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Abstract Soy isoflavone’s (genistein and daidzein in

particular) biological significance has been thoroughly

studied for decades, so we started from the premise that

refreshed investigation approach in this field should con-

sider identification of their new molecular targets. In

addition to recently described epigenetic aspects of po-

lyphenole action, the cell membrane constituents-mediated

effects of soy isoflavones are worthy of special attention.

Accordingly, the expanding concept of membrane steroid

receptors and rapid signaling from the cell surface may

include the prominent role of these steroid-like compounds.

It was observed that daidzein strongly interacts with

membrane estrogen receptors in adrenal medullary cells. At

low doses, daidzein was found to stimulate catecholamine

synthesis through extracellular signal-regulated kinase 1/2

or protein kinase A pathways, but at high doses, it inhibited

catecholamine synthesis and secretion induced by acetyl-

choline. Keeping in mind that catecholamine excess can

contribute to the cardiovascular pathologies and that cate-

cholamine lack may lead to depression, daidzein applica-

tion promises to have a wide range of therapeutic effects.

On the other hand, it was shown in vitro that genistein

inhibits LNCaP prostate cancer cells invasiveness by

decreasing the membrane fluidity along with immobiliza-

tion of the androgen receptor containing membrane lipid

rafts, with down regulation of the androgen receptors and

Akt signaling. These data are promising in development of

the molecular pharmacotherapy pertinent to balanced soy

isoflavone treatment of cardiovascular, psychiatric, and

steroid-related malignant diseases.
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Introduction

After decades of working in the field of biological signif-

icance of soy isoflavones, it can be easily thought that all

the opened issues are elaborated in detailed manner or even

completely encircled, and the ‘‘golden era’’ of research

seems to be irretrievably gone as well as the critical mass

of data accumulated, so the definitive conclusions appear to

be achievable. However, what does actually exist repre-

sents a complex mosaic of various authors’ projections and

conclusions, indistinct in some segments, and certainly

incomplete. In addition to the steps toward clarifying the

current uncertainties, we believe that the investigation

approach in this field should be refreshed, some up to date

objectives in terms of identification of new targets of soy

isoflavone action established, while the methodological

breakthrough also needs to be done. In this regard, the

recent works of Milenkovic et al. (2012), (2013) may be

inspiring. Namely, the authors marked microRNAs (miR-

NAs) as molecular targets of natural sourced polyphenols,

underlying their biological effects (Milenkovic et al. 2013).

miRNAs represent noncoding, single-stranded RNAs of 22

nucleotides, annotated to control the post-transcriptional

regulation of 30 % of mammalian genes (Bartel 2004;

Esquela-Kercher and Slack 2006). Various cellular
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Department of Cytology, Institute for Biological Research
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‘‘Siniša Stanković’’, University of Belgrade, Despot Stefan Blvd.

142, 11060 Belgrade, Serbia

123

J Membrane Biol (2015) 248:1–6

DOI 10.1007/s00232-014-9745-x



processes, such as division, differentiation, growth, and

apoptosis are performed by means of the miRNAs regu-

lation (Miska 2005). Over 100 miRNAs were identified to

have modulated expression by polyphenols (Milenkovic

et al. 2013). So, in addition to the classic, well-known

routes of gene expression regulation, it emerges one

entirely new form of the indirect influence of natural

originated compounds on the regulation of gene expres-

sion, underlying the physiological and pathological pro-

cesses, with the participation of miRNAs. Pertinent to this,

in a series of our previous works (Ajdžanović et al. 2010,

2011, 2012, 2013, 2014), we have described the membrane

biophysics-related effects of soy isoflavones, with an

emphasis on different cells function and various systemic

implications after their application. Besides anchorage to

the extracellular matrix/neighboring cells, cytoskeleton

organization and vesicle trafficking, membrane tension/

fluidity represents the crucial definer of the cell mechanical

status (Asnacios and Hamant 2012; Ajdžanović et al.

2014), and may be increased, unaltered, or decreased after

soy isoflavone intercalation (Ajdžanović et al. 2014). The

character of membrane tension/fluidity changes depends on

polarity and a number and arrangement of applied iso-

flavone functional groups (Ajdžanović et al. 2014), and

diversely fashions cell rheological properties (dynamics/

deformation behavior) and function (Zicha et al. 1999).

The accumulation of data in previous decades, concerning

the concept of membrane steroid receptors and the steroid

hormones membrane-initiated, rapid actions (Watson and

Gametchu 1999; Falkenstein et al. 2000; Norman et al.

