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Heat transfer in the flow of a viscoelastic fluid over a stretching surface

S. Bhattacharyya, A. Pal, A. S. Gupta

Abstract An analysis is made of heat transfer in the
boundary layer of a viscoelastic fluid flowing over a
stretching surface. The velocity of the surface varies lin-
early with the distance x from a fixed point and the sur-
face is held at a uniform temperature T, higher than the
temperature To, of the ambient fluid. An exact analytical
solution for the temperature distribution is found by
solving the energy equation after taking into account
strain energy stored in the fluid (due to its elastic prop-
erty) and viscous dissipation. It is shown that the tem-
perature profiles are nonsimilar in marked contrast with
the case when these profiles are found to be similar in the
absence of viscous dissipation and strain energy. It is also
found that temperature at a point increases due to the
combined influence of these two effects in comparison
with its corresponding value in the absence of these two
effects. A novel result of this analysis is that for small
values of x, heat flows from the surface to the fluid while
for moderate and large values of x, heat flows from the
fluid to the surface even when T, > T.,. Temperature
distribution and the surface heat flux are determined for
various values of the Prandtl number P, the elastic
parameter K; and the viscous dissipation parameter a.
Numerical solutions are also obtained through a fourth-
order accurate compact finite difference scheme.

1

Introduction

Flow of an incompressible fluid over a stretching surface
has important applications in polymer industry. For in-
stance a number of technical processes concerning poly-
mers involves the cooling of continuous strips (or
filaments) extruded from a die by drawing them through a
quiescent fluid with controlled cooling system and in the
process of drawing, these strips are sometimes stretched.
Further glass blowing, continuous casting of metals and
spinning of fibres involve the flow due to a stretching
surface. In all these cases, the quality of the final product
depends on the rate of heat transfer at the stretching
surface. Crane [1] studied the steady two-dimensional
incompressible boundary layer flow caused by the
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stretching of an elastic flat sheet which moves in its plane
with a velocity varying linearly with distance from a fixed
point due to the application of a uniform stress. The heat
transfer in the flow over a stretching surface was investi-
gated by Gupta and Gupta [2] in the case when the surface
held at constant temperature is subject to suction or
blowing. Dutta, Roy and Gupta [3] determined the tem-
perature distribution in the flow over a stretching surface
subject to uniform heat flux. Crane [4] studied heat
transfer in the flow over a surface which is stretched in its
own plane with a velocity varying linearly with distance
from a fixed point in the case when the temperature dif-
ference between the surface and the ambient fluid is pro-
portional to a power of distance from the fixed point.

All the above investigations are, however, confined to
flows of Newtonian fluids. In recent years non-Newtonian
fluids have become more important industrially. Specifi-
cally in certain polymer processing applications, one deals
with flow of a non-Newtonian fluid over a stretching
surface. Similarity solutions for the velocity distributions
for the non-Newtonian flow of a power law fluid past a
stretching sheet were given by Andersson and Dandapat
[5]. The same flow was examined by Siddappa and Kha-
pate [6] for a special class of non-Newtonian fluids known
as second-order fluids, which are viscoelastic in nature.
Bujurke, Biradar and Hiremath [7] and Dandapat and
Gupta [8] examined the temperature distribution in the
steady boundary layer flow of a second-order fluid past a
stretching surface. Chen, Char and Cleaver [9] studied the
flow and heat transfer in the boundary layer of a visco-
elastic fluid of Walters’ liquid B model over a stretching
surface subject to either constant temperature or uniform
heat flux. Interestingly the boundary layer equations for
the steady two-dimensional flow studied in [8] and [9] are
identical. However the heat transfer analyses in Refs. [7]-
[9] suffer from the serious defect that neither the defor-
mation energy stored in the fluid (owing to its elastic
property) nor the viscous dissipation of energy were taken
into account while solving the energy equation for deter-
mining temperature distribution. The aim of the present
paper is to remove this defect and determine the temper-
ature distribution in the steady boundary layer flow of
a second-order fluid by taking the above two important
effects into account. In the sequel it is shown that due to
these effects there is a drastic change in the heat transfer
characteristics and the temperature profiles become non-
similar in marked contrast with the corresponding results
in [8]-[9] where the temperature profiles were found to be
similar.
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2

