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Abstract The incidence of gallstone disease is two to

three times higher in women than in men, and female sex

hormones, particularly estrogens, have been implicated as

contributory factors. Cholesterol nucleation is the initial

step in gallstone pathogenesis and proceeds from choles-

terol-rich phospholipid vesicles. The aim of this study was

to investigate if there is a difference in cholesterol nucle-

ation rates in male and female bile and whether estrogen

influences nucleation rates by interacting with cholesterol-

rich regions known as ‘‘lipid rafts’’ that exist within the

cholesterol-phospholipid vesicles of the bile. Cholesterol

nucleation from native prairie dog bile and the interaction

of estrogens with lipid rafts in model bile solutions were

investigated using Förster resonance energy transfer

(FRET). Female native bile samples showed a greater

reduction in energy transfer than did male native bile,

indicating that cholesterol nucleation occurred more read-

ily in female bile than in male bile. Model bile experiments

demonstrated that the addition of estrogen has a significant

effect, either cholesterol nucleation or raft disruption, but

only in samples containing cholesterol-rich rafts. These

results suggest that estrogen interacts with cholesterol-rich

rafts in vesicles within bile to promote cholesterol nucle-

ation and predispose females to gallstone formation.

Keywords Lipid raft � Gallstone pathogenesis �
Estrogen � Cholesterol nucleation � FRET

Introduction

Gallstone disease is one of the most common and costly

digestive diseases, affecting 10–15% of the U.S. population

and accounting for 600,000 cholecystectomies per year,

with an annual cost of more than six billion dollars

(Friedman et al. 1966; NIH Consensus Development Panel

on Gallstones and Laparoscopic Cholecystectomy 1993).

The incidence of cholesterol gallstones is two to three

times higher in women than in men (Diehl 1991). Female

sex hormones have been implicated as contributory factors

to the promotion of gallstones. Increased parity is also

considered as an independent risk factor in gallstone dis-

ease, especially among young women (Bernstein et al.

1973). In addition, estrogen treatment in men with prostate

cancer has been found to increase the incidence of gall-

stones compared to men treated with other methods

(Henriksson et al. 1989), further suggesting a contributory

role of estrogens in gallstones. It is believed that female

steroids promote gallstones by decreasing gallbladder

motility and increasing biliary cholesterol saturation (Ev-

erson et al. 1991; White et al. 1976).

Hepatic secretion of cholesterol-saturated bile is a nec-

essary (Admirand and Small 1968), but not sufficient,

prerequisite for gallstone formation since cholesterol-

supersaturated bile is common in the healthy population

(Holzbach et al. 1973). This suggests that additional

defects such as alterations in nucleation time (Holan et al.
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1979; Sedaghat and Grundy 1980) and gallbladder

absorption (Lee 1978; Conter et al. 1986; Giurgiu et al.

1997) may be required to complete the process. It has

become apparent that a ‘‘nucleation defect’’ exists in

patients with cholesterol gallstones, although the exact

nature of this abnormality has yet to be defined. While

some investigators suggest that antinucleating factors are

absent in the bile of gallstone-containing patients (Holz-

bach et al. 1984), others suggest that pronucleating factors

are the cause of this nucleation defect (Burnstein et al.

1983; Levy et al. 1984; Groen et al. 1990).

Formation of gallstones occurs via a multistep process.

Cholesterol is secreted as unilamellar cholesterol and

phospholipid vesicles into the bile, where bile salts mi-

cellize the vesicles (Donovan 1999). Depending on the bile

salt:cholesterol ratio, equilibrium consists of either

micelles alone or both vesicles and micelles. The vesicles

remaining at equilibrium (if there are any) are enriched in

cholesterol because phospholipids are more easily micel-

lized than cholesterol (Strasberg and Harvey 1990; Somjen

and Gilat 1985; Ulloa et al. 1987). Aggregation of these

small unilamellar vesicles into larger, multilamellar vesi-

cles (MLVs) has been observed to directly precede cho-

lesterol nucleation (Halpern et al. 1986; Peled et al. 1989).

It has been well established that phospholipid and choles-

terol vesicles are heterogeneous, containing small, choles-

terol-rich ‘‘rafts’’ within a cholesterol-depleted continuous

phase (Brown and London 1997; Simons and Ikonen 1997).