2004) define an additional, potentially very interesting,

vector of soy isoflavone ‘molecular’ action (Ajdžanović

et al. 2014), considering the well-known fact that their

similarity with 17-b-estradiol (Setchell 1998) results in the

binding to classical estrogen a and b, but also to androgen

and progesterone receptors (Kuiper et al. 1997; Beck et al.

2005; Kalaiselvan et al. 2010). It should be emphasized

that membrane-localized pools of steroid receptors include

classical as well as putative (some new protein candidates)

steroid receptors, which mediate steroid/steroid-like ligand

actions, originating as signaling from the cell surface

(Levin 2011). Interestingly, miRNAs functions may also be

affected by the activation of these signaling cascades

(Levin 2011). The role of membrane steroid receptors in

various physiological (neuronal excitability, neurotrans-

mitter release, vasodilation, insulin production and secre-

tion, renal tubular absorption, and osteoblasts

differentiation) and pathological (cardiomyocyte survival

in ischemia, breast and prostate cancer cells proliferation,

migration, and invasion) events has increasingly been

demonstrated (Hammes and Levin 2011; Roepke et al.

2011; Xie et al. 2011). Our objective herein is to highlight

the membrane steroid receptor-mediated action of soy

isoflavones, with an attempt to evaluate biomedical sig-

nificance of the phenomenon and propose the perspectives

and outcomes in this research segment development.

Membrane Steroid Receptors

The cellular effects of estrogens are predominantly initi-

ated via activation of classical estrogen receptors a and b,

localized in the nucleus or cytoplasm of the target cells,

which belong to the nuclear steroid receptor superfamily

members and act as transcription factors (Kumar et al.

2011). Coupled with the ligands–estrogens or estrogen-like

compounds, they bind to the estrogen-responsive elements

within specific genes and may alter their rate of tran-

scription (Jacob et al. 2006). As previously mentioned,

some recent studies focused on membrane-initiated, rapid

actions of steroid hormones have given the invaluable

insight into their non-classical mechanisms of action

(Levin 2011; Marino et al. 2012; Adlanmerini et al. 2014).

Namely, these ‘‘non-genomic effects’’ could be mediated

by extranuclear estrogen receptors (non-classical mem-

brane bound receptors) such as G protein-coupled estrogen

receptor, also named GPR30/GPER, which has been

identified as a novel estrogen receptor (Filardo et al. 2007;

Madeo and Maggiolini 2010). It was observed that estra-

diol through GPER rapidly activates different signaling

pathways, including the stimulation of adenylyl cyclase,

mobilization of intracellular calcium (Ca2?) stores, and

activation of mitogen-activated protein kinase (MAPK) as

well as phosphoinositide 3-kinase (PI-3K) pathways (Sol-

tysik and Czekaj 2013). Because estrogen receptors do not

have the intrinsic kinase activity, these molecular interac-

tions are critical to direct estrogen-stimulated rapid action

and may occur in a cell type-dependent fashion (Watson

et al. 2007). Interestingly, membrane estrogen receptors

have been shown to interact with the caveolar structural

protein caveolin-1, so this molecular interaction is essential

for the estrogen receptor plasma membrane localization

(Sud et al. 2010). De facto, membrane estrogen receptor

represents the central component of a multimolecular

‘‘signalsome,’’ which orchestration results in the rapid

signaling cascades (Moriarty et al. 2006; Soltysik and

Czekaj 2013).

Testosterone and dihydrotestosterone generally exert

their effects through binding and activation of the intra-

cellular androgen receptors, which results in the receptor

dimerization and nuclear translocation, followed by

expression of the androgen-specific target genes (Heinlein

and Chang 2004). Similar to estrogens, besides the long-

term genomic outcome of androgen effects (Liao et al.

