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Abstract An analysis is made of heat transfer in the
boundary layer of a viscoelastic ¯uid ¯owing over a
stretching surface. The velocity of the surface varies lin-
early with the distance x from a ®xed point and the sur-
face is held at a uniform temperature Tw higher than the
temperature T1 of the ambient ¯uid. An exact analytical
solution for the temperature distribution is found by
solving the energy equation after taking into account
strain energy stored in the ¯uid (due to its elastic prop-
erty) and viscous dissipation. It is shown that the tem-
perature pro®les are nonsimilar in marked contrast with
the case when these pro®les are found to be similar in the
absence of viscous dissipation and strain energy. It is also
found that temperature at a point increases due to the
combined in¯uence of these two effects in comparison
with its corresponding value in the absence of these two
effects. A novel result of this analysis is that for small
values of x, heat ¯ows from the surface to the ¯uid while
for moderate and large values of x, heat ¯ows from the
¯uid to the surface even when Tw > T1. Temperature
distribution and the surface heat ¯ux are determined for
various values of the Prandtl number P, the elastic
parameter K1 and the viscous dissipation parameter a.
Numerical solutions are also obtained through a fourth-
order accurate compact ®nite difference scheme.

1
Introduction
Flow of an incompressible ¯uid over a stretching surface
has important applications in polymer industry. For in-
stance a number of technical processes concerning poly-
mers involves the cooling of continuous strips (or
®laments) extruded from a die by drawing them through a
quiescent ¯uid with controlled cooling system and in the
process of drawing, these strips are sometimes stretched.
Further glass blowing, continuous casting of metals and
spinning of ®bres involve the ¯ow due to a stretching
surface. In all these cases, the quality of the ®nal product
depends on the rate of heat transfer at the stretching
surface. Crane [1] studied the steady two-dimensional
incompressible boundary layer ¯ow caused by the

stretching of an elastic ¯at sheet which moves in its plane
with a velocity varying linearly with distance from a ®xed
point due to the application of a uniform stress. The heat
transfer in the ¯ow over a stretching surface was investi-
gated by Gupta and Gupta [2] in the case when the surface
held at constant temperature is subject to suction or
blowing. Dutta, Roy and Gupta [3] determined the tem-
perature distribution in the ¯ow over a stretching surface
subject to uniform heat ¯ux. Crane [4] studied heat
transfer in the ¯ow over a surface which is stretched in its
own plane with a velocity varying linearly with distance
from a ®xed point in the case when the temperature dif-
ference between the surface and the ambient ¯uid is pro-
portional to a power of distance from the ®xed point.

All the above investigations are, however, con®ned to
¯ows of Newtonian ¯uids. In recent years non-Newtonian
¯uids have become more important industrially. Speci®-
cally in certain polymer processing applications, one deals
with ¯ow of a non-Newtonian ¯uid over a stretching
surface. Similarity solutions for the velocity distributions
for the non-Newtonian ¯ow of a power law ¯uid past a
stretching sheet were given by Andersson and Dandapat
[5]. The same ¯ow was examined by Siddappa and Kha-
pate [6] for a special class of non-Newtonian ¯uids known
as second-order ¯uids, which are viscoelastic in nature.
Bujurke, Biradar and Hiremath [7] and Dandapat and
Gupta [8] examined the temperature distribution in the
steady boundary layer ¯ow of a second-order ¯uid past a
stretching surface. Chen, Char and Cleaver [9] studied the
¯ow and heat transfer in the boundary layer of a visco-
elastic ¯uid of Walters' liquid B model over a stretching
surface subject to either constant temperature or uniform
heat ¯ux. Interestingly the boundary layer equations for
the steady two-dimensional ¯ow studied in [8] and [9] are
identical. However the heat transfer analyses in Refs. [7]±
[9] suffer from the serious defect that neither the defor-
mation energy stored in the ¯uid (owing to its elastic
property) nor the viscous dissipation of energy were taken
into account while solving the energy equation for deter-
mining temperature distribution. The aim of the present
paper is to remove this defect and determine the temper-
ature distribution in the steady boundary layer ¯ow of
a second-order ¯uid by taking the above two important
effects into account. In the sequel it is shown that due to
these effects there is a drastic change in the heat transfer
characteristics and the temperature pro®les become non-
similar in marked contrast with the corresponding results
in [8]±[9] where the temperature pro®les were found to be
similar.
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2
Heat transfer analysis
Consider the steady ¯ow of an incompressible second-
order ¯uid past a stretching surface coinciding with the
plane y � 0 (Fig. 1). Two equal and opposite forces are
applied along the x axis so that the surface is stretched
with the origin ®xed. Using the postulate of gradually
fading memory, Coleman and Noll [10] derived the con-
stitutive equation for the ¯uid as