Heat transfer analysis

Consider the steady flow of an incompressible second-
order fluid past a stretching surface coinciding with the
plane y = 0 (Fig. 1). Two equal and opposite forces are
applied along the x axis so that the surface is stretched
with the origin fixed. Using the postulate of gradually
fading memory, Coleman and Noll [10] derived the con-
stitutive equation for the fluid as

Tj = —Poij + uA); T AmrA T %A ) (1)

where 7;; is the stress tensor, P is an indeterminate pres-
sure and u, o; and o, are material constants. The rate-of-
strain tensor A(;); and the acceleration tensor A ,); are

defined by
Ay = vij + Ui (2)
Ay = aij + @i + 20m,iVmj (3)

where v;’s are the velocity components and a;’s are the
acceleration components given by vjv;;. It is worth point-
ing out that such a fluid exhibits normal stress effects in
shear flows and (1) is applicable to flow of some dilute
polymer solutions at low shear rates, o, being negative
from thermodynamic considerations.

Using (1) - (3), the steady two dimensional boundary
layer equations for the fluid (see [8]) are given by

ou v
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(5)

where (u,v) are the velocity components and

v=yp/p, K=-u/p (6)

In deriving these equations it is tacitly assumed that in
addition to the usual boundary layer approximations, the
contribution due to the normal stress is of the same order
of magnitude as that due to shear stresses. Hence both v
and K are 0(5%), J being the boundary layer thickness.
Note that K > 0.

The boundary conditions are

u=Cx, v=0 aty=0 (7)
u—20 as y — 0o (8)
Y
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Fig. 1. A sketch of the physical problem

where C is a positive constant. A little inspection shows
that (4) and (5) admit of a similarity solution

u=Cxf'(n), v=-(C)"*f(n) 9)

where

n=(Cc/m . (10)
With u and v given by (9), we find that (4) is identically
satisfied while (5) gives

f/2 _ff// :f//l _ Kl zf/f/// _ (f//)z_ffib‘ (11)
where a prime denotes differentiation with respect to # and
Ky =KC/v . (12)
The boundary conditions (7) and (8) become

f0) =1, f(0)=0, f(0)=0. (13)
An exact solution of (11) satisfying (13) was given by
Dandapat and Gupta [8] as

~1/2

fln) = (1 — Kp)'2[1 = 710K (14)
This solution is, of course valid for K; < 1. Such an as-
sumption is justified for flow of a second-order fluid which
displays short memory viscoelastic properties. Indeed

K, <« 1 for flow of dilute polymer solutions.

Let us now consider the heat transfer equation in the
flow of a viscoelastic fluid. In this context it is necessary to
establish the energy balance for a fluid element in motion
and to consider it in conjunction with the equations of
motion. It is important to remember that during the
motion of a viscoelastic fluid, a certain amount of energy
is stored up in the fluid as strain energy and some energy
is lost due to viscous dissipation. Thus for an incom-
pressible viscoelastic fluid the energy balance is deter-
mined by the internal energy, the conduction of heat, the
convection of heat with the flow, the generation of heat
through viscous dissipation (or friction) and the strain (or
deformation) energy stored in the fluid due to its elastic
properties. Following Schlichting [11], the transfer of heat
in the steady flow of an incompressible second-order fluid
can be expressed in the form of the energy equation given

ua£+val—)azl+i aj ’
Ox dy oy pC, \dy

pC,0ydy \ O0x 0y

where T, /4 and C, denote the temperature, thermal dif-
fusivity and the specific heat of the fluid, respectively. In
deriving (15) we use boundary layer approximations along
with (1). Note that the second and the third term on the
right hand side of (15) denote the terms due to viscous
dissipation and strain energy, respectively.

