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Abstract Membrane proteins were found to be involved

in various cellular processes performing various important

functions, which are mainly associated to their type. Given

a membrane protein sequence, how can we identify its

type(s)? Particularly, how can we deal with the multi-type

problem since one membrane protein may simultaneously

belong to two or more different types? To address these

problems, which are obviously very important to both basic

research and drug development, a new multi-label classifier

was developed based on pseudo amino acid composition

with multi-label k-nearest neighbor algorithm. The success

rate achieved by the new predictor on the benchmark

dataset by jackknife test is 73.94 %, indicating that the

method is promising and the predictor may become a very

useful high-throughput tool, or at least play a comple-

mentary role to the existing predictors in identifying

functional types of membrane proteins.

Keywords Membrane proteins � Pseudo amino acid

composition � ML-KNN algorithm � Jackknife test

Introduction

Cell membrane is a key component of the cell and mem-

brane protein is the most important part of cell membrane.

Membrane protein plays a key role in physiology and

biology, such as a carrier to transport materials into or out

of the cells and as receptors of some hormone or chemical

substance, and membrane protein is a kind of important

drug target (Ding et al. 2012). Therefore, accurately and

rapidly identifying the functional types of membrane pro-

teins will be helpful for disease treatment and drug design,

because the knowledge about the type of a query mem-

brane protein has a close relationship with its functions.

According to some previous studies (Chou and Shen

2007; Huang and Yuan 2013), membrane proteins are

mainly divided into the following eight functional types:

single-pass type I, single-pass type II, single-pass type III,

single-pass type IV, multipass, lipid-anchor, GPI-anchor,

and peripheral membrane proteins.

Although the functional type of a membrane protein

may be determined by carrying out various biochemical

experiments, these approaches by purely doing experi-

ments are both time consuming and expensive. In the post-

genomic age, the gap between the newly found membrane

protein sequences and the information of their types is

becoming increasingly wide (Wang and Li 2012). There-

fore, to bridge such a gap, it is urgent to develop an

effective and rapid computational method to identify the

functional types of membrane proteins.

In the past several years, many efforts have been made

in identifying the functional types of membrane proteins,

such as Chou and Elrod (1999) predicted the functional

types of membrane proteins based on the covariant dis-

criminant algorithm (CDA) and amino acid composition

(AAC); Wang et al. (2005), by using supervised locally
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linear embedding (SLLE) technique and pseudo amino acid

composition (PseAAC) with k-nearest neighbor (KNN)

algorithm to identify membrane proteins’ types, achieved a

success rate of 82.3 % by jackknife test; Shen et al. (2006)

predicting membrane protein types by hybridizing pseudo

amino acid composition with fuzzy k-nearest neighbor

(FKNN) algorithm, achieved a success rate of 85.6 % by

jackknife test and 95.7 % by independent dataset test; and

Pu et al. (2007) predicting membrane proteins types based

on sequence information and evolution information,

obtained 92.3 % success rate, and many others.

Although the aforementioned methods have their own

advantages and did play a key role in stimulating the

development of this field, they were only focused on

identifying which type it belongs to for a query membrane

protein (Xiao et al. 2013). In fact, there are many mem-

brane proteins that have more than one function or func-

tional type (Xiao et al. 2013). Those proteins should not

escape our eyes because they may have some unique bio-

logical functions worthy of our special notice (Glory and

Murphy 2007; Smith 2008).

In the paper, a new method by hybridizing various

pseudo amino acid compositions was proposed to identify

the functional types of human membrane proteins. A multi-

label classifier called multi-label k-nearest neighbor (ML-

KNN) was introduced, which is derived from classical

KNN algorithm. Finally, a promising result was obtained,

which indicated that the method is useful, and it may be

used in identifying other attributes of proteins.

According to a recent comprehensive review (Chou

2011), to establish a powerful and efficient predictor for a

protein system, the following procedures should be con-

sidered: (1) establish or select a valid benchmark dataset to

train and test the predictor; (2) formulate the protein

sequences using an effective mathematic that can truly

reflect the intrinsic correlation with the target to be pre-

dicted; (3) develop or introduce a powerful algorithm (or

engine) to operate the prediction; and (4) properly perform

cross-validation tests to objectively evaluate the anticipated

accuracy of the predictor. We describe the processes in

detail.