sij � ÿPdij � lA�1�ij � a1A�1�ikA�1�kj � a2A�2�ij �1�
where sij is the stress tensor, P is an indeterminate pres-
sure and l, a1 and a2 are material constants. The rate-of-
strain tensor A�1�ij and the acceleration tensor A�2�ij are
de®ned by

A�1�ij � vi;j � vj:i �2�
A�2�ij � ai;j � aj;i � 2vm;ivm;j �3�
where vi's are the velocity components and ai's are the
acceleration components given by vjvi;j. It is worth point-
ing out that such a ¯uid exhibits normal stress effects in
shear ¯ows and (1) is applicable to ¯ow of some dilute
polymer solutions at low shear rates, a2 being negative
from thermodynamic considerations.

Using (1) ± (3), the steady two dimensional boundary
layer equations for the ¯uid (see [8]) are given by
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where �u; v� are the velocity components and

m � l=q; K � ÿa2=q �6�
In deriving these equations it is tacitly assumed that in
addition to the usual boundary layer approximations, the
contribution due to the normal stress is of the same order
of magnitude as that due to shear stresses. Hence both m
and K are O�d2�; d being the boundary layer thickness.
Note that K > 0.

The boundary conditions are

u � Cx; v � 0 at y � 0 �7�
u! 0 as y!1 �8�

where C is a positive constant. A little inspection shows
that (4) and (5) admit of a similarity solution

u � Cxf 0�g�; v � ÿ�mC�1=2f �g� �9�
where

g � �C=m�1=2y : �10�
With u and v given by (9), we ®nd that (4) is identically
satis®ed while (5) gives

f 02 ÿ ff 00 � f 000 ÿ K1 2f 0f 000 ÿ f 00� �2ÿff iv
h i

�11�
where a prime denotes differentiation with respect to g and

K1 � KC=m : �12�
The boundary conditions (7) and (8) become

f 0�0� � 1; f �0� � 0; f 0�1� � 0 : �13�
An exact solution of (11) satisfying (13) was given by
Dandapat and Gupta [8] as

f �g� � �1ÿ K1�1=2 1ÿ eÿg�1ÿK1�ÿ1=2
h i

: �14�
This solution is, of course valid for K1 < 1: Such an as-
sumption is justi®ed for ¯ow of a second-order ¯uid which
displays short memory viscoelastic properties. Indeed
K1 � 1 for ¯ow of dilute polymer solutions.

Let us now consider the heat transfer equation in the
¯ow of a viscoelastic ¯uid. In this context it is necessary to
establish the energy balance for a ¯uid element in motion
and to consider it in conjunction with the equations of
motion. It is important to remember that during the
motion of a viscoelastic ¯uid, a certain amount of energy
is stored up in the ¯uid as strain energy and some energy
is lost due to viscous dissipation. Thus for an incom-
pressible viscoelastic ¯uid the energy balance is deter-
mined by the internal energy, the conduction of heat, the
convection of heat with the ¯ow, the generation of heat
through viscous dissipation (or friction) and the strain (or
deformation) energy stored in the ¯uid due to its elastic
properties. Following Schlichting [11], the transfer of heat
in the steady ¯ow of an incompressible second-order ¯uid
can be expressed in the form of the energy equation given
by
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where T; k and Cp denote the temperature, thermal dif-
fusivity and the speci®c heat of the ¯uid, respectively. In
deriving (15) we use boundary layer approximations along
with (1). Note that the second and the third term on the
right hand side of (15) denote the terms due to viscous
dissipation and strain energy, respectively.

