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Abstract In this article, the thermosolutal buoyancy and
surface-tension convection ¯ows are numerically studied
with a fourth-order Runge-Kutta time-splitting ®nite ele-
ment method. The physical model for a square cavity
containing a top free surface and two different temperature
and concentration side walls is described by the Navier-
Stokes, energy and species concentration equations. On the
track of ¯ow pattern, the existence of surface tension will
alter the evolution of the ¯ow ®eld and in¯uence the local
heat and mass transfer rates near the top free surface. In
addition, the surface tension dominated ¯ow ®eld under a
zero-gravity condition is studied for r = 0 and 1 to in-
vestigate the interaction between thermal surface tension
and solutal surface tension. The results show that tem-
perature and concentration make opposing contributions
to the ¯ow and display local variance in temperature and
concentration distributions near surface boundary.

List of symbols
C concentration
L cavity width
Le Lewis number
Mac;MaT species and thermal Marangoni numbers
N buoyancy ratio
Nu Nusselt number
P dimensionless pressure
Pr Prandtl number
r surface tension ratio
Rac;RaT species and thermal Rayleigh numbers
Sh Sherwood number
T dimensional temperature
t dimensional time
u; v dimensional x; y velocities
U dimensionless velocity vector
x; y dimensional Cartesian coordinates
a thermal diffusivity
bc; bT expansion coef®cients for concentration and

temperature
cc; cT solutal and thermal surface tension gradients

l dynamic viscosity
m kinematic viscosity
h dimensionless temperature
q ¯uid density
r ¯uid surface tension

1
Introduction
It is well known that convection motion can be induced by
buoyancy forces in the domain or surface tension force
from the boundary with a free surface due to a tempera-
ture difference. However, the convection ¯ow can also be
driven by the solutally induced density difference in the
domain or surface tension variation on the free surface. In
fact, many practical ¯ow ®elds such as material processing
and crystal growth are caused by both temperature and
concentration effects, and driven by both buoyancy con-
vection and capillary convection simultaneously [1, 2, 3].
Up to date, most of the efforts have been given to the
investigation of temperature gradient induced buoyancy
convection ¯ow and thermocapillary convection ¯ow [4, 5,
6, 7]. Therefore, the study of the interaction between these
two ¯ows and the effects of these two factors will be im-
portant and interesting for researchers because of its
complex physical phenomena and the nonlinear charac-
teristics among the equations.

In reviewing previous research, a double-diffusive
Marangoni convection study was performed by Bergman
[8] for steady state results to understand the interaction
between thermocapillary ¯ow and diffusocapillary ¯ow.
About the ¯ow ®eld in solidi®cation, an analysis of binary
solid-liquid phase change with buoyancy and surface
tension driven convection was conducted by Incropera
et al. [9] with a numerical method for zero-gravity and
one-gravity environments. Dong et al. [10] investigated
the double diffusive convection in a trapezoidal enclosure
with thermocapillary effect in steady state condition, and
the study provided a series of results for different MaT .

In this research, a thermosolutal surface tension and
buoyancy driven convection ¯ow is studied to discover the
interactions between surface tension and buoyancy effects,
and the ¯uid ¯ows caused by different ratio of solutal and
thermal surface tension forces. The dimensionless pa-
rameters contained in the physical model include
RaT ;MaT ;Mac; Pr; Le;N and r. It is a formidable task to
perform the cases for a wide range of all the parameters.
Particularly, the primary purpose is to investigate the in-
teraction between temperature- and concentration-induced
surface tension ¯ow and natural convection ¯ow, so the
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physical cases considered here are concentrated on
different RaT ; MaT ; r, and the remaining parameters are
kept at the same values.

2
Mathematical model
The physical domain considered is a 2-D square cavity
with aspect ratio 1. The physical model involves continu-
ity, momentum, energy and species concentration equa-
tions. A Newtonian, incompressible ¯uid is considered for
the laminar ¯ow in the cavity. The density variation of the
¯uid follows Boussinesq's assumption and changes with
temperature as well as concentration. The free surface of
liquid is assumed to be perfectly ¯at corresponding to an
approximately zero capillary number free surface [11], and
surface tension along the free surface varies linearly with
temperature and/or concentration gradients only. Soret,
Dufour and viscous dissipation effects are neglected in this
model.