Materials and Methods

Benchmark Datasets

All of the membrane protein sequences used in the current

study were collected from the UniProtKB database

released on 04-Apr 16, 2014 at website http://www.uniprot.

org/. In order to obtain a high quality and well-defined

dataset, the following procedures should be considered: (1)

only human membrane protein sequences were collected;

(2) sequences annotated with ‘‘fragment’’ were removed;

(3) sequences with less than 50 amino acid residues were

also removed to avoid the influence of fragment; (4) to

reduce the redundancy and homology bias, the program

named CD-HIT was used to remove those proteins that

have more than 60 % (not 25 %, because some types data

too little) pairwise sequence identity to any other protein in

the same subset.

Finally, we obtained 3,166 different human membrane

protein sequences covered in eight different functional

types, which can be formulated as

S ¼ S1 [ S2 [ S3 [ S4 [ S5 [ S6 [ S7 [ S8; ð1Þ

where S1 represents the functional type of ‘‘single-pass

type I’’, S2 for ‘‘single-pass type II’’, and so forth. The

symbol [ represents the ‘‘union’’ in the set theory. For

convenience, the numbers from 1 to 8 were used to rep-

resent the 8 subsets. A detailed information about the

benchmark dataset are listed in Table 1.

Because some membrane proteins may simultaneously

belong to two or more functional types, it is instructive to

introduce the concept of ‘‘virtual protein’’ (Xiao et al.

2013; Chou et al. 2011, 2012) as briefed below. If a protein

possesses two different functional types, it will be counted

as two virtual proteins; if it possesses three functional

attributes, it will be counted as three virtual proteins, and so

forth. Thus, the number of total virtual proteins can be

formulated as (Xiao et al. 2013; Lin et al. 2013)

NðvirÞ ¼ NðseqÞ þ
XM

m¼1

ðm � 1ÞNðmÞ ð2Þ

where NðvirÞ is the number of total virtual proteins, NðseqÞ
is the number of total different protein sequences investi-

gated, Nð1Þ is the number of membrane proteins with one

functional type, Nð2Þ is the number of membrane proteins

Table 1 Detail of benchmark dataset of human membrane proteins

Order Functional type Number of proteins

1 Single-pass type I 605

2 Single-pass type II 195

3 Single-pass type III 25

4 Single-pass type IV 27

5 Multipass 1,444

6 Lipid-anchor 251

7 GPI-anchor 83

8 Peripheral 637

The number of virtual membrane proteins 3,267

The number of different membrane proteins 3,166

Of the 3,166 different membrane proteins, 3,069 belong to one

functional type, 93 to two types and 4 to three types, no four or more

types
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with two different functional types, and so forth, while M is

the number of total functional types of membrane proteins

investigated.

According to Eq. (2), the virtual membrane proteins

investigated in the current study can be calculated by the

following formulation:

Nð virÞ ¼ NðseqÞ þ ð1� 1Þ � 3069þ ð2� 1Þ
� 93þ ð3� 1Þ � 4

¼ 3166þ 0þ 93þ 8 ¼ 3267:

ð3Þ

As we can see from Eqs. (2, 3), the number of total virtual

membrane proteins is generally greater than the number of

different membrane proteins. When and only when all of

the membrane proteins belong to one functional type, the

two (i.e., virtual proteins and different proteins) will be the

same (Lin et al. 2013).

Feature Extraction

In order to develop an effective predictor for identifying

the functional types of human membrane proteins based on

the sequence information, one of the most important things

is to formulate the protein sequence with an efficient

mathematical expression that can truly reflect the intrinsic

correlation with the target to be predicted (Xiao et al. 2013;

Chou 2011). However, it is not an easy work to realize this

because this kind of correlation is usually deeply hidden or

‘‘buried’’ into piles of complicated sequences (Xiao et al.

2013).

As is well known, the most straightforward method is to

formulate the protein sequence using its entire amino acid

composition. For a protein sequence P with L amino acids,

it can be expressed as

P ¼ R1R2R3 � � �RL; ð4Þ

where R1 is the first residue of the sequence, R2 is the

second residue, and so forth. Each of the residues belongs

to the 20 native amino acids. In order to identify its attri-

bute(s), the sequence similarity search-based tools, such as

BLAST (Zhang et al. 1997; Wootton and Federhen 1993),

were utilized to search the protein database for those pro-

teins that have high sequence similarity to the query protein

P. Then, the attribute(s) of the proteins thus found were

used to deduce the attribute(s) for the query P. However,

this kind of straightforward sequential model, although

quite intuitive and has the ability to contain the entire

sequence information, failed to work when the query pro-

tein P did not have significant sequence similarity to any

attribute-known proteins.

