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Abstract This paper deals with the one-dimensional
transient heat conductivity contact problem of a sliding
two semi-spaces, which induces effects of friction, heat
generation and water during braking. In the present tem-
perature analysis the capacity of the frictional source on the
contact plane dependent on the time of braking. The
problem solved exactly using the Laplace transform tech-
nique. Numerical results for the temperature are obtained
for the different values of the input parameter, which
characterise the duration of the increase of the contact
pressure during braking from zero to the maximum value.

An analytical formulae for the abrasive wear of the
contact plane is obtained in the assumption, that the wear
coef®cient is the linear function of the contact temperature.

List of symbols
z axial coordinate
T temperature
V sliding speed
V0 initial sliding speed
p pressure
p0 maximum pressure
q capacity of frictional heat source

per unit contact area
K thermal conductivity
k thermal diffusivity
f0 friction coef®cient
a1 the coef®cient of the thermal

expansion of the frictional pad

m1 Poisson's coef®cient of the pad
m coef®cient of wear
t time
tm duration of the increase of the

loading from zero to maximum
value

t0
s duration of braking in the case

of constant load
ts duration of the stop
tmax time at which the maximum

contact temperature is reached
W initial kinetic energy per unit

contact area
K parameter given by formula (12)

and taking the dimension of the
temperature

erf��� Gauss error function
erfc��� � 1ÿ erf��� complementary error function

Dimensionless parameters

s � t=t0
s

sm � tm=t0
s

smax � tmax=t0
s

ss � ts=t0
s

s� � t=tm

fi � jzj= 2
��������
kito

i

pÿ �
; i � 1; 2

T� � T=K

T�i � Ti=K; i � 1; 2

1
Introduction
A mathematical model which permits to study the contact
temperature of various types of braking systems has been
presented by Chichinadze [1], Chichinadze et al. [2]. It is
assumed that the maximum temperature rise on the
contact surface was represented as the sum of the mean
temperature of the nominal contact area and the ¯ash
temperature. The following one-dimensional heat con-
ductivity boundary-value problem is used for determina-
tion of the mean temperature:

o2Ti�z; t�
oz2

� 1

ki

oTi�z; t�
ot

; z > 0 for i � 1;

z < 0 for i � 2; 0 � t � ts ;

�1�
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Ti�z; 0� � 0; i � 1; 2 �2�
T1�z; 0� � T2�z; 0� � T�t�; 0 � t � ts ; �3�

K1
oT1�z; t�

oz

����
z�0�
ÿ K2

oT2�z; t�
oz

����
z�0ÿ

� q�t�; 0 � t � ts ;

�4�
Ti ! 0; i � 1; 2 for jzj ! 1; 0 � t � ts : �5�
Here and further the indices i � 1; 2 denote the upper and
the lower half-spaces respectively. The rate of frictional
heat generation throughout the contact plane z � 0 is
equal

q�t� � f �t�p�t�V�t�; 0 � t � ts ; �6�
The exact solution of the contact problem with frictional
heating (1)±(5) can be obtained for three cases of the
function q�t� [3]: (1) q�t� � q0 � const:; (2) q�t� � q0

��
t
p

;
(3) q�t� � q0t. However, really the contact pressure rises
from zero to a value, when the motion comes to a still, in
the form [2];

p�t� � p0p��t=tm�; p��t� � 1ÿ exp�ÿt� : �7�
At the known pressure (7) and the constant friction
coef®cient f �t� � f0 we obtain the speed changing law
during braking [5]:

V�t� � V0V��s�; V��s� � 1ÿ s� smp��s��; 0 � t � ts ;

�8�
where s � t=t0

s ; sm � tm=t0
s ; s
� � s=sm; t0

s � 2W=�f0p0V0�:
Using the condition V�ts� � 0, from expression (8)

we ®nd the equation for the dimensionless braking time

ss � ts=t0
s � 1

ss ÿ smp��ss=sm� � 1 : �9�

The numerical solution of the equation (9) is shown in
Fig. 1. These results can be obtained from the approximate
linear function:

ss � 1� 0:9975sm : �10�
The behaviour of the nondimensional contact pressure p�
(7) and sliding speed V� (8) is presented in Fig. 2. We see
that in the case when the contact pressure is constant
(tm � 0) the sliding speed decreases from V0 to zero
linearly with time so that the deceleration is constant
(uniform braking).

