0.79663 0.05038 1.8 0.80321 1.04E-17

1.85 0.77981 1.04E-17 1.85 0.78571 0.06268 1.85 0.79371 1.04E-17

1.9 0.76795 1.04E-17 1.9 0.77473 0.07737 1.9 0.78441 1.04E-17

1.95 0.75589 1.04E-17 1.95 0.76359 0.09483 1.95 0.77528 1.04E-17
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the Poisson’s ratio and the drops become larger with the

deformation increasing.

The relationships between area compression moduli of

RBC membrane sheets with different chirality and the axial

tensile strain at 300 K are given in Fig. 6. Like the varia-

tion tendency of Young’s modulus in Fig. 4, the axial

tensile strain of about 0.3 is also the critical strain for the

area compression modulus-axial tensile strain curves which

is consistent with that reported by Dao et al. (2006). For the

case of e = 0.3, the area compression moduli are 15.03,

15.02, 14.98, 14.95, and 14.94 lN/m for RBC membranes

with chiral angles of 0�, 7.5�, 15�, 22.5�, and 30�, re-

spectively, and the values are 15.83, 15.69, 15.33, 14.93,

and 14.76 lN/m for chiral angles of 0�, 7.5�, 15�, 22.5�,
and 30�, respectively, at e = 0.8. As a whole, the chiral

angle has a decreasing effect on the area compression

moduli and the drops become larger with the deformation

increasing.

In order to have a further understanding of the me-

chanical properties of RBC membrane, the shear modulus

is also studied thoroughly. Figure 7 shows the dependence

of the shear modulus on the chiral angle of RBC membrane

at different axial tension strain at 300 K. It is found that the

shear moduli increase almost linearly with the axial strain

when about e B 0.3. However, after the critical point

e = 0.3, an interesting variation of shear modulus can be

observed. The shear moduli of RBC membranes with chiral

angles 0� and 30�, respectively, remain almost linear in-

creasing trend, but the other shear moduli present ap-

proximate quadratic functions of e. It suggests that chiral

angle has a great influence on the shear moduli. Figure 8
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demonstrates the effect of the chirality on the shear moduli

at 300 K. From Figs. 7 and 8, it can be observed that, when

about e\ 0.8, the shear moduli increase with the increas-

ing of chiral angle, however, as long as e[ 0.8, the shear

moduli first increase and then decline as the chiral angle

increases and the peak value appears at h = 15�. In a word,

the shear modulus of RBC membrane is sensitive to the

chiral angle at large deformation.

In summary, from Figs. 4, 5, 6, 7, and 8, the mechanical

properties of RBC membrane exhibit nonlinear changes

during deformation and the mechanical properties of RBC

membrane are almost insensitive to chiral angles when

about e B 0.3, i.e., it exhibits isotropic material properties;

however, at larger deformation (e[ 0.3), the anisotropic

material properties of RBC membrane become

dramatically.

Meshless Numerical Computational Scheme

Based on the constructed QC hyperelastic constitutive

model, a meshless numerical simulation framework is

established for predicting complex nonhomogeneous de-

formation patterns of RBC membrane fragments in this

section. As the free energy density of RBC membrane is a

function of the first- and second-order deformation gradient

tensor, the numerical interpolation must require at least C1-

continuity. In the present paper, the meshless element-free

Galerkin method (Dolbow and Belytschko 1998) on the

basis of the moving least-squares approximation (Lancaster

and Salkauskas 1981) is utilized for the implementation of

the numerical computation.

Based on the QC constitutive model, the total free en-

ergy Ptot of the considered RBC membrane fragment with

prescribed natural and essential boundary conditions can be

expressed as

Y

tot
¼
Z

X0

WT F;Gð ÞdX�
Z

X0

u � b0dX�
Z

Ct

u � tP0 dS

�
Z

Ct

rNu � tQ0 dSþ 1

2

Z

Cu

c u� ~uð Þ � u� ~uð ÞdS;

