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Hydrodynamic and heat transfer characteristics of laminar flow past
a parabolic cylinder with constant heat flux

M. Abu-Qudais, 0. M. Haddad, A. M. Maqgableh

Abstract Steady, two-dimensional, symmetric, laminar
and incompressible flow past parabolic bodies in a
uniform stream with constant heat flux is investigated
numerically. The full Navier-Stokes and energy equa-
tions in parabolic coordinates with stream function,
vorticity and temperature as dependent variables were
solved. These equations were solved using a second
order accurate finite difference scheme on a non-
uniform grid. The leading edge region was part of the
solution domain. Wide range of Reynolds number
(based on the nose radius of curvature) was covered for
different values of Prandtl number. The flow past a
semi-infinite flat plate was obtained when Reynolds
number is set equal to zero. Results are presented for
pressure and temperature distributions. Also local and
average skin friction and Nusselt number distributions
are presented. The effect of both Reynolds number and
Prandtl number on the local and average Nusselt
number is also presented.

List of symbols

skin friction coefficient

dimensionless length

scaled non-dimensional stream function
scaled non-dimensional vorticity

scaled non-dimensional temperature
convection heat transfer coefficient

numerical index in streamwise direction

the index i at the beginning of the buffer zone
j numerical index in the wall normal direction
k the thermal conductivity

m  total band width of a banded matrix

Nusselt number (Nu = hé,,/k)

n the order of a banded matrix

p scaled non-dimensional pressure

p the non-dimensional pressure
P
q
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r  Prandtl number (Pr = v/a)
heat flux per unit area
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R the nose radius of curvature of the parabola
Reynolds number based on the nose radius of
curvature Re = U R/v)

the radius of curvature of the parabola
weighting factor

wall temperature

free stream temperature

free-stream velocity

(x,y) the Cartesian coordinates system

(&,7m) the parabolic coordinates system

Greek symbols

the thermal diffusivity
non-dimensional temperature
the kinematics viscosity
dynamic viscosity

stream function

vorticity

viscous dissipation
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1

Introduction

Some of the simplest flow problems such as flow past
parabolas, wedges, flat plates, paraboloids and cones are of
great importance and yet have received little attention [1].
In particular, the flow past a parabola is of practical in-
terest in Aerospace since aerodynamic bodies designed for
subsonic flow generally have finite thickness distributions
with a parabolic leading edge [2]. Also, in turbomachinery
applications, the cross-section of the blades is usually
identical with those of the airfoils.

All previous investigations in the literature [1, 3-6]
presented solutions only for the Navier-Stokes equations
that govern the hydrodynamic part of the problem. The
goal of this study is to solve the energy equation in ad-
dition to Navier-Stokes equations, and thus to present the
local and average skin friction distributions as well as the
local and average Nusselt number distributions for dif-
ferent values of the flow parameters, e.g. Re, Pr. Further-
more, the flow past a semi-infinite flat plate can be
obtained as a special case of flow past a parabolic body
as the Reynolds number, based on the nose radius of
curvature, is set equal to zero.

Davis [5] used parabolic coordinates to solve the laminar
incompressible flow past a semi-infinite flat plate using
truncation series or local similarity method applied on full
Navier-Stokes equations. The difficulty of matching ap-
proximation of low Reynolds number (Stokes) approxi-



300

mation with high Reynolds number (boundary layer) ap-
proximation is avoided and the solution is obtained for all
values of Reynolds number. Van De Vooren and Dijkstra [7]
applied the same approach used by Davis [5] to solve nu-
merically the nature of the flow near the leading edge of flat
plate. They used simple finite difference expressions and the
system of equations was solved by iterative technique. Their
solution was also valid for any value of Reynolds number.
They have shown that there is about 5% error in the results
of Davis [5] near the leading edge in skin friction.

The flow over a parabolic cylinder has been numerically
studied by Davis [1]. An alternating direction implicit
method was used to solve the time dependent Navier-
Stokes equations. Careful attention was focused by Davis
on extracting the singularities from the problem in the
limit as Reynolds number goes to zero (flat plate). The
same flow problem was treated by Dennis and Walsh [4]
using finite difference approximations to the partial dif-
ferential equations for the stream function and vorticity as
dependent variables. In their study, Dennis and Walsh
were not able to get a solution for Reynolds number
smaller than 0.25 because of singularity problem, although
their results were in good agreement with those of Davis
[1]. They had a small but significant difference between
their results and those of the second order boundary layer
approximation especially in skin friction.