In this paper the exact solution of the transient one-
dimensional heat conductivity problem (1)±(5) with the
rate of the frictional heating q Eq. (6), contact pressure p
Eq. (7) and sliding speed V Eq. (8) is obtained.

2
Temperature
Employing the convolution theorem for the Laplace
transform with respect to time t [5], the solution of the
boundary-value heat conductivity problem (1)±(5) we ®nd
in the form

Ti�z; t� � K
Z s

0

p���sÿ s0�=sm�V��sÿ s0�sÿ1=2
0

� exp�ÿf2
i =s0� ds0; 0 � t � ts �11�

where

K � f0p0V0

�1� ke�K1

��������
k1t0

s

p

r
; ke � K2

K1

�����
k1

k2

s
;

fi �
jzj

2
��������
kit0

s

p ; i � 1; 2 : �12�

Fig. 1. Dependence of the dimensionless time ss on the dimen-
sionless parameter sm

Fig. 2. Change of the dimensionless pressure p� (continuous
curve) and dimensionless speed V� (dotted curves) during
braking with different dimensionless parameters sm
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Having an analytical expressions for the contact pressure
p��s� Eq. (7) and sliding speed V��s� Eq. (8), from Eq. (11)
we obtain the temperature of the braking elements:

Ti�z; t� � K
��1� sm ÿ s�Nÿ�fi; s� ÿ �1� 2sm ÿ s�
� Lÿ�fi; s; sm� � smLÿ�fi; s; sm=2�
�N��fi; s� � L��fi; s; sm�
ÿ sm

���
s
p

exp�ÿg2
i �
�
; 0 � t � ts; i � 1; 2 ;

�13�
where

N��fi; s�
L��fi; s; sm�

� �
�
Z s

0

s�1=2
0 exp�ÿf2

i =s0�

� 1

exp�ÿ�sÿ s0�=sm�
� �

ds0;

i � 1; 2 �14�
We evaluate the integrals N��fi; s� appearing in Eq. (14) as
shown below. After integrating by parts in (14) we have

Nÿ�fi; s� � 2
���
s
p

exp�ÿg2
i �

ÿ 2f2
i

Z s

0

sÿ3=2
0 exp�ÿf2

i =s0� ds0 ; �15�

N��fi; s� � 2

3
s
���
s
p

exp�ÿg2
i � ÿ

2

3
f2

i Nÿ�fi; s� ; �16�
where

gi � fi=
���
s
p

:

Using the integral[6]Z 1
x

exp�ÿy2� dy � 1=2
���
p
p

erfc�x� ;
from the Eq. (15) we obtain

Nÿ�fi; s� � 2
���
s
p

exp�ÿg2
i � ÿ 2fi

���
p
p

erfc�gi� : �17�
By methods [4], the integrals L��fi; s; sm� Eq. (14) can be
rewritten as:

Lÿ�fi; s; sm�
� ��������

psm
p

exp�ÿs��f�Fc�fi; s; sm� ÿ 1� sin�2gim�
� C�fi; s; sm� cos �2gim�g; i � 1; 2 �18�

Lÿ�fi; s; sm�
� 1

2
sm

��������
psm
p

exp�ÿs��f�Fs�fi; s; sm�
� 2gim C�fi; s; sm� ÿ 1� sin�2gim� � �C�fi; s; sm�
ÿ 2gim Fs�fi; s; sm� � 2gim� cos�2gim�g; i � 1; 2

�19�
Fs�fi; s; sm�
Fc�fi; s; sm�

� �
� erf�2gi� � S�fi; s; sm�

C�fi; s; sm�
� �

; �20�

S�fi; s; sm�
C�fi; s; sm�

� �
� 2���

p
p exp�ÿg2

i �Z ���
s�
p

0

exp�x2� sin�2gix�
cos�2gix�

� �
dx; �21�

where

gm � fi=
���
s
p

m :

Substituting integrals N��fi; s� Eq. (16), (17) and
L��fi; s; sm� Eqs. (18)±(21) into Eqs. (13) we determined
the temperature ®eld of the working elements (the fric-
tional pad and the disc) during braking.

