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Abstract In¯uenced by the article of Vadasz [1], an
analysis has been carried out to investigate convective
instability due to centrifugal acceleration in an anisotropic
porous medium. Results reveal that anisotropy in thermal
diffusivity destabilizes the system whereas that in
permeability has the opposite effect.

1
Introduction
The onset of convection in a ¯uid saturated, rotating
porous medium is of focal interest to geophysicists and
engineers, since it has a wide spectrum of applications.
Flows in porous geological formations, the ¯ow of magma
in the earth's crust, and packed bed mechanically agitated
vessels used in the food processing and chemical indus-
tries serve as examples, [2]. The effect of rotation on
convective ¯ow during the solidi®cation of binary alloys
has been investigated in [3], viewing the dendritic mushy
zone formed as a porous medium, so that the topic ®nds
application in the materials processing industry too.

Thermal instability in a rotating system consisting of
horizontally superposed ¯uid and porous layers has been
researched in [4]. The effect of rotation on natural
convection in a horizontal porous cylinder and an annular
porous layer are presented in [5] and [6], respectively. The
stability of a rotating double diffusive ¯uid saturated
porous medium has been analysed in [7]. The ¯ow and
heat transfer characteristics of laminar mixed convection
in a radially rotating semiporous channel has been
investigated in [8]. The effect of rotation on the natural
convective ¯ow of an incompressible viscous ¯uid between
two heated vertical walls in a rotating porous system has
been analysed in [9].

The thermal instability of a rotating ¯uid saturated
heterogenous porous channel has been studied in [2]. The
effect of the Coriolis force on convection in ¯uid saturated
porous boxes has been focused on in [10±12]. Natural
convection in rotating porous layers and porous boxes,
adjacent to and at a distance from the axis of rotation, due
only to the centrifugal body force has been analysed in
[1, 13±17]. The window of parameters within which the

Coriolis force and gravitational body force can Ce
neglected, so that the convection is due to the centrifugal
force alone, has been obtained in [15]. The onset of
convection in a rotating ¯uid saturated porous layer sub-
ject to the gravitational and centrifugal body forces is in-
vestigated analytically in [18]. An experimental and
analytical investigation of the temperature and ¯ow®elds
resulting from centrifugally driven free convection in a
rotating Hele Shaw cell has been presented in [19].

As most naturally occurring porous media are aniso-
tropic, the aim of this article is to evaluate the effect of the
centrifugal body force alone, in generating convective
instability in a rotating ¯uid saturated anisotropic porous
medium. The validity of the Boussinesq approximation
is assumed. Both Darcy and Brinkman models have been
considered.

2
Mathematical formulation
A ¯uid saturated anisotropic porous layer, rotating with
constant angular velocity x about the Z axis, whose pos-
itive direction is vertically upwards, opposing the direction
of gravity, is considered. The porous layer is bounded by
impermeable, perfectly conducting planes at x � 0 and
x � L and extends to in®nity in the Y and Z directions,
where the principle directions of permeability and thermal
diffusivity are assumed to be coincident and are taken to
be the Cartesian directions. The planes x � 0 and x � L
are maintained at constant temperatures TC and TH

respectively, TC < TH . This sets up a temperature gradient
collinear with the centrifugal body force. The gravity force
which is orthogonal to the temperature gradient is
neglected. For simplicity it has been assumed that the
permeabilities are equal in the Y and Z directions, and so
also the thermal diffusivities. That is, ky � kz 6� kx and
jy � jz 6� jx where kx, ky and kz denote the permeabilities
in the X, Y and Z directions respectively and jx, jy and jz

the diffusivities in these directions.

2.1
Darcy model
Assuming the Boussinesq approximation, and neglecting
the Coriolis force and the component of the centrifugal
acceleration in the Y direction, the governing equations
are,

r � ~q � 0 �1�
l~q

�kx; ky; ky� � ÿrpÿ q0b�T ÿ TC�x2xî �2�
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ot
�Mf~q � rT � �jx; jy; jy�r2T �3�

q � q0�1ÿ b�T ÿ TC�� �4�
where~q � �u; v;w�, p; q; q0, b and T are the ¯uid velocity,
pressure, density, density at temperature TC, coef®cient
of volume expansion and temperature respectively and
î the unit vector in the X direction. Mf is the ratio of the
heat capacity of the ¯uid to the porous matrix and
t denotes time.

Since the boundaries x � 0 and x � L are impermeable
and perfectly conducting and are maintained at tempera-
tures TC and TH respectively, the boundary conditions are
u � 0 on x � 0 and x � L, T � TC on x � 0 and T � TH

on x � L.
It may be noted that this problem is analogous to the

BeÂnard problem of a ¯uid layer heated from below, and
subject only to the gravity force.

The nondimensional governing equations (with
Mf � 1) and boundary conditions are
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u � 0 on x � 0 and x � 1;

T � 0 on x � 0; T � 1 on x � 1 : �10�
The scaling has been done using

�x�;y�; z�� � 1

L
�x;y; z�; �u�;v�;w�� � L

jx
�u;v;w�

t� � jx

L2
t; p� � kx

ljx
p; T� � T ÿ TC

TH ÿ TC
� T ÿ TC

DT
�11�

and the asterisks dropped for simplicity. k1 and j1 are
the anisotropy parameters of permeability and diffusivity
and have values ky=kx and jy=jx respectively.