The dependence of density and surface tension on
temperature and concentration can be expressed as

q � q0

ÿ
1ÿ bT�T ÿ T0� ÿ bc�cÿ c0�

� �1�
r � r0

ÿ
1ÿ cT�T ÿ T0� ÿ cc�cÿ c0�

� �2�
The subscript 0 refers to reference state. For most of the
liquids bT and cT are positive. In this study, bT ; cT ; cc are
set positive and bc is negative. By applying the above as-
sumptions, the nondimensionalized governing equations
can be derived as:
Continuity equation:

oU

oX
� oV

oY
� 0 �3�

x-momentum equation:

oU

os
� U

oU

oX
� V

oU

oY
� ÿ oP

oX
� Pr

�
o2U

oX2
� o2U

oY2

�
�4�

y-momentum equation:
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Energy equation:
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Species concentration equation:
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In the above, the nondimensional quantities are de®ned as

U � �u=�a=L��; V � �v=�a=L��; X � x=L; Y � y=L;

s � �t=�L2=a��; P � p=�qa2=L2�; h � �T ÿ T0�=DT;

C � �cÿ c0�=Dc; T0 � �Th � Tl�=2; c0 � �cH � cL�=2;

Pr � m=a; Le � a=D; RaT � gbTDTL3=am;

Rac � gbcDcL3=am; N � bcDc=bTDT;

MaT � or=oTjcDTL=�la�; Mac � or=ocjTDcL=�la�
DT � Th ÿ Tl; Dc � cH ÿ cL �8�
In order to consider the relative contribution of MaT and
Mac easily, a ratio of the two numbers is de®ned as

r � or=ocjTDc

or=oTjcDT
�9�

The boundary conditions on the ®xed surface are speci®ed
as (see Fig. 1(a)):

U � V � 0; h � hh � 0:5; C � CL � ÿ0:5; �X � 0�
�10�

U � V � 0; h � hl � ÿ0:5; C � CH � 0:5; �X � 1�
�11�

U � 0; V � 0;
oh
oY
� 0;

oC

oY
� 0; �Y � 0� �12�

while the free-surface boundary conditions are given by:
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oh
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;

V � 0;
oh
oY
� 0;

oC

oY
� 0; �Y � 1�

�13�

Fig. 1. a Problem de®nition; b ®nite element mesh
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The shear stress on the left-hand side of Eq. (13) is re-
sponsible for the surface tension convection and occurs
whenever the surface tension varies with the liquid
temperature or concentration.

3
Solution method
The solution procedure consists of a fourth-order Runge-
Kutta method for the time dependent governing equations
and an explicit Euler scheme to express the convection and
diffusion terms. In solving the momentum equations, the
time-splitting scheme is applied and the momentum
equations are decomposed into an intermediate velocity
phase and a corrected velocity phase. The intermediate
velocity phase is obtained by solving the momentum
equation without including pressure term, while the
pressure is acquired from a Poisson equation deriving
from the continuity constraint. Finally, the pressure and
intermediate velocity are used to ®nd the correct velocity.
After solving the momentum equations, the energy and
concentration equations are solved by using the correct
velocity. The solution procedure can be described as
follows:

Step 1:
Phase 1:

�U
n�1�1� � Un � Ds

2
�Prr2Uÿ U � rU� S�n �14:1�

r2P � 2
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�14:2�

Un�1�1� � �U
n�1�1� ÿ Ds

2
rP �14:3�

r � Un�1�1� � 0 �14:4�
where S is the source term representing 0 and
Ra � Pr�h� N � C� in x and y momentum equations, re-
spectively.

Phase 2:
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n�1�2� � Un � Ds

2
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2
rP �16:3�
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Phase 4:

�U
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6
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3
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Ds
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Un�1 � �U
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r � Un�1 � 0 �17:4�
where F�U� � Prr2Uÿ U � rU� S.

Step 2:
Phase 1:

hn�1�1� � hn � Ds
2
�r2hn ÿ Un�1 � rhn� �18�
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2
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�21�
Step 3:
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Phase 4:
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Following the above procedures, a Galerkin ®nite element
method with 4-node isoparametric element is applied to
solve the above equations. The advantages of this nu-
merical methodology are that the variables can be solved
separately to reduce the size of stiffness matrices by using
time-splitting scheme, and the time step used can be much
larger than that of the ®rst-order projection scheme. Be-
cause of these bene®ts, the problem is solved in an accu-
rate and economic procedure. A detailed description and
complete results for the benchmark problems such as
standing vortex problem, driven cavity ¯ow, and ¯ow past
a square cylinder are available in the paper of Ling et al.
[12].