The boundary conditions are

T � Tw at y � 0; T ! T1 as y!1 �16�
where Tw and T1 are constants with Tw > T1:

Introducing the dimensionless temperature h asFig. 1. A sketch of the physical problem

42



h � T ÿ T1
Tw ÿ T1

�17�

and using (9), we ®nd from (15)
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Setting

h�x; g� � h0�g� � Cx2

m
h1�g� �19�

in (18) and equating the coef®cients of x0 and x2, we get
upon using (14)

h000 �
r
r

1ÿ eÿrg� �h00 � 0 �20�

h001 �
r
r

1ÿ eÿrg� �h01 ÿ 2reÿrgh1 � ÿraeÿ2rg �21�
where

r � �1ÿ K1�ÿ1=2; r � v

k
; a � vC

Cp�Tw ÿ T1� :

�22�
It is clear from above that the temperature distribution
h�x; g� depends on three dimensionless parameters: (i) the
viscoelastic parameter K1, (ii) the Prandtl number r and
(iii) the Eckert number a (which characterizes viscous
dissipation in the ¯ow). The boundary conditions for h0�g�
and h1�g� are obtained from (16), (17) and (19) as

h0�0� � 1; h0�1� � 0 �23a�
h1�0� � 0; h1�1� � 0 �23b�
The solution of (20) satisfying (23a) (see [8]) is

h0�g� � 1ÿ
"Z r=r2

�r=r2�eÿrg
z

r
r2� �ÿ1eÿz dz

�
Z r=r2

0

z
r
r2� �ÿ1eÿz dz

#
: �24�

When r � r2, the solution for h0�g� can be obtained in a
closed form as

h0�g� � 1ÿ �exp�ÿeÿrg� ÿ eÿ1�
1ÿ eÿ1

�25�
To solve (21), we ®rst note that it has a particular solution
given by

�h1�p �
a�r2 ÿ r�

2r
� aeÿrn �26�

Since (21) is linear, its complete solution is obtained by
combining the solution (26) with the solution of the ho-
mogeneous equation corresponding to (21). Setting

t � ÿ r
r2

eÿrg �27�
in this homogeneous equation, we get

t
d2h1
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This is a con¯uent hypergeometric equation whose general
solution is
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where B1 and B2 are constants and F is the con¯uent
hypergeometric function given by

F�a; b; x� � 1� ax

b
� a�a� 1�

b�b� 1�
x2

2!

� a�a� 1��a� 2�
b�b� 1��b� 2�

x3

3!
� � � � : �30�

Hence the complete solution of (21) is given by

h1 � �h1�p � �h1�c �31�
Using (26), (27), (29) and the boundary conditions (23b)
in (31), we obtain h1�g� as
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Thus the exact analytical solution for the temperature
distribution in a closed form is obtained from (19) with
h0�g� and h1�g� given by (24) and (32), respectively. It can
be clearly seen from (19) that the temperature distribution
is nonsimilar in marked contrast with the similarity so-
lution for temperature distribution obtained in [8]. Using
Kummer's transformation (Abramowitz and Stegun [12])
for the con¯uent hypergeometric function given by

F�a; b; z� � ezF�bÿ a; b;ÿz� ; �33�
h1�g� is computed from (32).

Numerical solutions of the Eqs. (20)±(21) are obtained
by using a fourth-order accurate compact Hermitian ®nite
difference scheme. This method is described in great de-
tails by Peyret and Taylor [13] and Adam [14]. To test the
accuracy of our numerical method, we have compared the
values of h1�g� using this method with the corresponding
values obtained from the exact analytical solution (32).
These results are presented in Table 1 where the values
derived from (32) are shown within parentheses.