The contact temperature we ®nd from Eqs. (13) at z � 0
in the form

T�t� � K
��2� sm ÿ 4

3
s� ���sp

ÿ �1� 3

2
sm ÿ s�2 ������

sm
p

F
�����
s�
p� �

� sm

��������
2sm

p
F�

�������
2s�
p

��; 0 � t � ts : �22�
where F�s� � exp�ÿs2� R s

0 exp�x2� dx is Douson's integral
[7]. To count F�s� we use formulae [8]:

F�s� �
X1
i�0

�ÿ2s2�i
�2i� 1�!! ; 0 � s � 3 ;

F�s� �
Xn

i�0

�2iÿ 1�!!
�2s2�i�1

; s > 3

where (ÿ1)!! = 1.
At tm � 0 �ts � t0

s � from Eq. (22) we obtain the known
result [9] for the contact temperature in the case of uni-
form braking

T�t� � 2K 1ÿ 2

3

t

ts

� � ����
t

ts

r
; 0 � t � ts :

3
The temperature-dependence wear
We assume the Archard's law of wear [10] in which the
rate of material removal is proportional to pressure and
speed of sliding:

I�t� �
Z t

0

m�T�q�t0� dt0; 0 � t � ts : �23�

In according to [11] the wear coef®cient m�T� at the small
gradients of the contact temperature takes the form

m�T� � m0 �m1bT�t�; b � a1�1� m1�=�1ÿ m1� :
�24�

Substitutes Eqs. (22), (24) and (6)±(8) into Eq. (23) after
integrating we ®nd:

I�t� � m�0I0�t� �m�1bK0I1�t�; 0 � t � ts; �25�
where

m�k � mkf0V0p0t0
s ; k � 0; 1 ;

I0�t� � sÿ s2=2� sm�sÿ sm ÿ 1�p��s��
� s2

m p��2s��=2 ; �26�

I1�t� � I
�1�
1 �t� � I

�2�
1 �t� � I

�3�
1 �t� ; �27�
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I
�1�
1 �t� �

2

3
�1� sm��2� sm�s

���
s
p ÿ 2

15
�10� 7sm�s2

���
s
p

� 8

21
s3

���
s
p ÿ�1� 2sm��2� sm�sm

������
sm
p

� 1

2

���
p
p

erf� �����s�
p �ÿ s�exp�ÿs��

� �
� 1

3
�10� 11sm�s2

m

������
sm
p

� 3

4

���
p
p

erf� �����s�
p �ÿ �����

s�
p 3

2
� s�

� �
exp�ÿs��

� �
ÿ 4

3
s3

m

������
sm
p 15

8

���
p
p

erf� �����s�
p �

�
ÿ �����

s�
p 15

4
� 5

2
s� � s�2

� �
exp�ÿs��

�
� 1

2
�2� sm�s2

m

������
sm
p

� 1

2

���
p
2

r
erf�

�������
2s�
p

�ÿ ���
s
p �

exp�ÿs��
� �

ÿ 2

3
s3

m

������
sm
p

� 3

8

���
p
2

r
erf� �������2s�
p �ÿ �����

s�
p 3

8
� s�

� �
exp�ÿs��

� �
;

I
�2�
1 �t� � 2

������
sm
p �

2� 5

2
sm

� �
M101�s� ÿ 1� sm� �

� 1� 3

2
sm

� �
M001�s� ÿM201�s�

�M211�s� ÿ 2� 7

2
sm

� �
M111�s�

� 1� 2sm� � 1� 3

2
sm

� �
M011�s�

� smM121�s� ÿ sm 1� 3

2
sm

� �
M021�s�

�
;

I
�3�
1 �t� � sm

��������
2sm

p �
1� sm� �M002�s� ÿM102�s�
�M112�s� ÿ 1� 2sm� �M012�s�
� smM022�s�

�
;

Mkjl�s� �
Z s

0

sk
0 exp�ÿjs0�=sm�F

�������������
ls0=sm

p� �
ds0;

k; j � 0; 1; 2; l � 1; 2 : �28�

Taking into account the values of the integrals:Z
xF�x� dx � 1

2
xÿ F�x�� � ;Z

x3F�x� dx � 1

2

�
x� 1

3
x3 ÿ �1� x2�F�x�

�
;