The method of solution of Van De Vooren and Dijkstra
[7] for the semi-infinite flat plate was extended to the case
of parabolic cylinder by Botta, Dijkstra and Veldman [6].
They managed to extend the solution for the case of
Reynolds number approaches infinity (boundary layer).
The drag coefficient have been checked by means of ap-
plication of the momentum theory to an infinitely large
circular contour and the deviation was within 2% for
smallest mesh size.

Finally, the results of this study are presented for
pressure, velocity and temperature distributions in addi-
tion to local and average skin friction and Nusselt number
distributions and then compared with the case of Iso-
thermal wall temperature case [8].

2

Analysis

The schematic diagram in Fig. 1 shows the flow problem
under consideration. The equation of the surface of the
parabolic body is given by

L2 o,
x(y) === —R 1
() = 5 07~ R) 1)
where R is recognized as the nose radius of curvature.

2.1
Governing equations
The full dimensional Navier-Stokes (N-S) and energy
equations for two dimension, laminar, steady, viscous and
incompressible fluid flow in Cartesian coordinates for
stream function ("), vorticity (w*) and temperature (T*)
variables are given by:
Stream function equation:
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Fig. 1. Schematic diagram for parabolic body in symmetric mean
flow

Vorticity equation:
oY” dw* B W ow*
Jy* ox*  Ox* Jy*
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Energy equation:
oy OT* Oy oT* ;T T
v _o = + (4)
oy* Ox*  Ox* Oy* Ox*2  Oy*?

where the velocity is related to the stream function by

Loy Loy
ut = and v = —
oy* Ox*
and the vorticity is defined as
. oV ouf
o= —
Oox*  Oy*

where it is assumed that there is no heat source/sink, the
thermophysical properties are constant, and the viscous
dissipation is negligible. The following dimensionless
variables are introduced to change the above governing
equations into a non-dimensional form

*

* *

o X ye y Y
(v/Usx)’ (v/Us)’ (UZ,/v)’
R _TF-T% g
V= v’ 0= T — T and g = kU AT*

substituting these variables into Eqgs. (2, 3 and 4) yields the
following dimensionless form of the equations

lpxx + l/jyy = - (5)
l//ywx - lpxw)/ = Wxyx + wyy (6)
'ubyex - 1px9 = % (gxx + Hyy) (7)

where subscripts denote partial differentiation and Pr is
the Prandtl number.

For this particular flow problem, a body fitted (para-
bolic) coordinates (&, ) can be used. These are related to



the dimensionless Cartesian coordinates (x, y) by the
complex equation:

N2
(x +iy) = (£+2117)
or
2 9
x:ézn, y =2 (8)

thus, Egs. (5, 6 and 7) can be rewritten in parabolic vari-
ables as

'pcfg“ + lp;m = _(52 + 7’12)‘9 (9)
o 62 oy o oy d
Ee aa‘a&} (10)
62 2\ opo ool
[ (aa: " )+6_€a_n_§a_é]9° ()

To remove the singularity at the leading edge of the flat
plate, we follow Davis [1] and introduce the new variables
f,g and h which are related to y, w and 0 by

V=EfEn), w=- (éf SEED

and

___ &

0= (éz_i_nz) h(é, ’7) (12)

substituting Eq. (12) back into Egs. (9-11), one can get the
following equations that govern the new dependent vari-
ables f, g, and h

Jm— 8+ <féé+%fg’) =0
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N (5 — f -

g+’ 24 2(f+5f‘))

4 2
— &g <fn +£2T5112> + (gc'é +Egc) =0

4
hyy + (Pr(f+ff,5)—T]1112>h,7
— 2
SRR

fhg (Prﬁ7+£24T6172> + (hgg-i—%hg) =0 (15)

The above equations form a system of non-linear and
elliptic partial differential equations. The equations are
parabolic in ¢ if the last two terms in each equation are
neglected. This fact is exploited in the numerical solution
of Davis [1].