4
Results and discussion
The results shown in this section are calculated from zero
initial velocities and mean values of temperature and
concentration. A grid independence study is carried out for
a thermally driven cavity ¯ow at Pr � 0:71; Ra � 106 with
21� 21, 31� 31, 41� 41 and 51� 51 meshes, and the ¯ow
quantities are listed in Table 1. Because of the computa-
tional cost and accuracy considerations (Table 1, 2), a
41� 41 mesh (Fig. 1b) is used for the following study. The

steady state results are calculated by following the criterion
for convergence

kUn�1 ÿ Unk1

kUnk1

� 1:0� 10ÿ4 �26�

where U refers to U; V; h and C. kUk1 is the L1 norm
obtaining as the sum of the absolute value of the variable
components on the interior grid multiplied by the cell size.

Figure 2 illustrates the streamlines, isotherms and iso-
concentration lines for RaT � 104, Pr � 7:6, Le � 10,
N � ÿ5, and MaT � Mac � 0 at s � 10ÿ4 and steady state.
At small time s � 10ÿ4, both the thermal and solutal
buoyancy forces excite the ¯uid near the left hot, low
concentration wall to ¯ow up and the ¯uid near the right
cold, high concentration wall to ¯ow down resulting in the
cellular ¯ow pattern with a primary clockwise cell in-
cluding two secondary cells in it. The contours of tem-
perature and concentration distributions are located near
and parallel with the vertical walls due to the diffusion-
dominant heat and mass transfer in the low velocity ¯ow at
this time. As the time increases, the strength of the main
cell gradually raises and the two secondary cells move
close to merge together. Finally, only the primary cell
exists in the domain for steady state results, and the iso-
therms and isoconcentration lines display a convection-
dominant pattern where the isoconcentration lines are
distorted more seriously than the isotherms.

To compare with MaT � Mac � 0 results, the following
cases are studied for MaT � 102; ÿ102 and r � 0, and the
remaining parameters are kept the same. The r � 0 means
Mac � 0 for simplifying the condition to easily compare
with the without surface tension case. In MaT � 102 con-
dition, the surface tension forces the ¯uid on the top
surface to ¯ow in the left direction, and form two small
counterclockwise cells at two top corners at s � 10ÿ4

(Fig. 3a). Because the direction of surface tension ¯ow is
opposite to the buoyancy ¯ow, this phenomenon corre-
sponds to an opposing condition. However, the isotherms
and isohalines are similar to those in Fig. 2a still in dif-
fusion-dominant status. Due to the strength of surface
tension ¯ow much smaller than that of buoyancy ¯ow in
this case, the surface-tension driven cells ®nally disappear
in the domain and the contours of stream lines, temper-
ature and concentration distributions are almost the same
as without surface tension effect results (Fig. 2b) and not
to be displayed repeatedly. On the other hand, the
MaT � ÿ102 condition creates two clockwise small cells at
two top corners and are involved in the two buoyancy
driven secondary cells (Fig. 3b). This status corresponds
to an augmenting case for the surface-tension ¯ow and the
buoyancy ¯ow are in the same direction now. The primary
cell and secondary cells gradually merge together and the

Table 1. Comparison with benchmark solutions for the case
Pr = 0.71, Ra = 106

Meshes and
benchmark solutions

jWmidj jWmaxj umax vmax

21 ´ 21 16.02 16.87 63.92 245.46
31 ´ 31 16.23 16.75 63.63 233.27
41 ´ 41 16.30 16.82 64.61 217.62
51 ´ 51 16.35 16.81 64.48 226.11
De Vahl Davis [13]
(80 by 80 uniformed
mesh)

16.32 16.75 64.63 219.36

Table 2. Comparison of re-
sults computed by 41 ´ 41
mesh with benchmark solu-
tions (listed in bracket) [13]

Ra jWmidj jWmaxj umax vmax

103 1.174 (1.174) 1.174 3.643 (3.649) 3.706 (3.697)
104 5.083 (5.071) 5.083 16.239 (16.178) 19.722 (19.617)
105 9.174 (9.111) 9.700 (9.612) 35.314 (34.73) 69.057 (68.59)
106 16.30 (16.32) 16.82 (16.750) 64.61 (64.63) 217.62 (219.36)
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®nal steady state results are still almost the same as
without surface tension results (Fig. 2b).

In addition to MaT � 102 and ÿ102, a larger MaT value
is also interested in this research. The results for
MaT � 103, ÿ103 and r � 0 are studied and displayed in
Fig. 4a, b. For MaT � 103, r � 0, the streamlines, iso-
therms and isohalines are presented in Fig. 4a and it is
easily to ®nd the effect of thermal surface tension existing
in the upper area of the domain for a counterclockwise cell
created by surface tension appearing in this area, besides
the main clockwise cell driven by buoyancy force. Because
the circulation induced by surface tension is strong now,
the ¯ow ®eld is dominated by both forces simultaneously.