ð16Þ

where b0; tP0 ; and tQ0 denote the body force density,

boundary traction, and boundary couple, respectively. X0 is

the domain occupied by the initial planar/reference con-

figuration. Ct and Cu are the traction and displacement

boundary, respectively. rN �f g ¼ rX �f g � N, whereby

rXf�g denotes the left gradient operator with respect to the

material placement X and N denotes the normal vector to

surface Ct. c is the penalty factor. ~u ¼ ~u1; ~u2; ~u3ð ÞT
repre-

sents the boundary displacement on the surface Cu. u ¼
u1; u2; u3ð ÞT

represents the displacement field of the

equivalent continuum RBC membrane, for the numerical

computation, which can be calculated from the moving

least-squares approximation as

u Xð Þ ¼
XN

I¼1

/I Xð ÞûI ; ð17Þ

with ûI ¼ ûI1; û
I
2; û

I
3

� �T
denoting the nodal displacement

parameter vector associated with meshless node I and /I

denoting the meshless shape function of Ith node which is

constructed on the corresponding two-dimensional domain

with the material coordinate X ¼ X1;X2ð ÞT
.

Bearing in mind Eq. (17), the first- and second-order

deformation gradient tensors in Eq. (16) can be derived in

the following way

F ¼ ou Xð Þ
oX

þ ou Xð Þ
oX

¼ ou Xð Þ
oX

þ
XN

I¼1

o/I

oX
� ûI ; ð18Þ

G ¼ o2u Xð Þ
oX � oX

þ o2u Xð Þ
oX � oX

¼ o2u Xð Þ
oX � oX

þ
XN

I¼1

o2/I

oX � oX
� ûI ; ð19Þ

where u Xð Þ ¼ u1 Xð Þ;u2 Xð Þ;u3 Xð Þð ÞT
denotes the trans-

formation mapping from the reference planar configuration

to the quasi-planar structure.

With the assumption that the fields included in Ptot are

sufficiently smooth, the variation of Ptot associated with du
can be expressed as
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Fig. 8 The shear moduli of different chiral RBC membranes versus

the chiral angle at 300 K
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dPtot u; duð Þ ¼
Z

X0

P : dFdXþ
Z

X0

Q..
.
dGdX

�
Z

X0

du � b0dX�
Z

Ct

du � tP0 dS�
Z

Ct

rNdu � tQ0 dS

þ
Z

Cu

c u� ~uð Þ � dudS

¼
Z

X0

XN

I¼1

P � rX/I þ Q : rXX/I � dûIdX
� �

�
Z

X0

XN

I¼1

/Ib0 � dûIdX

�
Z

Ct

XN

I¼1

/I t
P
0 � dûIdS�

Z

Ct

XN

I¼1

N � rX/I � dûI � tQ0 dS

þ
Z

Cu

XN

I¼1

c/I u� ~uð Þ � dûIdS ¼ 0;

ð20Þ

where rX/I and rXX/I denote the first- and second-order

gradient of /I with respect to X, respectively.

From Eq. (20), the resulting incremental stiffness

equation can be obtained as

K0 ûnð Þ þ Kcð Þ � ûnþ1 � ûnð Þ ¼ �P0 ûnð Þ � Kc � ûn � Pcð Þ;
ð21Þ

where ûn and ûnþ1 are the displacement parameters in the n

and n ? 1 iteration step, respectively. And

K0 ¼
Z

X0

MFF :rX/I �rX/J þMFG
..
.
rX/I �rXX/J þMGF

..

.
rXX/I �rX/J þrXX/I :MGF :rXX/J

0

B
@

1

C
AdX;

ð22Þ

P0 ¼
Z

X0

P � rX/I þ Q : rXX/Jð ÞdX�
Z

X0

b0/IdX

�
Z

Ct

tP0/IdS�
Z

Ct

tQ0 N � rX/Ið ÞdS; ð23Þ

Kc ¼
Z

Cu

c/I/J
21dS ð24Þ

Pc ¼
Z

Cu

c/I ~udS; ð25Þ

where 21 denotes the second-order identity tensor. The

Newton–Raphson iteration will be used to find the equi-

librium configuration of RBC membranes at prescribed

boundary conditions in an increment way.