(13)
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—
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2.2
Boundary conditions
Using Eq. (8), one can find that

=/ —2x

therefore at the leading edge of the parabola where & = 0, #
is given by

N = V—2x

however, from Eq. (1)
XLE — X(y = 0) = —R/2

thus,

—R
=4/—2— =R'?
NLE 2

therefore, because 5 at the surface of the parabolic body is
constant, the wall of the parabola is located at:

Nw = Mg = R'/?

since we use a viscous length scale, R can also be inter-
preted as the Reynolds number based on the nose radius of
curvature (R in its dimensional form is the nose radius of
curvature; but when non-dimensionalized, it is Reynolds
number based on the nose radius of curvature).

The boundary conditions of the problem under con-
sideration can be expressed as follows:
At the wall (y = Re'/?) :
the no-slip (u = 0), no penetration (v =
the surface require that

0) conditions at

V| ywan = constant =0 and n lwan = 0
or
0

f=0 and é =0 (16)
where
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By applying the stream function Eq. (9) at the wall with
(e = Yze = ¥, = 0), the vorticity condition is then given

w‘wa lp
1n— (62 + n ) nn
and in terms of g using Eq. (12)
|wall f’l’l (17)
and assuming constant heat flux at the wall, then

oT*
oy~

The above equation can be written in dimensionless form
as:

o0

R

—k = Gy

301



302

the above equation can be written in parabolic coordinates
and in terms of (h) using Egs. (8 and 12):

W3¢ —n*) = E(& + ) (Chy + nhe)
=—q(&+1) (18)

At free-stream (5§ — oo) far away from the surface of the
parabola in the wall normal direction, the flow is potential
flow where u’ = U. Thus,

Voo = Vo
but

Wy
Ty

Uy =1

therefore,
Yoo~y =41

The stream-function condition can be rewritten in terms
of f in the form

0
_f | — 1
an n—o0

(19)

The free-stream is vortex free because it is free of all ve-

locity gradients [% = 2—; = }, thus the velocity condition
is:

w|11~>oo — 0

ie

8lyoe =0 (20)

Assuming the free-stream temperature is constant, then
temperature condition is:

0 —0

n—o0

h| —0

=00

(21)

Equations (13-15) with their boundary conditions form a
system of steady non-linear partial differential equations
that governs the flow problem at hand. Equations (13 and
14) are coupled in f and g and thus their solution can be
used to solve Eq. (15) for h.

3

Numerical solution

The system of governing Egs. (13-15) with their boundary
conditions have been finite differenced on a non-uniform
grid. The equations are also linearized using Newton’s
linearization technique [9]. The linearized equations were
solved using the proper LINPACK [10] subroutines in
double precision. Since Eq. (13 and 14) are similar to the
equations solved by Haddad and Corke [3] and because
the energy equation, Eq. (15), is mathematically similar to
Eq. (14), this encouraged us to use the same approach
used before by Haddad and Corke [3].

The computational grid in the physical plane is shown
in Fig. 2. The computational grid in the numerical domain
is shown in Fig. 3. In Fig. 3 the surface of the parabola is
represented by the mesh line 5 = 5, = Re!/? and the free
stream is represented by the line # = #,,,.. The lower and
upper regions of the flow in the physical plane are located
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Fig. 2. The computational grid in physical plane; Re = 10
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Fig. 3. The computational grid numerical plane; Re = 10

respectively between —¢ ., < ¢ <0and 0 < & < &y in
the numerical plane.

Based on the study made by Haddad and Corke [3] and
on the capacity of the computer facility available for this
study, the far downstream (outflow) boundary was chosen
at Xmax = 3.5 x 10°. In the wall normal direction the wall is
located at 7, = v/Re and the freestream was chosen at
N = Ypax Where 5. — 1., = 35. This corresponds to a
freestream boundary that is located at a distance normal to
the wall which is 10-times the Blasius boundary layer
thickness far downstream on a flat plate [3].



Boundary layer flows are characterized by having large
gradient of flow quantities near the wall in the wall normal
direction and near the leading edge in the flow direction.
To treat this, more grid points have to be clustered at these
locations. This was accomplished by using Robert’s
stretching transformation of the original uniform grid
which has the form [9]

:hw+1%%ﬁ—nﬂw+1Mw—1W”}
[(B+1)/(B—1)]"7 +1

where (X, ) represent the uniform grid plane, (x, y) are the
stretched grid plane, f is the stretching parameter (con-
stant) and h is the grid width in the direction in which the
grid is being stretched.