About the temperature distribution, the contours in the
lower area are affected by natural convection to curve in
right direction and those in the upper portion are domi-
nated by surface tension ¯ow to be distorted in left di-
rection. In particular, the isoconcentration distribution
shows a seriously distorted and complicated distribution.
On the other hand, the streamlines for MaT � ÿ103

present an augmenting phenomenon with much stronger
circulation comparing with those of MaT � ÿ102. There
are sharp turning ¯ows appearing at top right corner and
the center of primary cell moves upper than MaT � ÿ102

results. The ¯ow phenomena result in the isotherms with a
strong convection affected distribution showing a large

Fig. 2a, b. Streamlines, isotherms and
isoconcentration lines (from top to bot-
tom) for RaT � 104, Pr � 7:6, Le � 10,
N � ÿ5, MaT � Mac � 0. a s � 10ÿ4;
b steady state
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temperature gradient around top right corner. Similarly,
the isoconcentration distributions display a much curved
pattern in central area because of the in¯uence of con-
vection ¯ow ®eld.

In many practical systems, convective conditions within
the bulk ¯uid govern the local heat and mass transfer
rates, and result in the local transfer rates varying signif-
icantly. Therefore, the local Nusselt number and Sherwood
number are shown in Fig. 5a, b to display a measure of the
local dimensionless heat and mass transfer rates. The Nu
and Sh are de®ned as

Nu � oh
ox

���� ����; Sh � oC

ox

���� ����: �27�

On the left wall, the values of Nusselt number and Sher-
wood number show a local maximum near the bottom area
due to the local turning of ¯ow direction, and then de-
crease to a minimum value at the top surface point, except
the values for MaT � 103, r � 0 (Fig. 5a). The distribu-
tions for without surface tension effect and with surface
tension effect for MaT � 102, ÿ102, r � 0 are almost the
same, because the ¯ow ®eld is dominated by buoyancy
convection ¯ow. The Nu and Sh of MaT � ÿ103, r � 0 case
are greater than the above three conditions, due to the
augmenting in¯uence. For MaT � 103, r � 0, the coun-
teracting effect between buoyancy ¯ow and surface tension
¯ow results in existing a turning point around y � 0:79 for
Nu distribution and y � 0:85 for Sh distribution, and then

Fig. 3a, b. Streamlines, isotherms and
isoconcentration lines (from top to bot-
tom) for RaT � 104, Pr � 7:6, Le � 10,
N � ÿ5, r � 0, s � 10ÿ4. a MaT � 102;
b MaT � ÿ102
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increasing to a maximum value. On the other hand, the Nu
and Sh distributions on the right wall ®rst increase from
bottom to near the top area, and divided to two groups
(Fig. 5b). One for augmenting status presents bigger val-
ues than those of without surface condition and increases
to a maximum value on the top surface; the other for
counteracting status displays smaller values than without
surface results.

In addition to without solutal surface tension effect
r � 0, the following conditions are concentrated on the
effect of solutal Marangoni ¯ow by increasing the value
of r. The conditions are set as MaT � ÿ103,
r � 0:2; 0:4; 0:8 and 1 corresponding to Mac � ÿ2� 102,

ÿ4� 102, ÿ8� 102 and ÿ103, respectively. The stream-
lines, isotherms and isohalines for MaT � ÿ103, r � 0:2,
0.4 are very similar to the results of MaT � ÿ103, r � 0
and the difference among the three cases is the strength of
circulation, which is stronger for the smaller value of r due
to the direction of solutal Marangoni ¯ow opposite to the
thermal Marangoni ¯ow. However, the streamlines of
MaT � ÿ103, r � 0:8, 1 (Fig. 6) display some differences
from the above two cases that the ¯ow ®eld includes two
small counterclockwise cells in top corner area and the
center of circulation moves a little to left and lower for the
opposing solutal surface tension effect, but the isotherms
and isohalines are still very similar. About the local heat

Fig. 4a, b. Steady state streamlines, iso-
therms and isoconcentration lines (from
top to bottom) for RaT � 104, Pr � 7:6,
Le � 10, N � ÿ5, r � 0. a MaT � 103;
b MaT � ÿ103
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and mass transfer rates on both side walls, the patterns are
basically the same because the ¯ow ®elds are similar for
these cases. Smaller r value presents bigger maximum local
value on the top surface for less opposing solutal surface
tension in¯uence and the values for r � 0:8 and 1 display
a turning point near the top surface because of the two
solutally driven cells existing in this area (Fig. 7).