Therefore, it is likely that the cholesterol-rich vesicles that

remain in the bile after micellization contain rafts.

Estrogens have profound effects on bile composition.

They are excreted into bile, after metabolism in the liver, in

female prairie dogs (Longwell and McKee 1942). Within

the bile, estrogens alter bile composition in humans, by

increasing the fraction of cholesterol and changing the bile

salt composition (Heuman et al. 1980), and estrogen

treatment (either oral or transdermal) has been shown to

decrease nucleation time (Uhler et al. 1998). The mecha-

nism by which estrogen mediates these effects has not yet

been determined, however. It has been shown that estrogen

affects membrane fluidity by intercalating into the mem-

brane (Tsuda et al. 2001; Tsuda and Nishio 2004; Liang

et al. 2001; Whiting et al. 2000), and it is possible that this

effect occurs through the disruption of rafts in the vesicle.

Lipid rafts, therefore, represent a possible nucleation site

and estrogen, a possible nucleation factor.

In this work, we attempted to determine if there is a

difference in cholesterol nucleation between males and

females and, if so, if estrogen is a contributory factor

responsible for these differences. Specifically, we were

interested in determining whether estrogen interacts with

lipid rafts during the nucleation process, thereby predis-

posing females to gallstone pathogenesis in the prairie dog,

which has emerged as an important animal model for the

study of human cholesterol gallstone disease (Holzbach

1984).

Materials and Methods

Materials

Cholesterol, b-estradiol (98% pure), dehydroergoster-

ol (DHE), sodium chloride (NaCl), calcium chloride

(CaCl2), sodium azide (NaN3), bovine serum albumin

(BSA), b-estradiol-6-(O-carboxymethyl)oxime:BSA and

4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES)

were purchased from Sigma (St. Louis, MO). 1,2-dimyri-

stoyl-sn-glycero-3-phosphocholine (DMPC) and 1-myri-

stoyl-2-[12-[(5-dimethylamino-1-naphthalenesulfonyl)amino]

dodecanoyl]-sn-glycero-3-phosphocholine (DAN-PC) were

purchased from Avanti Polar Lipids (Alabaster, AL). All

chemicals were used without further purification.

Animal Care and Gallbladder Bile Harvesting

Adult black-tailed male and female prairie dogs (Cynomys

ludovicianus), trapped in the wild and obtained from Flyers

Speciality Pets (Lubbock, TX), were caged individually in

a 23�C thermoregulated room. In order to examine whether

females are predisposed to gallstones, the animals were fed

a control nonlithogenic diet consisting of normal laboratory

chow (Purina Laboratory Chow; Ralston-Purina, St. Louis,

MO), sufficient to maintain body weight. After a 16-h fast

with water ad libitum, the animals were intramuscularly

anesthetized with ketamine (100 mg/kg body weight) and

xylazine (1.5 mg/kg), cholecystectomy was performed via

a midline laparotomy, gallbladders were harvested and bile

was collected. Use of animals followed approval by the

Institutional Animal Care and Use Committee (IACUC) of

Drexel University College of Medicine.

Native Bile Compositional Analysis

Gallbladder bile samples were aliquoted fresh and stored at

–20�C until analyzed using methods that have been long

established in our laboratory (Abedin et al. 1989) for levels

of cholesterol (Roschlau et al. 1974), phospholipids (Dryer

et al. 1957) and total bile acids (Iwata and Yamasaki 1964).

Carey’s critical tables were used to calculate the choles-

terol saturation index (CSI) on the basis of the total lipid

concentration (Carey and Small 1978). Total calcium was

determined by a previously published method (Anderegg

et al. 1951; Connerty and Briggs 1966). Total and conju-

gated bilirubin were measured by a modification of the

methods of Michaelsson (1961) and Nosslin (1960). Total
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protein was measured by the method of Lowry et al.

(1951).

Förster Resonance Energy Transfer

We have developed Förster resonance energy transfer

(FRET) assays to quantify true nucleation times in solutions

of model bile (Wrenn et al. 1999, 2001) as well as to measure

raft size (Brown et al. 2007a). In this work, DHE was used as

a FRET donor and DAN-PC was used as a FRET acceptor.

DHE is a fluorescent analogue of cholesterol which acts

similarly to cholesterol, while DAN-PC is a fluorescently

labeled phospholipid, which has been observed to act simi-

larly to an unsaturated phospholipid (Brown et al. 2007a).