The above transformation has been applied in both
streamwise and wall normal directions. The stretching
parameter f§ was chosen equal to 1.01 in ¢-direction and
1.005 in #-direction since these values gave convenient
grid points spacing.

Before solving the governing equations, Egs. (13-15)
with their boundary conditions, Newton’s linearization
technique [9] was applied to linearize the governing
equations.

To implement the boundary conditions at downstream
infinity, a buffer-zone was specified in which the elliptic
terms in the governing equations have been multiplied by
a weighting factor, s. The weighting factor was a function
of streamwise location only. At the beginning of the buffer
zone, s = 1. At the end of the buffer zone, which corre-
sponds to the outflow boundary, s = 0. For smooth tran-
sition from 1 to 0, the weighting factor was given the
following form

(i) = 1 + tanh(arg)

2
where

(= )

where i is the numerical index in the streamwise direction
and ibuf is the index i at the beginning of the buffer-zone
[3]. After applying Newton’s linearization technique and
multiplying the elliptic terms by the weighting factor s(i),
the governing Eqs. (13-15) at every new iteration (n + 1)
take the form:

arg:4[1—

( max

nr:7+1 _ gn+1 + S(Z)|: n+1 5g?+1:| =0 (22)
gt + [f" n e —f"gﬂ
Helg g - e
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_ é[fn n+1 n+1 fn n}
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+ & Pr [fgh;;“ IR - f;hﬂ

(23)

_ 4’7 n+1 52 772 n+1 n+1 n__ gnpn
4¢ n+1 2n
&t S

67/’ 1,1 n n ny,n
L S Pr[fER R |
— é Pr[f;7hn+l _’_ﬁn+1hn _f;]nhgi|

(ﬂm“+zm]—o

Pr [fnhn+1 +fn+1hn _fnhn]

(24)

The above system of governing equations have been dis-
cretized using the same difference scheme used by Haddad
and Corke [3]. A second order accurate finite difference
scheme on a non-uniform grid was used.

Upon the above strategy, there are always 3-points
involved in the difference equations in both & and #
directions at any grid point. The only exception to that is
at the outflow boundaries. At the outflow boundaries, we
chose to involve only one point in difference equations in
the streamwise direction. This was done to reduce the
bandwidth of the coefficient matrix to half its value in the
case when two points are involved at the outflow.

Starting with an initial guess, iteration was carried out
until the maximum absolute local error is less than 107°.
Here the local error is defined as the difference in the local
solution between the new iteration (n + 1) and old itera-
tion (n).

Finally, LINPACK subroutines [10] (standard linear
algebraic equations solver package) have been used to
solve the resulting system of linear algebraic equations
with double precision arithmetic in all calculations. All
programs and subroutines were written in Fortran77. The
computer used for this study was the digital alpha machine
based on UNIX operating system]. Generally, it took about
seven iterations or equivalently one and half an hour of
real computer time to achieve convergence for most of the
cases studied here.

4

Results and discussion

A numerical code has been written to provide solutions for
the Navies-Stokes equations and energy equation. The
results of this code will be presented and discussed. Nu-
merical test calculations were carried out by Haddad and
Corke [3] to evaluate the effect of downstream boundary
location, freestream boundary location, grid size (number
of grid points) and grid spacing (stretching in both
streamwise and wall normal direction) on the solution. In
investigating the effect of each of the above parameters,
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only one parameter was varied at a time, and the attention
was focused on the wall vorticity to judge the solution
sensitivity to the changing parameter. The detailed results
can be found by referring to Haddad, Abu-Qudais and
Magqableh [8].

A sample result of the grid sensitivity study is shown in
Fig. 4. Since flow past a parabola is known to approach the
flat plate Blasius flow, the vorticity at the wall should be
invariant with the streamwise location far downstream.
Two curves in Fig. 4 show a trend which is definitely
wrong. The grid size corresponds to these cases was
350 x 28 and 200 x 30. The other cases show the proper
asymptotic behavior which agrees with the Blasius flow.
Figure 4 shows that the numerical results are more sen-
sitive to the number of grid points in the wall normal
direction (Jyax) than in the streamwise direction (Iay).
Almost identical results were obtained for the cases with
Imax = 150 and Iy, = 350 whereas significant change in
the solution have occurred when Ji,.x is changed from 30
to 33. The solid curve in figure corresponds to the grid size
200 x 36 points which was used throughout this study.