Besides the normal gravity condition, low gravity con-
dition is an important environment for material re-
searchers to ®nd a new production process. In low gravity

environment, the surface tension convection dominates
the whole domain; therefore the zero-g gravity condition is
an important condition for researchers to study. In the
following conditions, the RaT � Rac � 0 corresponds to
the zero gravity condition and MaT is set as ÿ102 and
ÿ103. Surface tension ratio r is assigned as 0 for pure
thermo-surface-tension existing only and 1 for thermo-
surface-tension as well as solutal-surface-tension existing
simultaneously. The ¯ow pattern presents a single clock-
wise cell in the domain as shown in Fig. 8a for

Fig. 5a, b. Local Nusselt number and Sherwood number. a Left wall; b right wall
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MaT � ÿ103, r � 0. Due to the thermo-surface-tension
effect existing only, the center of the circulation is located
upper than those of including buoyancy conditions and
the ¯ow pattern is similar to a lid-driven cavity ¯ow with
thermo-surface-tension as the ¯ow driving force. Under
the single driving force condition, the isotherms are dis-
torted mainly in the top portion and the bottom area
presents a diffusion type distribution. Similarly, the con-
vection-dominant isohalines exists in the top portion also,
but the contours are distorted more seriously than the
isotherms in this area. About MaT � ÿ103, r � 0 condi-
tion, the existing driving forces include thermal surface
tension and solutal surface tension, and these two forces

are in opposite direction resulting in a counteracting ef-
fect. The streamlines of this condition (Fig. 8b) similar to
MaT � ÿ103, r � 1 shown in Fig. 6b include two coun-
terclockwise cells created by solutal surface tension effect
at two top corners, and this counteracting in¯uence forces
the primary circulation driven by thermal surface tension
effect to shrink and shift to right. The same in¯uence re-
sults in the isotherms and isohalines not curved as much
as those of r � 0 condition, and additionally the distri-
butions in two top corner areas show opposite direction
pattern caused by the two counterclockwise cells. The
contours for MaT � ÿ102, r � 0, 1 similar to those of
MaT � ÿ103, with smaller strength of circulation and little

Fig. 6a, b. Steady state streamlines, iso-
therms and isoconcentration lines (from
top to bottom) for RaT � 104, Pr � 7:6,
Le � 10, N � ÿ5, MaT � ÿ103. a r � 0:8;
b r � 1
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distortion of isotherms and isohalines, are not displayed
repeatedly. The local heat transfer rate on the left wall is
increased with the raise of MaT for r � 0, and in most area
for r � 1 except near the top surface resulting from the
solutally driven ¯ow effect. The distributions of mass
transfer rate are similar for y < 0:73, and the lines for
r � 1 present larger curved pattern after y � 0:73 because
of the solutal surface tension ¯ow in¯uence also. On the

right wall, the same solutal effect causes the lines to bi-
furcate in the top area; for r � 0, the rates approach a
maximum value but the values for r � 1 decrease.

5
Conclusions
In this paper, a fourth-order Runge-Kutta splitting type
®nite element method is successfully applied in solving the

Fig. 7a, b. Local Nusselt number and Sherwood number. a Left wall; b right wall
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thermosolutal convection ¯ow under surface tension effect
and buoyancy effect. From this investigation, the surface
tension induced ¯ow changes the ¯ow evolution and in-
¯uence the heat and mass transfer rates near the area of
free surface locally. The effects are divided into two kinds.
One is the augmenting case for boundary surface tension
convection to strengthen domain buoyancy circulation
and increase heat and mass transfer rate, close the free
surface, and the other is for surface tension ¯ow contrary
to the buoyancy convection corresponding to the opposing
condition. On the other hand, the solutal surface tension

and thermal surface tension are opposing in this study, so
the increase of the ratio of solutal surface tension results in
reducing the strength of surface tension ¯ow and there are
two other cells driven by solutal surface tension for
r � 0:8, MaT � ÿ103. About the zero-gravity condition,
the thermal Marangoni convection dominates the whole
domain for r � 0 status and most area for r � 1. However,
for r � 1 condition, the solutal surface tension creates
opposing direction cells to locally affect the heat and mass
transfer phenomena and this in¯uence is needed to be
noticed in practical applications.

Fig. 8a, b. Steady state streamlines, iso-
therms and isoconcentration lines (from
top to bottom) for RaT � Rac � 0,
Pr � 7:6, Le � 10, MaT � ÿ103. a r � 0;
b r � 1
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