Z
x5F�x� dx

� 1

2

�
2x� 2

x
x3 � 1

5
x5 ÿ �2� 2x2 � x4�F�x�

�
;Z

x exp�ÿx2�F�x� dx

� 1

4

� Z
exp�ÿx2� dxÿ exp�ÿx2�F�x�

�
;Z

x3 exp�ÿx2�F�x� dx

� 1

4

� Z
exp�ÿx2� dxÿ 1

2
x exp�ÿx2�

ÿ 1

2
� x2

� �
exp�ÿx2�F�x�

�
;Z

x5 exp�ÿx2�F�x� dx

� 1

4

�
7

4

Z
exp�ÿx2� dxÿ 1

2
x

5

2
� x2

� �
exp�ÿx2�

ÿ x4 exp�ÿx2�F�x� ÿ 1

2
� x2

� �
exp�ÿx2�F�x�

�
;Z

x exp�ÿ2x2�F�x� dx

� 1

2

� Z
exp�ÿ2x2� dxÿ exp�ÿ2x2�F�x�

�
;Z

x3 exp�ÿ2x2�F�x� dx

� 1

6

�
7

12

Z
exp�ÿ2x2� dxÿ 1

4
x exp�ÿ2x2�

ÿ 1

3
� x2

� �
exp�ÿ2x2�F�x�

�
;Z

x F
���
2
p

x
� �

dx � 1

2

�
1

2
���
2
p xÿ 1

2
F

���
2
p

x
� ��

;Z
x3F

���
2
p

x
� �

dx � 1

2

�
1

2
���
2
p x� 1

3
���
2
p x3 ÿ 1

2

� 1

2
� x2

� �
F

���
2
p

x
� ��

;Z
x exp�ÿx2�F

���
2
p

x
� �

dx

� 1

3

�
1���
2
p
Z

exp�ÿx2� dxÿ 1

2
exp�ÿx2�F ���

2
p

x
� ��

;

Z
x3 exp�ÿx2�F�

���
2
p

x� dx

� 1

6

5

3
���
2
p
Z

exp�ÿx2� dx

�
ÿ 1���

2
p x exp�ÿx2�

ÿ 1

3
� x2

� �
exp�ÿx2�F� ���2p x�

�
;
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Z
x exp�ÿ2x2�F� ���2p x� dx

� 1

4

1���
2
p
Z

exp�ÿ2x2� dxÿ 1���
2
p exp�ÿ2x2�F� ���2p x�

� �
:

for the function Mkjl (28) we ®nd:

M001�s� � sm

�����
s�
p ÿ F� �����s�

p �
h i

;

M101�s� � s2
m

�����
s�
p � 1

3
s�

�����
s�
p ÿ �1� s��F� �����s�

p �
� �

;

M201�s� � s3
m 2

�����
s�
p � 2

3
s�

�����
s�
p � 1

5
s�2

�����
s�
p�

ÿ�2� 2s� � s�2�F� �����s�
p �

i
;

M011�s� � sm

2
erf� �����s�
p � ÿ exp�ÿs��F� �����s�

p �
h i

;

M111�s� � s2
m

2
erf� �����s�
p � ÿ 1

2

�����
s�
p

exp�ÿs��
�
ÿ 1

2
� s�

� �
exp�ÿs��F� �����s�

p �
�
;

M211�s� � s3
m

2

7

4
erf� �����s�
p � ÿ 1

2

�����
s�
p 5

2
� s�

� ��
� exp�ÿs�� ÿ s�2 exp�ÿs��F� �����s�

p �

ÿ 1

2
� s�

� �
exp�ÿs��F� �����s�

p �
�
;

M021�s� � sm

3

1

2

���
p
2

r
erf� �������2s�
p � ÿ exp�ÿ2s��F� �����s�

p �
� �

;

M121�s� � s2
m

2

1

2

���
p
2

r
erf� �������2s�
p � ÿ 1

4
� �����s�
p � exp�ÿ2s��

�
ÿ 1

3
� s�

� �
exp�ÿ2s��F� �����s�

p �
�
;

M002�s� � sm

�����
s�

2

r
ÿ 1

2
F� �������2s�
p �

" #
;

M102�s� � s2
m

1

2

�����
s�

2

r
� s�

3

�����
s�

2

r
ÿ 1

2

1

2
� s�

� �
F�

�������
2s�
p

�
" #

;

M112�s� � s2
m

5

9
���
2
p erf� �����s�

p � ÿ 1

3

�����
s�

2

r
exp�ÿs��

"

ÿ 1

3

1

3
� s�

� �
exp�ÿs��F� �������2s�

p �
�
;

M012�s� � sm
2

3
���
2
p erf� �����s�

p � ÿ 1

3
exp�ÿs��F�

�������
2s�
p �

� �
;

M022�s� � sm

���
p
p
8

erf� �������2s�
p � ÿ 1

4
exp�ÿ2s��F� �������2s�

p �
� �

;

where we using the known integral [6]Z s

0

exp�ÿx2� dx � 1=2
���
p
p

erf�x� :

4
Numerical results
The input parameters of problem are two dimensionless
quantities: 0 � sm � 0:2 ± the duration of the application
of load p Eq. (7) from zero to the maximum value p0 [2]
and 0 � fi <1 Eq. (12) ± the axial coordinate.