4.2

Hydrodynamic field

In this section pressure distribution along the parabolic
surface, local and average skin friction distributions and
velocity profiles normal to the wall at different streamwise
locations are presented and discussed.

The effect of bluntness (i.e. Reynolds number based on
the nose radius of curvature) on the surface pressure
distribution is determined. To validate our approach, re-
sults of this study are compared with the solutions ob-
tained by Haddad et al. [8].

To find an expression for the surface pressure distri-
bution, we start with the dimensional x*-momentum
equation in the form
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0.80 200436
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Fig. 4. Effect of grid size on vorticity along a parabolic cylinder;
Re =10
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applying the above equation at the wall where
a *
u*=v*=0, whereu" = 4
oy*

also, introducing the dimensionless pressure defined in the
form

p=(p" =P ) /(PU2)

and changing the independent variables (x, y) to the par-
abolic variables (&, ) by using Eq. (8) yields

dp 0w

o8 On

and by using Eq. (12)

%__< {@_g I g}

oS4 on S+

Now, to remove the singularity of the pressure at the

leading edge of the flat plate, we follow Davis [1] and
introduce

_ n 1/2
P=p— 0,R
p £2+’12g( )
thus,
op ¢ [Gg 2n }
=Tyl g &8

where g, = (0, Re'/?). Integrating the above expression
starting at downstream infinity on the lower surface, the
local pressure distribution is then given by

¢
_ Z (% __ 2
pP= / Zz+172 [a_zz_’_nz(g_go)]dz (25>

—Cmax

The above integration was carried out using the trape-
zoidal rule. Figure 5 shows the surface pressure distri-
bution for different parabolas. The results are in excellent
agreement with those of Davis [1]. Here the solution in
the buffer zone is excluded because the elliptic terms are
killed gradually in this zone. The pressure gradient ev-
erywhere is favorable. We also note that the distributions
asymptote to the same value regardless of Reynolds
number value, this is because the flow past a parabola
approaches the flat plate Blasius flow downstream away
from the leading edge.

The local skin friction coefficient is defined as

T*

Ce=—X=
f pUZ
where t* = p Ou* /0y*. Rewriting u* in terms of ¥*, and
non-dimensionalizing the variables to get
62
Ce = a—ylzp ‘w

but upon applying the stream function equation at the wall
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therefore
Cf = —0)|

w

finally, by using Eq. (12) the above equation becomes

¢
s

Figure 6 shows the scaled skin friction distribution
g(&,R'/?) for different parabolas. These distributions are

Ce (26)
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Fig. 6. Skin friction distribution on parabolic bodies

qualitatively similar to the pressure distributions discussed
previously. It can be noted that the more blunt the body, the
larger is the local skin friction, with the maximum value
being at the leading edge. However, all distributions as-
ymptote to the same value far downstream from the leading
edge as expected. Obviously, there is an excellent agree-
ment between our results and those of Davis [1].
The average skin friction coefficient is defined as

Cmax

C=—_—

L

Cr(¢)de
305
substituting for C¢(¢) using Eq. (26), then

Cmax

1 ¢
2t

Cr = (¢,RY?)d¢

émax
the above integration was evaluated using the trapezoidal
rule. The average skin friction is defined as
émax
_ 1
g=+— [ 8(&RV*)d¢

27
émax ( )

In Fig. 7 the result of the above integral is shown versus
Reynolds number. It can be seen that the skin friction is
minimum for the case Re = 0 (flat plate) and it increases
gradually as the body becomes more blunt (i.e. as the
Reynolds number based on the nose radius of curvature is
increased). This can be attributed to the increase in both
bluntness and surface area as Reynolds number is in-
creased.