The probes partition differentially between the raft and

nonraft phases, with DHE partitioning preferentially into the

raft phase along with cholesterol and DAN-PC being almost

completely excluded from the raft phase (Brown et al.

2007a). This differential partitioning allows for domain size

measurement. In addition, this pair can be used to detect

cholesterol nucleation directly (Wrenn et al. 1999, 2001) as

DHE nucleates and crystallizes with cholesterol.

FRET can be measured in several ways; for this work,

two methods were used. To study cholesterol nucleation,

the ratio of donor and acceptor peaks (R) was measured as

follows:

R ¼ FD

FA
ð1Þ

where FD is the intensity of the donor at its maximal

wavelength (373 nm for DHE) and FA is the intensity of

the acceptor at its maximal wavelength (515 nm for DAN-

PC). During cholesterol nucleation/crystallization, DHE

leaves the vesicle along with cholesterol, while DAN-PC

remains in the vesicle. This increased distance between the

probes causes FRET to decrease, which is observed by an

increase in donor peak and a decrease in acceptor peak,

leading to an increased ratio (Wrenn et al. 2001).

Relative raft size is measured through the use of FRET

efficiency (%E). This measure is calculated from the

intensity of the donor at its maximal emission wavelength

(373 nm for DHE) in the presence and absence of acceptor:

Eð%Þ ¼ 1� FDA

FD
ð2Þ

where FDA and FD are the donor emission intensities in the

presence and absence of acceptor, respectively (Lakowicz

1999). Because of the differential partitioning of DAN-PC

and DHE between raft and nonraft phases, this experi-

mental efficiency can be related to domain size (Brown

et al. 2007b); larger domains correspond to lower effi-

ciency values and smaller domains correspond to higher

efficiency values.

Labeling of Native Gallbladder Bile

Films of DHE and/or DAN-PC were prepared using the

film deposition technique (Szoka and Papahadjopoulos

1980). DHE (0.3 mg) and DAN-PC (0.45 mg) dissolved in

chloroform were added to scintillation vials. The chloro-

form was evaporated under a stream of nitrogen, and any

residual chloroform was removed by exposing the samples

to a vacuum overnight. It was necessary to dilute the bile

samples in order to obtain a sufficient sample volume, as

well as to eliminate the inner filter effect during fluores-

cence spectroscopy. Gallbladder bile samples were diluted

six times with buffer containing 0.15 M NaCl, 5 mM CaCl2,

5 mM HEPES and 3 mM NaN3 at a pH of 7.4. Diluted bile

(2 ml) was added to the DHE/DAN-PC films on day 0. The

samples were vortex-mixed and incubated with the fluo-

rescent probes for 1 h before use.

Model Bile Preparation

Model bile solutions were prepared using the rapid solvent

exchange (RSE) technique (Buboltz and Feigenson 1999).

Stock solutions of DMPC, cholesterol, DHE, DAN-PC and

estradiol dissolved in chloroform were added to 20 ml flat-

bottomed vials in the required amounts. Heated (60�C)

aqueous buffer (3 ml) was added. The solution was then

vortex-mixed while exposed to a vacuum (4.92 inches

mercury absolute pressure) for 1 min and then diluted with

buffer to a final lipid concentration of 1 mM. The buffer

(pH of 7.4) contained 0.15 M NaCl, 5 mM CaCl2, 5 mM

HEPES and 3 mM NaN3.

Three sets of model vesicles were created in this work to

investigate three regions of the phase diagram for the

DMPC-Chol model system at 30�C. The first set contained

5% sterol, making it completely liquid-disordered (ld). The

second set contained 20% sterol so that it resided within the

two-phase region (the region of interest in the study of

rafts). The third set contained 50% sterol and was com-

pletely liquid-ordered (lo) (Almeida et al. 1992; Tampe

et al. 1991). Each of these samples also contained 5%

DHE, DAN-PC at an acceptor-to-lipid ratio (ALR) of 0.0–

12.0 and 0–10% estrogen.