The boundary conditions are

T=T, aty=0, (16)

T— Ty asy — 00

where T,, and T, are constants with T,, > T..
Introducing the dimensionless temperature 0 as



_ T—-Ty
B Tw - Too
and using (9), we find from (15)

0 (17)
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Setting

0x1) = o) + 0,0 (19

in (18) and equating the coefficients of x° and x?, we get
upon using (14)

o — T
Oy + ;(1 —e ™Mb, =0 (20)
0] + ;—):(1 —e ™M —20e 0, = —cae " (21)
where
C
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(22)

It is clear from above that the temperature distribution
0(x,n) depends on three dimensionless parameters: (i) the
viscoelastic parameter Kj, (ii) the Prandtl number ¢ and
(iii) the Eckert number a (which characterizes viscous
dissipation in the flow). The boundary conditions for 6 (#)
and 0,(y) are obtained from (16), (17) and (19) as

00(0) =1, 0Oy(c0) =0 (23a)
0,(0) =0, 01(0) =0 (23b)
The solution of (20) satisfying (23a) (see [8]) is
a/r? .
Oo(n) = 1— [/ Z(B) e dz/
(a/rr)e "
a/r? .
/ () e dz} (24)
0

When ¢ = r2, the solution for 0y(17) can be obtained in a
closed form as
[exp(—e™) —e”']

() =1 -2 (25)

To solve (21), we first note that it has a particular solution
given by

0,), = a(r* — o)
YrT 20
Since (21) is linear, its complete solution is obtained by
combining the solution (26) with the solution of the ho-
mogeneous equation corresponding to (21). Setting

= _Ze—m

r2

+ae ™" (26)

(27)

in this homogeneous equation, we get

d201 g dgl
t@+<l—ﬁ—t)§+201—0 )

This is a confluent hypergeometric equation whose general
solution is

o g g
() = BiF(=2,1 = 5. 0) + Bt F (=214 7.1)
(29)

(28)

where B; and B, are constants and F is the confluent
hypergeometric function given by

ax a(a+1)x*

F(a,b,x) =1 +?+—b(b+ 020
ala+1)(a+2)x°
b(b+1)(b+2)3

Hence the complete solution of (21) is given by

01 = (61), + (61), (31)

Using (26), (27), (29) and the boundary conditions (23b)
in (31), we obtain 6;(#) as

(30)

e (2~ 1)F(-2,1 - 5,-8) (2 +1)
F(g-2,1+5,-7)

X F(G=2145,—Ze™) (32)
Thus the exact analytical solution for the temperature
distribution in a closed form is obtained from (19) with
0o(n) and 0;(n) given by (24) and (32), respectively. It can
be clearly seen from (19) that the temperature distribution
is nonsimilar in marked contrast with the similarity so-
lution for temperature distribution obtained in [8]. Using
Kummer’s transformation (Abramowitz and Stegun [12])
for the confluent hypergeometric function given by

F(a,b,z) = €’F(b —a,b,—2z) ,

01(n) is computed from (32).

Numerical solutions of the Egs. (20)-(21) are obtained
by using a fourth-order accurate compact Hermitian finite
difference scheme. This method is described in great de-
tails by Peyret and Taylor [13] and Adam [14]. To test the
accuracy of our numerical method, we have compared the
values of 0;(n) using this method with the corresponding
values obtained from the exact analytical solution (32).
These results are presented in Table 1 where the values
derived from (32) are shown within parentheses.

It is clear that there is an excellent agreement between
the numerical and analytical solutions.

(33)

w

Discussion

Figures 2 and 3 show the variation of 0y(5) and 0, () with
n for several values of ¢ with K; = 0.09 and a = 4. It can
be seen that at a given point in the flow, 6y(#) decreases
with increase in ¢. But 0; (1) increases with increase in ¢
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upto a certain value of 7 and thereafter 0, decreases with
increase in 0. Since 6,(n) > 0 everywhere, it follows from
(19) that temperature at a point increases due to the

Table 1. Variation of 6,(n) with 5 for ¢ = 10 and a = 4

n=0.2 n = 0.4 n=1 n=12
K; = 0.09 0.756674 0.808960 0.309685 0.205941
(0.756576)  (0.808923)  (0.309683)  (0.205940)
K; =0.25 0.719458 0.753481 0.264105 0.169078
(0.719621)  (0.753521)  (0.264105)  (0.169078)
K; =0.33 0.697409 0.721247 0.239745 0.149966
(0.697595)  (0.721299)  (0.239745)  (0.149966)
1.00
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Fig. 2. Variation of 0y(y) with 5 for several values of ¢ with
Ki=0.09and a =4
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Fig. 3. Variation of 0;(y) with 5 for several values of ¢ with
Ki=0.09and a=4

combined influence of viscous dissipation and stored
strain energy in the flow in comparison with its value 6,
(see [8]) in the absence of these two effects. Figure 4 shows
the variation of 0, () with 5 for several values of a with K;
= 0.09 and ¢ = 10. It can be seen from this figure and (19)
that for fixed K; and o, the temperature at a point in-
creases with increase in the viscous dissipation parameter
a. This is plausible on physical grounds since viscous
dissipation tends to raise the temperature of the fluid.
From (19), the dimensionless heat transfer coefficient
—0'(0) is evaluated as