The effect of sm during braking on the variation of the
dimensionless contact temperature T� � T=K, where T is
given by formula (22), is shown in Fig. 3. We see that the
largest value of the contact temperature is reached during
braking with the uniform retardation (sm � 0). In this case
the maximum temperature occurs at the middle-point
�t � 0; 5ts� of the stop. For sm � 0:2 this maximum is
attained at t � 0:62ts.

The maximum dimensionless contact temperature

T�max � max
0�t�ts

T��t�
falls with increasing sm (Fig. 4). Thus, the maximum
contact temperature in the case of uniform braking is al-
ways larger than at the non-uniform stopping. The
corresponding dependence for dimensionless time
smax � tmax=t0

s at which T�max is attained, is shown in Fig. 5.
In additing, we obtain the following engineering expres-
sions for T�max and smax:

T�max �
X3

k�0

aks
k
m; smax � 0:501� 0:53sm ; �29�

where a0 � 0:9426, a1 � 0:0201, a2 � ÿ1:2409,
a3 � 1:6024.

Distribution in axial direction of the maximum di-
mensionless temperature

T�t;max�fi� � max
0�t�ts

Ti�t; z�=K; i � 1; 2 ;

Fig. 3. Change of dimensionless contact temperature T� � T=K
during braking with different dimensionless parameters sm
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where Ti is given by expression (13), is shown in Fig. 6 for
sm � 0 (the curves for different values of 0 � sm � 0:2
almost coincides). We see that the temperature ®eld is
strongly localized and has a sharp gradient in axial di-
rection. According to Chichinadze et al. [2], the effective
depth of the frictional heating during braking character-
ises the depth when the following condition takes place

T�i fi� �=T�max � 100% � 5% :

It is seen that the dimensionless effective depth is equal to
feff

i � 2 at uniform braking. A numerical results presented

in Fig. 6 has permitted us to construct such approximate
formula

T�i max fi� � �
X4

k�0

bkf
k
i ; i � 1; 2 for sm � 0 ; �30�

where b0 � 0:9426, b1 � ÿ1:6711, b2 � 1:6947,
b3 � ÿ1:3668, b4 � 0:6551.

Figures 7, 8 shown, respectively, the distribution of the
dimensionless function I0�t� (26) and I1�t� (27) during
braking. The maximum values of these functions are
reached in the end of stopping time at t � ts. Thus, the

Fig. 4. Dependence of the dimensionless maximum contact
temperature T�max on the dimensionless parameter sm

Fig. 5. Dependence on the dimensionless time smax, when the
maximum contact temperature is attained, on the dimensionless
parameter tm

Fig. 6. Distribution of the dimensionless maximum temperature
T�i;max in axial direction during uniform braking �sm � 0�

Fig. 7. Change of the dimensionless function I0 during braking
with different dimensionless parameters sm
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wear during braking is largest in the stop time moment.
We observe also that the function I0�t�, which characterise
of the wear in the absence of frictional heating, nearly not-
dependence from the parameter sm at t � ts. Another
picture is observed for the function I1�t�, which falls with

increasing sm (Fig. 9). Thus, the maximum value of wear is
attained during braking with uniform retardation. The
least square method were applied to approximate of the
function I1�ts� as polynomial of sm:

I1�ts� �
X4

k�0

cks
k
m �31�

where c0 � 0:3810, c1 � 0:0837, c2 � ÿ0:9369, c3 � 6:3810,
c4 � ÿ11:4620.

We note that the absolute error of the approximate
formulae (10), (29)±(31) is at most 0.5%.

5
Conclusions
By method of the Laplace transform the exact solution of
the one-dimensional transient heat conductivity problem
with frictional heating during braking is obtained in the
general case of contact pressure distribution. We assumed
that the coef®cient of friction is constant and coef®cient of
wear is linearly dependence on the contact temperature.

It is established that the contact temperature and wear
essentially depends on the one input parameter: the time
when the maximum value of the pressure is reached. If this
parameter increasing then the maximum contact temper-
ature and wear falls. The temperature ®elds proves to be
strongly localized and possesses a sharp gradient in axial
directions.
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