Fluorescence Measurements

Fluorescence measurements were obtained using a steady-

state fluorescence spectrometer (Photon Technology,

Ontario, Canada; model Q-5/W-601) with a circulating

water bath to maintain the sample temperature. The tem-

perature was read on a cuvette thermometer (Fisher, Phil-

adelphia, PA; model 15-078 J). All native bile experiments

were performed at room temperature, and all model bile

experiments were performed at 30�C.
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Results

Native Bile Compositional Analysis

Lipids

The amounts of cholesterol, total bile acids, phospholipids

and total lipids in each native bile sample are shown in

Table 1 along with the CSI. In five of the six pairs of

samples, the female sample contained more cholesterol

than the male did. A majority of the female samples

likewise contained a larger amount of total bile acids,

phospholipids and total lipids than the male samples. In

addition, the CSI was higher in four of the six female

samples than in the male samples. Overall, the female bile

samples contained significantly more cholesterol, total bile

acids, phospholipids and total lipids and had a greater CSI

than the male samples. These bile compositions, on a

mol% basis, were overlaid on the equilibrium phase dia-

gram for bile (Wang and Carey 1996) in Fig. 1. Each of

these bile samples resides within the one-phase micellar

region, with little difference between male and female

samples overall.

Nucleating Factors

Table 2 contains an analysis of some proposed nucleating

factors in each of the native bile samples. A majority of

female samples contained more Ca2?, total proteins and

unconjugated bilirubin than the male samples, while a

majority of male samples contained more total bilirubin

and conjugated bilirubin than the female samples. In

addition, more of the male samples contained a higher

conjugated:unconjugated bilirubin ratio than the female

ones. Overall, the female samples contained more Ca2?,

total proteins, total bilirubin and unconjugated bilirubin

and the male samples contained more conjugated bilirubin

and had a higher conjugated:unconjugated bilirubin ratio.

Native Bile Nucleation

An established FRET assay, which relates FRET between

DHE, a fluorescent cholesterol analogue, and DAN-PC, a

fluorescently labeled phospholipid, to cholesterol nucle-

ation (Brown et al. 2007b), was used to detect cholesterol

nucleation in native prairie dog bile. Figure 2 shows rep-

resentative emission scans for one fluorescently labeled

bile set (set 2). The emission intensities are normalized by

the DAN-PC peak intensity (measured at 515 nm). On day

0, for both male and female samples, the DHE peak (at

373 nm) was much lower than the DAN-PC peak

(515 nm). This corresponded to a low R value. By day 14,

the DHE peak in both samples had increased relative to the T
a
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DAN-PC peak, resulting in an increased value of R, a trend

which continued through day 42. In this sample set, the

DHE peak increased relative to the DAN-PC peak to a

greater extent in the female sample than in the male

sample. This increase in DHE peak relative to the DAN-

PC peak, resulting in an increase in R, indicates a decrease

in energy transfer due to an increased distance between

DHE and DAN-PC. DHE is believed to partition similarly

to cholesterol, and this decrease in energy transfer is

interpreted as the initiation of cholesterol nucleation.

Figure 3 shows the FRET ratio (R) for all six pairs of

female and male prairie dog bile samples (fluorescently

labeled with DHE and DAN-PC) measured over a 2-month

period. In the first three sets of samples, readings were

obtained on days 0, 14, 28 and 56; in the second three sets of

samples, readings were obtained every 7 days in order to

better determine the kinetic behavior. Both male and female

samples displayed a fairly steep initial upturn in R, followed

by a plateau, as seen in the representative emission scans

(Fig. 2). In five of the six pairs, the females displayed a

higher ratio than the males. It appears that both male and

female samples began to nucleate almost immediately (as

observed by the initial sharp increase in R) and that the

cholesterol in the female samples more often crystallized to

a greater extent than it did in the male samples.

Figure 4a shows the overall summary of the first three

sets of male and female bile, and Fig. 4b shows the overall

summary of the second two sets of male and female bile. In

both cases, the female ratio is higher than the male, indi-

cating increased extent of cholesterol nucleation in the

females.