Thus, to overcome the above difficulty, various discrete

models were proposed in a hope to enhance the power of

the predictor.

Amino Acid Composition (AAC)

Among the various discrete models, the simplest one is the

AAC-discrete model that represents the protein sample using

its AAC (Nakashima et al. 1986). According to the AAC-

discrete model, the protein P can be formulated as (Chou 1995)

P ¼ ½f1f2f3 � � � f20�T; ð5Þ

where fiði ¼ 1; 2; . . .; 20Þ represents the normalized

occurrence frequencies of the 20 native amino acids in the

protein and T stands for the transposing operator. However,

as we can see from Eq. (5), if only the AAC-discrete model

was used to represent the protein sequence P, all of the

sequence-order information would be lost.

In order to avoid completely losing the sequence-order

information, a new model was proposed to replace the

simple amino acid composition that is pseudo amino acid

composition (PseAAC) (Chou 2001).

Since the concept of PseAAC was proposed by Chou in

2001, it has been widely recognized and used by many

investigators to identify various attributes of proteins, such

as identifying subcellular location of proteins (Xiao et al.

2005; Shen and Chou 2007; Li and Li 2008; Park and

Kanehisa 2003), predicting subcellular location of apop-

tosis proteins (Chen and Li 2007; Jian et al. 2008; Lin et al.

2009), predicting enzyme classes or subclasses (Zhou et al.

2007; Chou and Elrod 2003), identifying the functional

types of antimicrobial peptides (Xiao et al. 2013; Khosra-

vian and Kazemi 2013), and among many others.

Chou’s Pseudo Amino Acid Composition (CPseAAC)

According to the concept of Chou’s pseudo amino acid

composition, a protein sequence can be represented by a

20 þ k dimension vector. The first 20 elements represent

the amino acid composition, and the latter k elements

represent the sequence-order information. The sequence-

order information can be indirectly represented by the

following equation:

dh ¼
1

L � h

XL � h

i ¼ 1

XðRi;Ri þ hÞ;

ðh ¼ 1; 2; . . .; k and k\L Þ;
ð6Þ

where L denotes the length of the protein sequence and dh is

called the hth correlation factor which harbors the sequence-

order information between all the h most contiguous resi-

dues. The correlation function XðRi;Ri þ hÞ is defined by

XðRi;Ri þ hÞ ¼
1

3
½FðRi þ hÞ � FðRiÞ�2 þ ½GðRi þ hÞ
n

� GðRiÞ�2 þ ½HðRi þ hÞ � HðRiÞ�2
o
;

ð7Þ
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where FðRiÞ, GðRiÞ and HðRiÞ are the evaluated values of

hydrophobicity, hydrophilicity, and mass, respectively.

There are also three types of values that can be used.

Before we use these values, a standard conversion should

be conducted using Eq. (4) of Huang and Yuan (2013). The

numerical values of the three physical–chemical properties

for each of the 20 native amino acids can be obtained from

(Shen and Chou 2008).

Then a sample protein P can be represented as

P ¼ ½x1; x2; . . .; x20; x20 þ 1; . . .; x20 þ k�T k\L ð8Þ

where

xu ¼

fu

P20

i¼ 1

fi þ w
Pk

h¼ 1

dh

; ð1�u�20Þ

wdu� 20

P20

i¼ 1

fi þ w
Pk

h¼ 1

dh

; ð20 þ 1�u�20 þ k; k\LÞ

8
>>>>>>><

>>>>>>>:

ð9Þ

where w is the weight factor, fiði ¼ 1; 2; . . .; 20Þ repre-

sents the normalized occurrence frequencies of the 20 native

amino acids in the sample protein P, and dh is the h-tier

sequence-correlation factor, computed according to Eq. (6).

In this study, we choose w ¼ 0:05, k ¼ 20 after careful

consideration of easy handling; they can be assigned other

values, of course, but the impact on the result would be small.