It is clear that there is an excellent agreement between
the numerical and analytical solutions.

3
Discussion
Figures 2 and 3 show the variation of h0�g� and h1�g� with
g for several values of r with K1 � 0:09 and a � 4. It can
be seen that at a given point in the ¯ow, h0�g� decreases
with increase in r. But h1�g� increases with increase in r
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upto a certain value of g and thereafter h1 decreases with
increase in r. Since h1�g� > 0 everywhere, it follows from
(19) that temperature at a point increases due to the

combined in¯uence of viscous dissipation and stored
strain energy in the ¯ow in comparison with its value h0

(see [8]) in the absence of these two effects. Figure 4 shows
the variation of h1�g� with g for several values of a with K1

= 0.09 and r = 10. It can be seen from this ®gure and (19)
that for ®xed K1 and r, the temperature at a point in-
creases with increase in the viscous dissipation parameter
a. This is plausible on physical grounds since viscous
dissipation tends to raise the temperature of the ¯uid.
From (19), the dimensionless heat transfer coef®cient
ÿh0�0� is evaluated as

ÿh0�0� � ÿh00�0� ÿ
Cx2

m
h01�0� �34�

Table 2 gives the values of ÿh00�0� for several values of the
elastic parameter K1 when r � 10.

Figure 5 shows the variation of ÿh01�0� with a for several
values of K1 when r � 10. It follows from this ®gure that
for a ®xed value of K1, the variation of ÿh01�0� is linear
with a. This variation is, of course, evident from the an-
alytical solution for h1�g� given by Eq. (32) which clearly
shows that the parameter a can be factored out. It can be
clearly seen from this ®gure, Table 2 and equation (34)
that for given values of r, K1 and a, heat ¯ows from the
stretching surface to the ¯uid for small enough values of
x�C=m�1=2. But at a certain value X of x�C=m�1=2, the surface
heat ¯ux vanishes and when x�C=m�1=2 exceeds X, heat
¯ows from the ¯uid to the stretching surface. This inter-
esting result admits of a physical interpretation. For small
enough values of x�C=m�1=2, both viscous dissipation and
strain energy in the ¯ow are small (see equation (18)) and
hence no signi®cant heat is generated inside the ¯ow. Thus
for small values of x�C=m�1=2, heat will ¯ow from the sur-
face to the ¯uid since Tw > T1. On the other hand for
large values of x�C=m�1=2, suf®cient heat is generated inside
the boundary layer due to the combined in¯uence of vis-

Table 1. Variation of h1(g) with g for r = 10 and a = 4

g � 0.2 g � 0.4 g � 1 g � 1.2

K1 � 0.09 0.756674 0.808960 0.309685 0.205941
(0.756576) (0.808923) (0.309683) (0.205940)

K1 � 0.25 0.719458 0.753481 0.264105 0.169078
(0.719621) (0.753521) (0.264105) (0.169078)

K1 � 0.33 0.697409 0.721247 0.239745 0.149966
(0.697595) (0.721299) (0.239745) (0.149966)

Fig. 2. Variation of h0�g� with g for several values of r with
K1 � 0:09 and a � 4

Fig. 3. Variation of h1�g� with g for several values of r with
K1 � 0:09 and a � 4

Fig. 4. Variation of h1�g� with g for several values of a with
K1 � 0:09 and r � 10
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cous dissipation and stored deformation energy. Under
such circumstances temperature very near the surface
exceeds the surface temperature Tw and heat then ¯ows
from the ¯uid to the surface even when Tw > T1. However
in the absence of viscous dissipation and strain energy,
heat always ¯ows from the surface to the ¯uid as long as
Tw > T1. This can be seen from Table 2. Thus we ®nd that
there is a drastic change in the heat transfer characteris-
tics of the ¯ow when the above two effects are taken into
account.
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