2013), a numerous studies have shown the rapid effects of

androgens, occurring within minutes in various cell types
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(Benten et al. 1999; Kampa et al. 2002, 2006; Kallergi

et al. 2007; Yu et al. 2012). These rapid androgen effects

consider activation of the membrane androgen receptors

and triggering some non-genomic signals (Rahman and

Christian 2007; Foradori et al. 2008). Although the

molecular identity of membrane androgen receptors

remains still largely unknown, it is assumed that these

receptors may include the pool of intracellular androgen

receptors targeted to the cell membrane and associated with

the membrane structures (such as lipid rafts or caveolae),

or represent some undetermined G protein-coupled recep-

tors (GPCRs), triggering a variety of signaling cascades

(Papadopoulou et al. 2008). Increasing body of evidence

indicates that membrane androgen receptor coupling with

ligands leads to the activation of extracellular signal-reg-

ulated kinase 1/2 (ERK1/2) (Peterziel et al. 1999), PI-3K/

Akt (Papakonstanti et al. 2003; Papadopoulou et al. 2008),

Protein kinase C (Peterziel et al. 1999; Lu et al. 2001), and

MAPK (Heinlein and Chang 2002) signaling pathways.

Occasionally, the rapid action realized through membrane

androgen receptors cannot be blocked by anti-androgens

(Kampa et al. 2002; Papakonstanti et al. 2003), but remains

sensitive to pertussis toxin inhibition, indicating the con-

crete receptors most likely GPCR nature (Kampa et al.

2005; Sun et al. 2006).

Finally, it should be mentioned that membrane steroid

receptor actions frequently collaborate with nuclear steroid

receptor initiated pathways, establishing the complex

transcriptional interactions, critical to overall biological

functions of steroids (Levin 2011).

The Action of Soy Isoflavones Realized Through

Membrane Steroid Receptors

The concept of long-term genomic action of estrogens,

mediated by their binding to nuclear estrogen receptors,

was earlier well established (Greene et al. 1986; Giguère

et al. 1988), while the outcoming, inter alia neuroregula-

tory function is especially well elaborated in the area of

hypothalamus and other brain regions related to repro-

duction (McEwen 2002). However, evidence has grown

that estrogens exert non-genomic, rapid action via activa-

tion of membrane estrogen receptors (Falkenstein et al.

2000; Norman et al. 2004), and even soy isoflavone

daidzein was shown to strongly inhibit the specific binding

of [3H]17b-estradiol to bovine adrenal medullary cell (a

model of catecholaminergic brain neurons) membranes,

suggesting its’ interaction with the membrane estrogen

receptors (Yanagihara et al. 2006) (Fig. 1). Incubation of

these cells with daidzein (20 min) was shown to increase

the catecholamine synthesis in a concentration-dependent

manner (10–1,000 nM) (Liu et al. 2007). Furthermore, the

observed stimulatory effect was not inhibited by

ICI182,780, a classical estrogen receptor inhibitor, but

abolished by U0126, an inhibitor of ERK1/2 (Liu et al.

2007; Yanagihara et al. 2008). H-89, an inhibitor of protein

kinase A (PKA), also eliminated the stimulatory effect of

daidzein in adrenomedullary cells (Liu et al. 2007; Yan-

agihara et al. 2008). Interestingly, a physiological, acetyl-

choline-stimulated synthesis of catecholamine, in the same

model, was suppressed by daidzein at 1 lM (Liu et al.

2007). The authors suggest that daidzein may exert the

action of dual nature in adrenal medullary cells: to stimu-

late catecholamine synthesis (probably at the tyrosine

hydroxylase step) through membrane estrogen receptors/-

ERK1/2 or -PKA pathways (Fig. 1), at low concentrations;

but at high concentrations to inhibit catecholamine syn-

thesis and secretion induced by acetylcholine (Liu et al.

2007). Considering that catecholamine excess can mediate

the heart failure, atherosclerosis, coronary heart disease,

and hypertension (Westfall and Westfall 2005), the latter

finding may additionally support our previous thesis of

adequately dosed daidzein as the remedy of good choice in

cardioprotection (Ajdžanović et al. 2012). Furthermore, the

catecholamine lack in certain neuropsychological disorders

such as major depression and some potential benefit of low

doses of soy isoflavones should not be disregarded (Yan-

agihara et al. 2008), especially having in mind the observed

antidepressant potential of daidzein metabolite—equol

(5 mg/kg b.w./day) in female rat behavior models (Blake

Fig. 1 The cascade of events after low-dose daidzein binding to

membrane estrogen receptors (mER) in adrenal medullary cells.

ERK1/2 extracellular signal-regulated kinase 1/2, PKA Protein kinase

A, DOPA L-3,4-dixydroxyphenylalanine, Epi/NE Epinephrine/

Norepinephrine
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et al. 2011). Considering the wider frame of membrane

estrogen receptors distribution, comprising endothelial

nitric oxide generating cells, pancreatic islets, or breast

cancer (Nadal et al. 1998; Liu et al. 2009; Hammes and

Levin 2011), some other therapeutic strategies of soy iso-

flavone application may also be possible.