Anywhere in the flow field, the velocity can be calcu-
lated as

Loy
u —ay*
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Fig. 7. Effect of Reynolds number on average skin friction
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by non-dimensionalizing the variables and using Eqs. (8 ~u = 0.99U) for the case Re = 0 (flat plate). In the figure it

and 12) the local velocity is then given as is clearly seen that the boundary layer thickness increases

£ of of 1 as we go far downstream. In Fig. 9 the effect of Reynolds

U=——— [f 4=+~ f] number on the downstream location at which the flow over
&+ o ¢ parabolic body matches the Blasius flow is shown. As

Numerical calculations were performed to compare the far Reynolds number increases (more blu'nt body) the flow
downstream velocity profiles with the flat plate Blasius over parabolic body matches the Blasius profile farther
profile, and determine the streamwise velocity develop- downstream.

ment inside the boundary layer at fixed height above the

surface (i.e. fixed y-location). Figure 8 shows the hydro- 4.3

dynamic boundary layer thickness (the thickness at which Thermal field
The heat transfer between a parabolic surface and the

flowing fluid over the surface with constant heat flux is
considered. Numerical results for the temperature distri-
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Fig. 10a, b. The streamwise temperature distribution at the wall
Fig. 9. Effect of Reynolds number on the streamwise direction at (j = 0): a For Re = 0 (Flat plate); b for Re = 100 (Parabolic
which flow over parabolic bodies approaches Blasius profile body)



bution and average mixing cup temperature distribution
are presented. The effect of Prandtl number (Pr) and
Reynolds number (Re) on Nusselt number (Nu) is also
presented and discussed. Anywhere in the flow field, the
local temperature can be calculated as

<
0(&n) = —Zz——h(¢,
(&n) 7 (&m)
The surface temperature distributions for different values
of Prandtl number for flat plate and parabolic body are
shown in Fig. 10. It can be seen that as going along the
surface away from the leading edge the temperature

(28)
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Fig. 11a, b. The Streamwise average temperature distribution
at the wall: (j = 0): a For Re = 0 (Flat plate); b For Re = 100
(Parabolic body)

increases also as Prandtl number increases the tempera-
ture increases at the same streamwise location. Also there
is no difference in the streamwise temperature distribution
between the parabolic body and the flat plate. In other
words, there is no effect for the bluntness of the body on
the temperature distribution.

The average temperature distribution at the wall for
different Prandtl number for flat plate and parabolic body
has the same trend of the local temperature distribution as
shown in Fig. 11. The only difference is that the magnitude
of the local temperature is less than the average temper-
ature at the same streamwise location and this is obviously
seen in Fig. 12.
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Fig. 12a, b. Comparison between the streamwise temperature
distribution at the wall and the average temperature distribution
at the wall (j = 0): a For Re = 0 (Flat plate); b for Re = 100
(Parabolic body), Pr = 10
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Fig. 13. Effect of Prandtl number on Nusselt number distribution

for Re = 0 (Flat plate)

Figure 13 shows the effect of streamwise location on
Nusselt number distribution for flat plate (Re = 0) for

different Prandtl number. Nusselt number decreases as we
go far away from the leading edge and also as increasing

Prandtl number. The effect of streamwise location on

Nusselt number distribution for flow over parabolic body

(Re = 100) for different Prandtl number is shown in
Fig. 14. It is seen that Nusselt number decreases as we

move far away from the leading edge. Most importantly,

the effect of Prandtl number on Nusselt number distri-
bution is negligible for the case of flow over parabolic
body subjected to constant heat flux at the wall.

5
Conclusions

The hydrodynamic and thermal energy characteristics for
laminar flow over parabolic body with constant heat flux
were studied. The numerical codes allowed us to study the

effect of both Reynolds number and Prandtl number on

pressure, temperature, skin friction and Nusselt number
distributions of flow over parabolic bodies with constant

heat flux.

Both pressure and skin friction distribution increases as
the parabolic body becomes more blunt (as Re increases).

Both distributions take a maximum value at the leading

edge and asymptote to downstream value away from the
leading edge in the streamwise direction (where the Blasius
flow holds). As a result, the average skin friction increases

as Reynolds number increases.

For the flow over parabolic body, there is no effect of

the bluntness of the parabolic body on the overall and
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Fig. 14. Effect of Prandtl number on Nusselt number distribution
for Re = 100 (Parabolic body)

local wall temperature. Also, as Prandtl number increases
both the local and overall wall temperature decrease.
Consequently, the average Nusselt number increases
(insignificantly) as Prandtl Number increases.
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