Cx?
~0'(0) = ~04(0) — == ;(0) (4)
Table 2 gives the values of —0,(0) for several values of the
elastic parameter K; when ¢ = 10.

Figure 5 shows the variation of —' (0) with a for several
values of K; when ¢ = 10. It follows from this figure that
for a fixed value of K;, the variation of —0,(0) is linear
with a. This variation is, of course, evident from the an-
alytical solution for 0,(n) given by Eq. (32) which clearly
shows that the parameter a can be factored out. It can be
clearly seen from this figure, Table 2 and equation (34)
that for given values of g, K; and a, heat flows from the
stretchinfg surface to the fluid for small enough values of
x(C/v)l/ . But at a certain value X of x(C/v)/2, the surface
heat flux vanishes and when x(C/v)"/? exceeds X, heat
flows from the fluid to the stretching surface. This inter-
esting result admits of a Physical interpretation. For small
enough values of x(C/v) /2, both viscous dissipation and
strain energy in the flow are small (see equation (18)) and
hence no significant heat is ﬁenerated inside the flow. Thus
for small values of x(C/v)"/*, heat will flow from the sur-
face to the fluid since T,, > T... On the other hand for
large values of x(C/ v)l/ ?, sufficient heat is generated inside
the boundary layer due to the combined influence of vis-

2.0

Fig. 4. Variation of 0;(n) with 5 for several values of a with
K; =0.09 and 6 = 10
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5. Variation of —6(0) with a for several values of K; when
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Table 2. Values of —0,(0) with ¢ = 10

K ~0/6(0)

0.09 2.297451
0.17 2.286709
0.25 2.274215
0.33 2.259658

cou

s dissipation and stored deformation energy. Under

such circumstances temperature very near the surface
exceeds the surface temperature T, and heat then flows
from the fluid to the surface even when T,, > T.,. However
in the absence of viscous dissipation and strain energy,
heat always flows from the surface to the fluid as long as
T,, > Tw. This can be seen from Table 2. Thus we find that
there is a drastic change in the heat transfer characteris-

tics

of the flow when the above two effects are taken into

account.

References

1.

Crane LJ (1970) Zeit. Angew. Math. Physik (ZAMP). 21: 654

2. Gupta PS; Gupta AS (1977) The Canadian J. Chem. Engg. 55:

744

Crane LJ (1982) Zeit. Angew. Math. Physik (ZAMP). 62: 564
Dutta BK; Roy P; Gupta AS (1985) Int. Comm. Heat Mass
Transfer 12: 89

Andersson HI; Dandapat BS (1991) Stab. Appl. Anal. Contin.
Media (Italy). 1: 339

Siddappa B; Khapate BS (1976) Rev. Roum. Sci. Techn. Mec.
Appl. 21: 497

Bujurke NM; Biradar SN; Hiremath PS (1987) Zeit. Angew.
Math. Physik (ZAMP). 38: 653

Dandapat BS; Gupta AS (1989) Int. J. Nonlinear Mech. 24: 215

10.
11.

12.

13.

14.

Chen KC; Char MI; Cleaver JW (1990) J. Math. Anal. Appli-
cations 151: 301

Coleman BD; Noll W (1960) Arch. Rat. Mech. Anal. 6: 355
Schlichting H (1960) Boundary Layer Theory, McGraw Hill,
New York

Abramowitz M; Stegun IA (1965) Handbook of Mathematics
Functions, Dover, New York

Peyret R; Taylor TD (1983) Computational Methods for Fluid
Flow, Springer Series of Computational Physics, Springer,
Berlin, Heidelberg

Adam Y (1977) J. Comp. Phys. 24: 10

45