Fig. 1 Native bile compositions for male (filled circles) and female

(open circles) samples overlaid on the equilibrium phase diagram for

bile (redrawn from Carey and Small 1978). Region 1 represents a

one-phase micellar region. Region 2 contains micelles and choles-

terol crystals. Region 3 contains micelles, vesicles and cholesterol

crystals. Region 4 contains micelles and vesicles
T
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Fig. 2 Representative emission scan for male (a) and female (b) samples for day 0 (black line), day 14 (open triangle), day 28 (X) and day 42

(open circle). Each scan has been normalized by the DAN-PC peak intensity (at 515 nm)

Fig. 3 FRET ratio for six pairs

of male (filled diamond) and

female (open square) prairie

dog bile samples, fluorescently

labeled with DHE and DAN-

PC. a Pair 1, b pair 2, c pair 3, d
pair 4, e pair 5 and f pair 6. It

can be seen that in five of the six

pairs the FRET ratio is higher in

the female sample than the male

sample
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Model Bile Nucleation

FRET in DHE- and DAN-PC-labeled DMPC-Chol vesicles

containing estrogen is shown in Fig. 5. In samples con-

taining 5% cholesterol (Fig. 5a), which are completely ld,

the FRET profile increases slightly with addition of up to

10% estrogen. This increase in FRET indicates a decreased

distance between donor and acceptor, suggesting an

increase in order upon addition of estrogen. Likewise,

samples containing 50% cholesterol (Fig. 5c), which are

completely lo, show a FRET profile that increases signifi-

cantly with addition of estrogen, indicating an estrogen-

induced increase in order. However, samples within the

two-phase (raft-containing) region, containing 20%

cholesterol (Fig. 5b), display a markedly different FRET

behavior upon addition of estrogen. These samples exhibit

a FRET profile that is seen to decrease with addition of

estrogen, representing an increase in donor–acceptor dis-

tance due to one of two possibilities: (1) an increase in raft

radius or (2) initiation of cholesterol nucleation.

Discussion

FRET studies in native bile indicate that cholesterol may

nucleate faster in female bile than in male bile. In most

cases, the female sample showed a greater extent of

nucleation compared to the male sample, and on average,

Fig. 4 Overall summary of

FRET ratio in fluorescently

labeled male (filled diamond)

and female (open square)

prairie dog bile samples. In the

first three pairs (a), readings

were obtained on days 0, 14, 28

and 56. In the second three pairs

(b), readings were obtained

every 7 days

Fig. 5 FRET efficiency profiles

of model bile samples

containing DMPC, estrogen and

5% cholesterol (a); 20%

cholesterol (b); and 50%

cholesterol (c). Samples

contained 0% (filled diamond),

2.5% (open square), 5% (filled
triangle), 7.5% (open circle) or

10% (filled circle) estradiol
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the female bile samples showed a greater extent of nucle-

ation than the male samples.

Comparison of the nucleation results (Fig. 2) with the

biliary lipid analysis (Table 1) shows a striking correlation

between extent of nucleation and cholesterol content in the

bile. Those samples containing more cholesterol were

observed to nucleate to a greater extent than those with less

cholesterol. However, when the biliary lipid, on a mol%

basis (Fig. 1), is compared to the nucleation results

(Fig. 2), the correlation is less apparent. On a percentage

basis, all of the samples reside within the one-phase

micellar region of the bile phase diagram and are therefore

not expected to form crystals without some external driving

force.

Several factors which have been previously shown to

promote cholesterol nucleation and gallstone formation

were quantified in the native bile samples. Certain proteins,

such as mucin, immunoglobulins, phospholipase C and

fibronectin, have been proposed as pronucleating factors

(Harvey et al. 1991; Pattinson and Willis 1991; Chijiiwa

et al. 1991; Upadhya et al. 1993; Smith 1987). Likewise,

the biliary Ca2? concentration has been shown to have

pronucleating effects (Gleeson et al. 1992; Strichartz et al.

1988), and the concentration of bilirubin has been identi-

fied as a potential pronucleating agent (Nakai et al. 2001;

Alponat et al. 1997). However, in the native bile samples

reported here, the extent of nucleation does not noticeably

correlate with these nucleating factors; a correlation

between nucleation and sex is much clearer in these native

bile samples. On average, the female native bile samples

nucleated to a greater extent than the male samples did.

This observation raises the possibility that estrogen may act

as a pronucleating factor.