RT � RxK 0 where Rx � bDTx2L4

tjx

is the dimensionless Rayleigh number due to the centri-
fugal acceleration, t denotes the kinematic viscosity of the
¯uid and K 0 � kx=L2 is the Brinkman number which
assumes values less than 10ÿ3 for the Darcy model and
exceeds 10ÿ3 for the Brinkman model [20].

2.2
Basic state
The basic state is assumed to be quiescent in which there
are temperature gradients only in the x direction so that,

o
oy
� o

oz
� o

ot
� 0;

o
ox
6� 0 �12�

This leads to

~qb � 0; Tb � x and pb � ÿRT
x3

3
� constant �13�

where the suf®x `b' denotes the basic state quantities.

2.3
Perturbed state
The modi®ed ¯ow ®eld when small perturbations are
imposed on the basic state are given by

~q � ~̂q � �û; v̂; ŵ�
T � Tb � T̂

p � pb � p̂

�14�

where the carets denote perturbed quantities.
Assuming a normal mode expansion in the form

�û; v̂; ŵ; p̂; T̂� � �u�x�; v�x�;w�x�; p�x�; h�x��ei�ky�mzÿrt�

�15�
the linearised equations for velocity and temperature
perturbations are

�D2 ÿ k1a
2�u�x� ÿ k1a

2RTxh�x� � 0 �16�
u�x� ÿ �D2 � irÿ j1a

2�h�x� � 0 �17�
where D � d=dx, a � �k2 �m2�1=2 is the dimensionless
wave number and r is the frequency of disturbance,
subject to the boundary conditions

u�x� � 0 on x � 0 and x � 1

h�x� � 0 on x � 0 and x � 1 : �18�
It can be noted that the system of Eqs. (16) and (17)
subject to the boundary conditions (18), is an eigenvalue
problem for RT .

2.4
Method of solution
It can be shown that the principle of exchange of stabilities
is valid. Hence the onset of the stationary mode of
convection (r � 0), has been analysed.

The Galerkin method which has been found to yield
excellent results even at lower orders [21], is adopted
to obtain the critical Rayleigh number. Expanding u�x�
and h�x�, in a series of the orthogonal trial functions
ui � hi � sin ipx; i � 1; 2; . . . ; which satisfy the boundary
conditions, and restricting to two terms of the expansion,
we have

u�x� � a1u1 � a2u2

h�x� � a3h1 � a4h2

�19�

where a1; a2; a3; a4 are constants.
Substituting for u and h in (16) and (17), multiplying

each of the resulting equations by each of the trial
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functions u1 � h1 � sin px; u2 � h2 � sin 2px and then
integrating these equations between x � 0 and x � 1, leads
to,

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

2664
3775

a1

a2

a3

a4

2664
3775 � 0 : �20�

Equation (20) is a homogeneous set of linear algebraic
equations in a1; a2; a3 and a4 which yield a nontrivial
solution only for particular values of RT provided
det�Aij� � 0, where

A11 � p2 � k1a2

2
;

A12 � A21 � A32 � A34 � A41 � A43 � 0

A13 � A24 � RTk1a2

4
; A14 � A23 � ÿ8RTk1a2

9p2
;

A22 � 4p2 � k1a2

2
;

A31 � A42 � 1

2
; A33 � p2 � j1a2

2
; and

A44 � 4p2 � j1a2

2
: �21�

3
Brinkman model
Using the same assumptions as used for the Darcy model,
analysis has been carried out for the Brinkman model
where the viscous resistance term lr2~q is added to the
right hand side of Eq. (2), the Eqs. (1), (3) and (4),
remaining unaltered. The boundaries at x � 0 and x � L
are impermeable and perfectly conducting and are main-
tained at temperatures TC and TH respectively, TC < TH .

On simplifying and expressing as normal modes as
before, we arrive at

�D2 ÿ k1a
2�u�x� ÿ RTk1a

2xh�x�
ÿ K 0k1�D2 ÿ a2�2u�x� � 0 �22�

u�x� ÿ �D2 � irÿ j1a
2�h�x� � 0 �23�

subject to the boundary conditions

u�x� � 0 and Du � 0 on x � 0 and x � 1

h�x� � 0 on x � 0 and x � 1 :
�24�

It can be proved that the principle of exchange of
stabilities is valid in this case too. The Galerkin method
is applied with orthogonal trial functions

ui � hi � sin px sin ipx; i � 1; 2; . . . ; which satisfy the
boundary conditions identically. Adopting a two term
approximation, writing

u � a1u1 � a2u2

h � a3h1 � a4h2

in Eqs. (22) and (23), multiplying by each of the trial
functions and integrating the resulting equation between
x � 0 and x � 1, we obtain Eq. (20) which is a system of
homogeneous equations in the constants a1; a2; a3; a4

yielding a non trivial solution for certain values of RT if
det�Aij� � 0, where

A11 � 4p2 � 3k1a2

8

� �
� K 0k1

3a4 � 8p2a2 � 16p4

8

� �
;