Numerical Examples and Discussion

In this section, nonhomogeneous large deformation of

rectangular RBC membrane fragments under tensile and

shear loadings (displacement) at room temperature (300 K)

are simulated with use of the established meshless nu-

merical scheme. Herein, before computation, a quasi-pla-

nar sheet with an extremely large cylindrical radius

compared with the fragment geometry is introduced. This

simple treatment as a role of perturbation can help to obtain

equilibrium out-of-plane deformation patterns easily. The

transformation mapping from the planar membrane (the

reference configuration) to the corresponding quasi-planar

configuration (the undeformed membrane) can be defined

as

u1 ¼ X1; ð26aÞ

u2 ¼ Rsin
X2

R

	 


; ð26bÞ

u3 ¼ R 1 � cos
X2

R

	 
	 


; ð26cÞ

with R denoting the curvature radius of the quasi-planar

fragment.

In the following examples, the isothermal and quasi-

static conditions are assumed. The structure parameters are

taken as p ¼ 8:5 nm, a0 ¼ 87 nm, and amax ¼ 238 nm. The

essential boundary conditions are treated by means of

penalty function method. The symbol m 9 n used in the

following examples denotes the total number of the

meshless nodes involved in the following numerical com-

putations, whereby m nodes are distributed evenly along

the longitudinal direction and n nodes are collocated uni-

formly along the lateral direction of the planar equivalent

RBC membrane model.

Before loading, through energy minimization, the initial

equilibrium configuration of RBC membrane sheet can be

obtained from the quasi-planar counterpart. Taking the

square RBC membrane sheet with the edge length of

50.0 nm and R ¼ 1:0 � 108 nm as an example, with two

opposite edges are clamped, the value of average energy

density of the RBC membrane sheet converges to

0.54778 kg nm2/s2 which is smaller than 0.55254 kg nm2/

s2 for the quasi-planar configuration (the planar counterpart

is also about 0.55254 kg nm2/s2). The quasi-planar and the

equilibrium configurations are displayed in Fig. 9. It can be

seen that the free sides, the right and left edges, of the

Fig. 9 The square RBC membrane sheet with the edge length of

50.0 nm and R ¼ 1:0 � 108 nm: a the quasi-planar configuration,

b the equilibrium configuration
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equilibrium RBC membrane curl inward to form a saddle

shape and the width of its central part shrinks slightly. This

indicates that the saddle-shaped RBC membrane is more

stable than its planar and quasi-planar counterparts.

Stretched RBC Membrane

In this example, the large deformation of a square RBC

membrane fragment subjected to axial tension at 300 K is

simulated with use of the established meshless numerical

framework. The length of the side of the considered square

RBC membrane is taken as 50.0 nm and the curvature

radius R is chosen as 1:0 � 108 nm. The number of the

meshless nodes used in the present numerical computation

is chosen as 30 9 30. The left edge of the RBC membrane

is fixed and the horizontal stretch displacement is imposed

on the clamped right edge gradually at 1.0 nm per step.

Firstly, the influence of chirality on the deformation of

the considered RBC membrane fragment is studied. The

variations of the average strain energy of the RBC mem-

branes with different chiral angles versus the axial tensile

strain at 300 K are depicted in Fig. 10. It can be found that

the average strain energy increases approximately as a

quadratic function of the tensile strain. As expected, at the

initial stage of deformation, chirality has little impact on the

deformation of RBC membrane, however, as the deforma-

tion continues to increase, the increasing effect of chirality

can be observed clearly. The deformation patterns of the

RBC membrane sheet with chiral angle of 0� at e = 0.4 and

e = 1.0, respectively, are demonstrated in Fig. 11.

As mentioned above, the standard CB rule only in-

volving the first-order deformation gradient tensor cannot

be used to account for the curvature effect of 2D nanoscale

membrane exactly. Fortunately, the HCB rule with the

second-order deformation gradient tensor included can

remedy this defect which has been confirmed by Sun and

Liew (2008). The effect of second-order deformation gra-

dient tensor on the deformation of RBC membrane is also

investigated in the present paper. Figure 12 shows the

variations of the average strain energy with respect to the

axial tension strain of the RBC membrane sheet with the
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Fig. 10 The relationships between the average strain energy and the

axial tensile strain of RBC membrane sheets with chiral angles of 0�,
15�, and 30�, respectively, at 300 K