In order to eliminate sample-to-sample compositional

variation and to clearly determine the role of estradiol on

cholesterol nucleation in bile, we created several model

bile samples of defined composition. We found that the

effect of estradiol in model bile systems is highly depen-

dent on lipid composition and, specifically, on the presence

or absence of lipid rafts. In vesicles with lipid rafts,

addition of estradiol caused a strong dose-dependent

increase in raft size or cholesterol nucleation. However, in

vesicles without lipid rafts, addition of estradiol had an

opposite effect, possibly increasing the membrane order

slightly. Previous studies have found that lipid composition

is extremely important in cholesterol nucleation. It has

been established that supplementation with phospholipids

can increase nucleation time and that the type of

phospholipid used in the supplementation plays a major

role in the nucleation time (Halpern et al. 1993; Mendez-

Sanchez et al. 2001). Phospholipid supplementation like-

wise shifts the location of biliary cholesterol from vesicles

to micelles and thereby decreases the cholesterol-to-

phospholipid ratio of the vesicles (Halpern et al. 1993). In

addition, the hydrophobicity of bile has been shown to

impact nucleation times, with less hydrophobic model biles

displaying faster cholesterol crystal growth rates (Ochi

et al. 1996).

In this work we found an additional effect of lipid

composition on gallstone pathogenesis in response to

estradiol presence. We have shown that estrogen has a

significant effect on vesicles containing lipid rafts, while

having a limited effect on vesicles without lipid rafts. The

exact mechanism of this effect has not been established

completely; however, the finding has a significant impact

on interpretations of the effect of estradiol on vesicles.

Currently, a large disparity in reported results regarding the

effect of estradiol on membrane fluidity exists, with some

groups reporting an increase in order (Tsuda et al. 2001;

Whiting et al. 2000), others reporting a decrease in order

(Clarke et al. 1990; Liang et al. 2001; Schwarz et al. 1996)

and others reporting no effect (Roy et al. 1990). While the

purpose of this work was not specifically to investigate the

effect of estradiol on membrane fluidity, we did ultimately

find that the effect of estradiol on vesicles varies consid-

erably, depending on the membrane composition and

cholesterol content and, specifically, on the presence or

absence of lipid rafts. This finding could explain, in part,

this disparity in findings regarding the effect of estradiol on

membrane fluidity.

The increase in FRET that was observed upon addition

of estradiol in the non-raft-containing vesicles suggests that

estradiol increases the order of the vesicle, thereby

decreasing the distance (and increasing FRET) between

donor and acceptor molecules. In vesicles containing 5%

cholesterol, estradiol may interdigitate within the vesicles,

creating local order, similar, but perhaps reduced in

strength, to the ordering behavior of cholesterol. In the

vesicles containing 50% cholesterol, estradiol may act in

concert with cholesterol to again increase vesicle order,

resulting in the increase in FRET that was observed upon

estradiol addition.

Most interesting, however, is the effect of estradiol on

raft-containing vesicles. In these vesicles, we observed a

decrease in FRET, suggesting one of two possibilities: raft

growth or cholesterol nucleation. It has been suggested that

sterols may accumulate preferentially in regions of the

vesicle containing high cholesterol content (Whiting et al.

2000). Accumulation of estradiol in the cholesterol-rich

raft region would increase the raft size. Furthermore,

estradiol could increase the local sterol composition within

the raft to a composition that is sufficient to initiate cho-

lesterol nucleation. An additional possibility is that within

the raft, which is already highly ordered, estradiol may

increase order enough to force the cholesterol to nucleate.

Regardless of the exact mechanism of action, it is apparent
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that estradiol has a profound effect on raft-containing

vesicles. Although the model bile studies were necessarily

performed at nonphysiological concentrations, one can

clearly see that even small amounts of estradiol have sig-

nificant effects on lipid phase behavior, specifically on lipid

rafts.

Rafts have been found to play a role in a wide variety of

membrane processes (Simons and Ikonen 1997; Golden

et al. 1999; de Gassart et al. 2003; Dykstra et al. 2003;

Cherukuri et al. 2001; Fiedler et al. 1993), although their

possible role in cholesterol nucleation has not yet been

reported. We found that estrogen has a greater effect on

vesicles containing rafts and propose that these rafts might

present a nucleation point in the formation of gallstones. A

schematic of the proposed mechanism of estrogen effect on

gallstone pathogenesis is shown in Fig. 6.

While the exact means by which estrogen acts on lipid

rafts has not been elucidated, we have shown clearly that

female bile nucleates to a greater extent on average than

male bile and that variation in bile composition alone

cannot fully explain this difference. Additionally, we found

that estrogen disrupts lipid rafts in some manner, present-

ing a potential means by which estrogen influences cho-

lesterol crystallization from bile that may partly explain the

gender differences in gallstone pathogenesis.
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