Similar to estrogens, androgens may bind to androgen

receptors at or in close proximity to the cell membrane, and

affect ERK, Akt, or NF-jB signaling, as well as increase

free intracellular calcium (Lyng et al. 2000; Gatson et al.

2006; Papadopoulou et al. 2008; Hammes and Levin 2011).

Membrane androgen receptors could be identified not only

in T-lymphocytes, monocytes, and osteoblasts, but also in

certain prostate cancer cell line (Kampa et al. 2002).

Micro-localization of some of the receptors, which appear

to be soy isoflavone sensitive, is intriguing (Cinar et al.

2007; Oh et al. 2010). Namely, the fraction of androgen

receptors was found to localize to the lipid rafts, a cho-

lesterol-rich membrane microdomains, in LNCaP meta-

static prostate cancer cells (Cinar et al. 2007) (Fig. 2).

Lipid rafts represent the specific milieu where the accu-

mulation and assembling of the signal transduction

machinery occurs and various stimulatory or inhibitory

inputs, essential for the cell function and fate, generate

(Pralle et al. 2000; Oh et al. 2010). Combination of the

androgen receptors containing lipid rafts dispersion with

soy isoflavone genistein (2.5–10 lM) treatment led to a

decrease of LNCaP cell viability through the induction of

apoptosis (Oh et al. 2010). Genistein alone attenuated the

Akt signaling pathway, important in cell survival, via up

regulation of the phosphatase and down regulated lipid

rafts (as well the entire) androgen receptors in the prostate

cancer cells (El Touny and Banerjee 2007; Oh et al. 2010;

Mahmoud et al. 2014). To note, Akt signaling and andro-

gen receptors in lipid rafts represent the entities earlier

shown to be tightly connected (Cinar et al. 2007) (Fig. 2).

These data imply the membrane androgen receptor-asso-

ciated, signaling processes interfering role of soy isoflav-

ones, responsible for their significant anticancer activity. In

support of this observation, application of genistein (IC50

concentration—46 lM) reduced in vitro invasiveness of

survived metastatic LNCaP cells, which was strongly

linked with the cells decreased superficial membrane flu-

idity (Ajdžanović et al. 2013). It is reasonable to believe

that membrane-related suppression of metastatic properties

of LNCaP cells, induced by genistein, links membrane

fluidity decrease and the following immobilization of

androgen receptor containing lipid rafts, with down regu-

lation of the androgen receptors and subsequent signaling

pathways silencing (Oh et al. 2010; Ajdžanović et al. 2013;

Tarahovsky et al. 2014).

Conclusion

Based on the above elaborated membrane steroid receptor

action of soy isoflavones and the potential biomedical

implications, the impression is that this research segment

would necessarily have to be expanded. Some new, soy

isoflavone sensitive candidates’ characterization and iden-

tification of various downstream signaling pathways rep-

resent crucial steps in this regard. Keeping in mind that

membrane steroid receptor-mediated events frequently

collaborate with nuclear steroid receptor-regulated gene

expression (Levin 2011), the mode of this complex inter-

actions (including polyphenol-targeted miRNAs involve-

ment (Milenkovic et al. 2012, 2013) should be of particular

interest. Also, the influence of membrane fluidity changes

observed upon flavonoid positioning in the membrane

bilayer, especially the compounds tendency to accumulate

in lipid rafts, and the pronounced lipophilicity following

their complexation with transient metal cations (Ajdžano-

vić et al. 2014; Tarahovsky et al. 2014) are worthy of

attention from the perspective of membrane steroid

receptors availability, assembling, and linkage to the signal

transduction machinery.

Sublimation of these issues may be extrapolated to some

practical solutions in molecular pharmacotherapy, con-

cerning the balanced soy isoflavone-based treatment of

widespread cardiovascular, psychiatric, metabolic, and

steroid-related malignant diseases.

Fig. 2 Genistein binding to membrane androgen receptors (mAR) in

LNCaP cells and the following apoptosis induction. The cascade of

molecular events implies focal adhesion kinase (FAK), phosphoin-

ositide 3-kinase (PI-3K), and Akt signaling participation. Membrane

lipid rafts mobility, and their androgen receptors assembling could be

reduced due to genistein-caused membrane fluidity decrease

(Ajdžanović et al. 2013; Tarahovsky et al. 2014)
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