Information Entropy (IE)

Shannon proposed that any information is redundant, and

redundant size is related with the occurrence probability or

uncertainty of each symbol such as numbers, letters, or

words among the information. The information entropy for

a system can be defined as

H ¼ �
X20

i ¼1

f ðiÞ log2 f ðiÞ ð10Þ

where f ðiÞði ¼ 1; 2; . . .; 20Þ represents the occurrence

probability of amino acid i. The information entropy H is a

measured value of the amount of information. For example,

for the digital sequence P ¼ 100100011010010, the

information entropy H is obtained as given below:

Pð0Þ ¼ 9=15 ¼ 0:6

Pð1Þ ¼ 6=15 ¼ 0:4

H ¼ �ð0:6 � log2 0:6 þ 0:4 � log2 0:4Þ ¼ 0:971:

8
><

>:

ð11Þ

Distribution (D)

According to Zou et al. (2013), based on the different

physiochemical properties, the 20 native amino acids can

be divided into 3 groups. In this study, the following eight

different physiochemical properties were utilized: second-

ary structure, solvent accessibility, normalized van der

Waals volume, hydrophobicity, charge, polarizability,

polarity, and surface tension (Zou et al. 2013) (listed in

Table 2). The descriptor called distribution was utilized to

describe the global composition of each of those properties.

In this study, five distributions were assigned—position

percentage of first, 25, 50, 75, and 100 % residue occur-

rence in the entire sequence. Therefore, the distribution Dx

for the descriptor Ei is calculated as below (Saravanan and

Lakshmi 2013):

Ei1Dx ¼
P1

L
; ð12Þ

Ei25Dx ¼
P25

L
; ð13Þ

Ei50Dx ¼
P50

L
; ð14Þ

Table 2 Details of the

physiochemical descriptor
Physiochemical property Class one Class two Class three

Secondary structure E,A,L,M,Q,K,R,H V,I,Y,C,W,F,T G,N,P,S,D

Solvent accessibility A,L,F,C,G,I,V,W P,K,Q,E,N,D M,R,S,T,H,Y

Normalized van der Walls

volume

G,A,S,T,P,D,C N,V,E,Q,I,L M,H,K,F,R,Y,W

Hydrophobicity R,K,E,D,Q,N G,A,S,T,P,H,Y C,L,V,I,M,F,W

Charge K,R A,N,C,Q,G,H,I,L,M,F,

P,S,T,W,Y,V

D,E

Polarizability G,A,S,D,T C,P,N,V,E,Q,I,L K,M,H,F,R,Y,W

Polarity L,I,F,W,C,M,V,Y P,A,T,G,S H,Q,R,K,N,E,D

Surface accessibility G,Q,D,N,A,H,R K,T,S,E,C I,L,M,F,P,W,Y,V
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Ei75Dx ¼
P75

L
; ð15Þ

Ei100Dx ¼
P100

L
ði ¼ 1; 2; . . .; 8; x ¼ 1; 2; 3Þ;

ð16Þ

where P1, P25, P50, P75, P100 indicate the position of first

occurrence of x, and positions of 25, 50, 75, 100 %

occurrence of x, respectively.

We give an example to explain in detail the distribution

in the following. Assuming that there is a protein sequence,

its amino acid composition is AEAAAEAEEAAAAAE

AEEEAAEEAEEEAAE, which has 16 alanines and 14

glutamic acids. The first, 25, 50, 75, and 100 % of A are

located in the first, 5th, 12th, 20th, and 29th residue. The

D descriptor for A is 1/30 = 0.0333, 5/30 = 0.1667,

12/30 = 0.4000, 20/30 = 0.6667, 29/30 = 0.9667. Simi-

larly, the D descriptor for E is 0.0667, 0.2667, 0.6000,

0.7667, 1.0000. Overall, the D descriptor for this sequence

is D = (0.0333, 0.1667, 0.4000, 0.6667, 0.9667, 0.0667,

0.2667, 0.6000, 0.7667, 1.0000).

Position-Specific Scoring Matrix (PSSM)

The position-specific scoring matrix (PSSM) is often used

to describe the sequence evolution information of protein.

A protein sequence P with L amino acid residues can be

formulated by an L 9 20 matrix, it can be expressed as

follows:

P
ð0Þ
PSSM ¼

n
ð0Þ
1;1 n

ð0Þ
1;2 � � � n

ð0Þ
1;20

n
ð0Þ
2;1 n

ð0Þ
2;2 � � � n

ð0Þ
2;20

..

. ..
. ..