Fig. 11 The deformation patterns of the RBC membrane sheet with

the chiral angle of 0� at 300 K under tension: a at e = 0.5 and b at

e = 1.0
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Fig. 12 The variations of the average strain energy with respect to

the axial tension strain of the RBC membrane sheet with the chiral

angle of 0� at 300 K
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chiral angle of 0� at 300 K obtained by the HCB-based and

the CB-based model, respectively. As a whole, the growth

of the average strain energy changes nearly quadratically

with the increase of the tension. The average strain energy

obtained with use of the CB-based constitutive model is

slightly smaller than that from HCB-based constitutive

model at early deformation stage. And then, the distinction

becomes larger with the deformation continually increas-

ing. It seems that without the second-order deformation

gradient tensor, the CB-based RBC membrane model is

‘softer’ than the HCB-based model since the bending

stiffness induced by curvature cannot be described accu-

rately, especially at large deformation. Obviously, although

RBC membrane is a soften material, the curvature effect

should be taken into consideration.

Sheared RBC Membrane

In this example, the wrinkling/buckling behavior of RBC

membrane upon large shear loading at 300 K is studied

based on the proposed meshless numerical scheme. The

length and width of the considered rectangular RBC mem-

brane patch is chosen as 35 and 25 nm, respectively, with

R ¼ 1:0 � 108 nm. The left edge (i.e., the long side) of the

RBC membrane is fixed and the loadings (displacement) are

enforced on the right edge. Herein, firstly, a 28 % in-plane

pre-stretching is imposed on the right edge of the membrane

to give it a preliminary stiffness before shearing. Subse-

quently, the shear displacement is enforced on the right edge

along the longitudinal direction at 0.5 nm per step.

With 21 9 29 meshless nodes applied, the shear de-

formation behaviors of the considered RBC membrane are

simulated. The variations of the average strain energy

associated with the shear strain are shown in Fig. 13. It can

be seen that when the shear strain is smaller than about 0.8,

the values of average strain energy for the RBC membrane

models with different chiral angles are almost consistent

with each other. However, as long as exceeded this

threshold, the increasing effect of chirality on the average

shear strain energy can be observed clearly. This trend is in

agreement with that from semi-analytical method (Wang

et al. 2014) and that given by Dao et al. (2006) based on the

molecularly based model. Figure 14 depicts the curves of

the average strain energy versus the shear strain for the

RBC membrane sheet with the chiral angle of 0� based on

HCB rule and CB rule- based model, respectively. Like

that shown in Fig. 12, as a whole, the values of the average

strain energy predicted by the CB-based RBC membrane

model are smaller than those from HCB-based model and

the difference between them becomes larger as the defor-

mation increases. The corresponding out-of-plane wrin-

kling patterns of the RBC membrane with the chiral angle

of 0� at shear strain of 1.0 are presented in Fig. 15. Ob-

viously, three folds developed in one diagonal direction

with use of HCB-based rule, however, four large folds and

two smaller ones are observed from CB-based model. It

can be further confirmed that, without higher order defor-

mation gradient involved, the bending stiffness depended

on the curvature of RBC membrane cannot be considered

correctly. Note that, unlike other nanomaterials such as

carbon-based structures (Wang and Guo 2012; Yan et al.

2013), although buckling patterns appear during the de-

formation, it could hardly find energy sudden jumps in the

average strain energy-shear strain curve. It could be ex-

plained that RBC membrane is much more soften than

carbon materials.
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Fig. 13 The average strain energy for RBC membrane sheets with

respect to the shear strain at 300 K
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Fig. 14 The average strain energy versus average shear strain for the

RBC membrane sheet with the chiral angle of 0� at 300 K
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Concluding Remarks

In the present paper, the WLC-based symmetrical hex-

agonal lattice model is utilized to characterize the RBC

membrane. Based on this simplified parameterized mem-

brane model, a QC formulation and the corresponding

meshless simulation scheme are established for the me-

chanical and large deformation properties of RBC mem-

brane at 300 K. The research results suggest that RBC

membrane is a nonlinear hyperelastic material, and RBC

membrane presents isotropic nature in the case of smaller

deformation, however, as the deformation continues in-

crease, its anisotropic material properties become dra-

matically. The out-of-plane wrinkling of RBC membrane

subjected to shear loading can be reproduced during the

meshless numerical simulation. With the involvement of

the second-order deformation gradient tensor in the con-

stitutive model, the bending stiffness of RBC membrane

can be taken into account in a convenient way.
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