A12 � A21 � A32 � A34 � A41 � A43 � 0;

A13 � 3RTk1a
2=16

A14 � A23 � ÿ 32RTk1a2

75p2
; �25�

A22 � 5p2 � k1a2

4

� �
� K 0k1

a4 � 10p2a2 � 41p4

4

� �
A24 � RTk1a2

8
; A31 � 3=8; A33 � 4p2 � 3j1a2

8

A42 � 1=4 and A44 � 5p2 � j1a2

4

4
Results and discussion
The value of a which gives the minimum value of RT , that
is the critical wave number acrit and the corresponding
value of RT that is the critical Rayleigh number RTcrit

are
determined from det�Aij� � 0, with Aij 0s given by (21) for
the Darcy model and (25) for the Brinkman model. The
results for different values of the anisotropy parameters
which have been varied under the assumption that kx is
greater than ky and jx is greater than jy, [22] are pre-
sented in Table 1 for the Darcy model, and in Tables 2±4
for the Brinkman model, for Brinkman numbers 0.001,
0.01 and 0.1, and are presented graphically in Figs. 1±4.

From the Tables 1±4 and Figs. 1±4 it is seen that the
critical values of the Rayleigh number for the Brinkman
model, for all values of the Brinkman number considered,
exceeds that of the Darcy model for each of the values
of the anisotropy parameters, thereby implying that the
Brinkman model is more stable than the Darcy model.
Further an increase in the permeability imparts stability
to the system.

Table 1. Critical Rayleigh
numbers and wave numbers:
Darcy model

j1 1 0.5 0.1

k1 RTcrit
acrit RTcrit

acrit RTcrit
acrit

1 77.082747 3.19491 56.142315 3.800959 33.285647 5.706091
0.2 201.49549 4.787864 128.320825 5.685483 56.142315 8.499203
0.1 332.85647 5.706091 201.49549 6.771062 77.082747 10.103194
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From Figs. 1 and 2, and Tables 1±4 it is noticed that
(for both the models) when the permeability is isotropic
�k1 � 1� and when it is anisotropic (k1 � 0:1 and
k1 � 0:2), the critical Rayleigh number decreases as j1

decreases. That is an increase in the thermal diffusivity in

the X direction, namely the direction collinear with the
centrifugal acceleration, advances the onset of convection.

On the other hand, from Figs. 3 and 4 and Tables 1±4
it is seen (for both the models) that when the anisotropy
parameter of diffusivity j1 takes values 1, 0.5 and 0.1 the
critical Rayleigh number increases as k1 decreases. That is
an increase in the permeability in the direction collinear
with the centrifugal acceleration has the effect of stabiliz-
ing the system.

Table 2. Critical Rayleigh numbers and wave numbers: Brink-
man model �K 0 � 0:001�
j1 1 0.5 0.1

k1 RTcrit acrit RTcrit acrit RTcrit acrit

1 107.710398 3.64344 78.700839 4.30927 47.494395 6.25253
0.2 276.928064 5.37617 177.704534 6.3352 80.619796 9.10108
0.1 456.092169 6.36258 278.44957 7.48135 111.194127 10.68491

Table 3. Critical Rayleigh numbers and wave numbers: Brink-
man model �K 0 � 0:01�
j1 1 0.5 0.1

k1 RTcrit acrit RTcrit acrit RTcrit acrit

1 144.909459 3.50665 107.574415 4.04357 69.411476 5.298
0.2 326.476534 4.78047 218.398061 5.48397 114.234608 7.17367
0.1 520.367082 5.52779 332.33029 6.32386 155.976528 8.2658

Table 4. Critical Rayleigh numbers and wave numbers: Brink-
man model �K 0 � 0:1�
j1 1 0.5 0.1

k1 RTcrit
acrit RTcrit

acrit RTcrit
acrit

1 511.091811 3.32001 387.778305 3.72294 267.7227 4.51466
0.2 723.862401 3.77134 526.346473 4.2284 336.611609 5.16049
0.1 963.2016 4.14126 678.469835 4.64254 407.859687 5.69392

Fig. 1. The effect of anisotropy in permeability on the critical
Rayleigh no. for the Darcy and Brinkman models �K 0 � 0:1�

Fig. 2. The effect of anisotropy in permeability on the critical
Rayleigh no. for the Brinkman models (K 0 � 0:01 and K 0 � 0:001)

Fig. 3. The effect of anisotropy in thermal diffusivity on the
critical Rayleigh no. for the Darcy and Brinkman models
(K 0 � 0:1)
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Further, the tables reveal that a decrease in the values
of the anisotropy parameters, causes the critical wave
number to increase, implying a shrinkage in the cell sizes.

It can be observed that the critical Rayleigh number
obtained for the isotropic case �k1 � 1; j1 � 1�, coincides
with that obtained by Vadasz [1].
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