. ..
.

n
ð0Þ
L;1 n

ð0Þ
L;2 � � � n

ð0Þ
L;20

2

66664

3

77775
ð17Þ

where n
ð0Þ
i;j stands for the initial score of amino acid resi-

dues during the evolution process the i-th ði ¼ 1; 2; . . .; LÞ
sequential position has been changed into type jðj ¼
1; 2; . . .; 20Þ amino acid. The numbers 1, 2, …, 20,

respectively, represent the 20 native amino acid types

based on the alphabetical order considering only their

single character codes (Chou et al. 2012). We can obtain

the L 9 20 scores in Eq. (17) using PSI-BLAST (Schäffer

et al. 2001) to search the UniProtKB/Swiss-Prot database

(Boutet et al. 2007; UniPort Consortium 2008). There is an

important problem to be noticed, when only Eq. (17) was

used directly, because the data have a significant variation,

it gives inaccurate results; in order to solve the problem, we

should make each element in Eq. (17) change from 0 to 1,

and thus a standard conversion was performed. Through

the conversion, Eq. (17) will become this

P
ð1Þ
PSSM ¼

n
ð1Þ
1;1 n

ð1Þ
1;2 � � � n

ð1Þ
1;20

n
ð1Þ
2;1 n

ð1Þ
2;2 � � � n

ð1Þ
2;20

..

. ..
. ..

. ..
.

n
ð1Þ
L;1 n

ð1Þ
L;2 � � � n

ð1Þ
L;20

2

66664

3

77775
ð18Þ

where

n
ð1Þ
i;j ¼

1

1 þ e�n
ð0Þ
i;j

ð19Þ

After getting the PSSM matrix, we compute the average

replaced possibility for all 20 types of amino acids, and

finally 20 features are obtained. It can be formulated as

(Zou et al. 2013)

P0PSSM ¼ E1;E2; . . .;E20

� �T ð20Þ

where T is the symbol of transpose operator

Ej ¼
1

L

XL

i ¼ 1

n
ð1Þ
i;j ð21Þ

where Ej represents the average score of the amino acid

residues in the protein sequence being changed to amino

acid type j during the evolution process.

Prediction Engine

In this study, the ML-KNN classifier was adopted to per-

form the prediction, which is derived from the classical

KNN algorithm. The detailed description about how the

classifier works is clearly described in Zhang and Zhou

(2007), and hence there is no need for repeating it here. The

predictor established in this study can be used to predict the

functional types of both singleplex and multiplex human

membrane proteins.

Performance Metrics

It is worthy to point out that for a multi-label learning

system like the current system, which is different from the

classical single-label learning system, the existing metrics,

which were used to evaluate the quality of a predictor on a

single-label system would fail to work when a multi-label

learning system like this is faced. The metrics will be much

more complicated for a multi-label learning system. We

now describe the metrics used in multi-label system in the

following section.

For a multi-label learning system containing N protein

sequences, which belong to M functional types, L is the

label set that contains all of the possible functional types

concerned. Thus, the i�th sequence Pi and its corre-

sponding functional type(s) can be expressed by
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fPi; Ligði ¼ 1; 2; . . .;NÞ ð22Þ

where Li is the subset that includes all class label (s) for the

i�th protein. Obviously, we have

L1 [ L2 [ . . . [ LN � L ¼ fl1; l2; . . .lMg ð23Þ

where liði ¼ 1; 2; . . .;MÞ corresponds to the label for the

i�th functional type. In this study, the value of N is 3,166,

the value of M is 8. Assume that L�i is the all predicted

label(s) for the i�th sample. Thus, the following five

metrics can be used to measure the prediction quality of the

multi-label system:

Absolute� False ¼ 1

N

XN

i¼1

Li [ L�i
�� ��� Li \ L�i

�� ��
M

� �

Accuracy ¼ 1

N

XN

i¼1

Li \ L�i
�� ��

Li [ L�ik k

� �

Precision ¼ 1

N

XN

i¼1

Li \ L�i
�� ��

L�ik k

� �

Recall ¼ 1

N

XN

i¼1

Li \ L�i
�� ��

Lik k

� �

Absolute true ¼ 1

N

XN

i¼1

DðLi; L
�
i Þ

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð24Þ

where N is the number of different membrane proteins, M

is the total number of functional types, here N ¼ 3; 166 and

M ¼ 8. The symbol [ and \ represent ‘‘union’’ set theory

and intersection, respectively. k k is the operator acting on

the set therein to count the number of its elements, and

(DðLi; L
�
i Þ ¼ 1; if all the labels in Li are identified

to those in L�i
DðLi; L

�
i Þ ¼ 0; otherwise

:

ð25Þ

Among the five evaluation measures, the rate of absolute-

false is opposite to those of the other four. As can be easily

seen from Eq. (22), when the multi-labels for all of the

samples are correctly predicted, i.e., Li 	 L�i or

Li [ L�i
�� �� ¼ Li \ L�i

�� �� ði ¼ 1; 2; . . .;NÞ, the rate of

absolute-false equals to 0. When each of P ði ¼ 1; 2; . . .;NÞ
is predicted completely wrong, i.e., belonging to all the

possible categories except its own category or categories;

i.e., Li [ L�i ¼ L and Li \ L�i ¼ ;, or Li [ L�i
�� �� ¼

M and Li \ L�i
�� �� ¼ 0, the rate of absolute-false is equal

to 1. Therefore, the lower the absolute-false is, the better

the prediction quality will be. However, for the other four

metrics, the meanings of their rates are just opposite; i.e.,

the higher their rates are, the better the prediction quality

will be.

Results and Discussion

In statistical prediction, it is meaningless to simply say the

success rate of a predictor without specifying what meth-

ods and benchmark dataset were utilized to test its accuracy

(Wu et al. 2012). As is well known, there are three methods

that are often used to examine the quality of a predictor:

they are jackknife test, sub-sampling test, and independent

dataset test, respectively. Among the three approaches, the

jackknife test was considered as the least but most objec-

tive one, yielding a unique result for a given benchmark

dataset, and hence it has been widely recognized and

increasingly used to examine the power of various pre-

dictors. Therefore, the jackknife test was also adopted in

this study to evaluate the quality of the predictor.

However, even though the jackknife test method has

been used, the same predictor may also generate obviously

different results for different benchmark datasets. The

reason is that the more stringent a benchmark dataset in

excluding homologous and high similarity sequences, the

more difficult it becomes for a predictor to achieve a high

overall success rate (Chou and Shen 2010). Also, the more

the number of subsets a benchmark dataset covers, the

more difficult it is to achieve a high overall success rate.

In this study, the results obtained are listed in Table 3.

As we can see from Table 3, comparing the other two

methods, the combination of D ? PSSM provides better

results; the overall absolute-true is 73.94 %, while the

absolute-false is 6.48 %, i.e., the overall absolute-false

rates are very low, while the absolute-true rates are quite

higher; all of these results are indeed promising, indicating

that the method is useful in identifying the functional types

of membrane proteins.

Now, let us consider that a benchmark dataset consists of

two subsets with each containing the same number of pro-

teins. The overall success rate in identifying their attribute

categories by random assignment would be 1/2 = 50 %;

however, when the protein samples distributed among the

eight different types are completely random, the overall

success rate by random assignments would be 1/

8 = 12.5 %; if the assignments are weighted as its sizes of

subsets (Table 1), then the overall success rate would be:

Table 3 The results obtained by jackknife test with ML-KNN

algorithm in the benchmark dataset

Methods Evaluation measures

Absolute-

false

Accuracy Precision Recall Absolute-

true

CPseAAC 0.0824 0.6376 0.6390 0.6379 0.6361

AAC ? IE 0.0895 0.6095 0.6105 0.6098 0.6083

D ? PSSM 0.0648 0.7467 0.7532 0.7478 0.7394
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�
6052þ 1952þ 252þ 272þ 14442þ 2512

þ832þ 63772
�
=32672 
 27:79 % ð26Þ

Apparently, even the overall success rate by the worst

solution in the benchmark dataset is overwhelmingly

higher than the completely randomized rate and weighted

randomized rate, so the models presented in this paper are

indeed very encouraging (Huang and Yuan 2013).

Conclusion

Although many investigators made efforts in identifying

the functional types of membrane proteins, it is still a

challenge in this area with the explosion of newly found

protein sequences entering into protein databanks. In this

study, a new method by fusing various pseudo amino acid

compositions was proposed, and the results obtained indi-

cate that the new method has a very high potential for

becoming a useful high-throughput tool for identifying the

functional types of membrane proteins (Xiao et al. 2013).

We hope it may play a key complementary role to the

existing predictors in this area. In the future, we will

investigate other methods for the sake of enhancing the

powerful of the prediction.

Since user-friendly and publicly accessible web-servers

provide direction for developing practically more useful

models, simulated methods, or predictors (Chou and Shen

2009), we shall make efforts in our future work to provide a

web server for the method presented in this study.
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