
Mixed convective non-steady 3-dimensional micropolar fluid flow
at a stagnation point

H. S. Takhar, R. S. Agarwal, R. Bhargava, S. Jain

Abstract The problem of mixed convective non-steady
three dimensional ¯ow of a micropolar ¯uid near the
stagnation point of a blunt nosed body has been discussed.
The governing set of differential equations are solved
using the Finite Element Method. The velocity and
microrotation distribution are shown graphically to
depend upon four parameters namely the micropolar
parameter, Grashof number, buoyancy parameter and the
degree of acceleration. The conclusions are quite inter-
esting from the application point of view.

1
Introduction
Continuum mechanical theories of the type presented by
Eringen [1] which admit in addition to ordinary stresses,
the presence of couple stresses, have attracted a growing
interest in recent years, since they realistically describe a
variety of industrial ¯uids such as polymers, suspension
solutions, blood etc. Micropolar boundary layer ¯ow near
a stagnation point was ®rst discussed by Williams [2], who
used the Karman Polhausen integral method of solution.
Peddieson and McNitt [3] applied this theory near the
steady stagnation point, whereas the unsteady boundary
layer ¯ow was discussed by Kumari and Nath [4] and the
3-dimensional case was analysed by Agarwal [5].

Due to vast application, in the ®elds of aeronautics,
chemical engineering and space research, both free and
mixed convection problems have been given much con-
sideration. Poots [6] studied laminar free convection ¯ow
near the stagnation point on a curved isothermal surface
maintained at a temperature above the ambient tempera-
ture of the ¯uid. The steady combined forced and free
convection in micropolar ¯ow on a vertical ¯at plate was
studied by Gorla [7].

The purpose of this paper is to examine the buoyancy
effects in a forced ¯ow in the three dimensional non-

steady motion of an incompressible micropolar ¯uid in the
vicinity of the forward stagnation point of a blunt nosed
body. The prediction of heat transfer characteristics en-
compasses a wide range of technological applications, such
as cooling in aerofoils, ®bre spinning etc. The velocity of
the potential ¯ow is chosen to vary inversely as a linear
function of time. Four parameters viz. R, the micropolar
parameter, G, the Grashof number, (a measure of buoy-
ancy), C, the parameter characterising the surface around
the stagnation point and D, the degree of deceleration of
the potential ¯ow, govern the ¯ow phenomenon. The dif-
ferential equations are solved by the ®nite element method
and the results are shown graphically. These results are
also compared with the corresponding ¯ow problem in the
viscous case and found to be in satisfactory agreement.

2
Mathematical formulation
Consider an unsteady, laminar combined convective ¯ow
at a three-dimensional stagnation point �x � y � z � 0�
on a blunt nosed body, which is not necessarily axially
symmetric. The forced ¯ow, which approaches the body in
the negative z-direction impinges on the surface normally
at the stagnation point, ¯owing away radially in all di-
rections along the surface and is assumed to have unsteady
velocity components U and V in x and y directions
respectively. The free stream temperature is taken as
constant and the dissipation effects near the stagnation
point are assumed to be negligible. The ¯uid has constant
properties except the density variation (due to tempera-
ture difference) which is used to express the body force
term as a buoyancy term. The governing equations are
given by
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The boundary conditions on velocity and temperature are
taken as

u � 0; v � 0; w � 0; T � Tw; at z � 0

u! U; v! V; T ! T1; as z!1 �9a�
For microrotation, the following two types of boundary
conditions are assumed:

Case (i): m1 � ÿ 1

2

ov
oz
; m2 � 1

2

ou

oz
; m3 � 0; at z � 0

m1 ! 0; m2 ! 0; m3 ! 0; as z!1
�9b�

where m1 and m2 are taken to be equal to the angular ve-
locities at the surface, i.e. the antisymmetric part of stress
vanishes at the surface.

Case (ii): m1 � m2 � m3 � 0; at z � 0

m1 ! 0; m2 ! 0; m3 ! 0; as z!1
�9c�

which de®ne the no spin boundary conditions on the
surface.

Following Cheng [8], U and V are chosen as

U � Ax

�1� et� and V � By

�1� et� :

Accordingly, the z-direction velocity component W , of
the potential ¯ow shall be

W � �A� B�z
�1� et�

where A, B and e are constants. Without loss of generality,
we choose the x-axis such that A > 0, B may be positive or
negative such that �A� B� > 0, in order to ensure the
third component to be in the negative z-direction. The
non-dimensional forms for various quantities may be
taken as

g � Aq
l�1� et�
� �1=2

z; u � Ax

�1� et� f 0�g�;

v � By

�1� et� g0�g�; w � ÿ Aq
l�1� et�
� �1=2

�Af � Bg�;

m1 � By

�1� et�3=2

Aq
l

� �1=2

/1�g�;

m2 � Ax

�1� et�3=2

Aq
l

� �1=2

/2�g�;

m3 � A� B

2�1� et�/3�g�;
T ÿ T1

Tw ÿ T1
� ABL4q2

�1� et�2l2
h�g�

�10�
and for pressure, the following expression has been taken

Ps ÿ P � A2q

2�1� et�2
"
�1ÿ D�x2 � C2 1ÿ D

C

� �
y2

� 1� 2C � C2
ÿ �

1� D

1� C

� �
F�g�

� l
q

1

A
� Dt

� �#
�11�

where C��B=A� is the parameter characterising the sur-
face around the stagnation point and D�� e=A� is the
degree of acceleration or deceleration of the potential
¯ow.

As in [6], expressing the body force, due to density
variation as a result of temperature difference, by

ÿ ops

ox
ÿ qfx � q1geb1 T ÿ T1� �x �12a�

ÿ ops

oy
ÿ qfy � q1geb1 T ÿ T1� �y �12b�

ÿ ops

oz
ÿ qfz � q1geb1 T ÿ T1� �z �12c�

where ge is the gravitational force.
Equations (1±8) may be written as

�1� R�f 000 � �f � Cg�f 00 ÿ f 02 ÿ D 1ÿ f 0 ÿ g
2

f 00
� �

ÿ R/02 � CGh� 1 � 0 �13�
�1� R�g000 � �f � Cg�g00 ÿ Cg0

2 ÿ D 1ÿ g0 ÿ g
2

g00
� �

� R/01 � C � Gh � 0 �14�
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�1� R� f 00 � Cg00� � � ff 0 � Cf 0g � Cf 0g � C2gg0

� D
2 gf 0 � Cgg0 � f � Cg� � �15�

ÿ 1
2 1� 2C � C2 � D� CD� �f 0 � R C/1 ÿ /2� �
ÿ CgGh � 0

R1C/001 � �f � Cg�C/01 ÿ C2g0/1 � D 3
2 C/1 � C g

2 /01
ÿ �

ÿ RR2 Cg00 � 2C/1� � � 0 �16�
R1/

00
2 � �f � Cg�/02 ÿ f 0/2 � D

2 3/2 � g/02
ÿ �

� RR2 f 00 ÿ 2/2� � � 0 �17�

R3/
00
3 � �f�Cg�/03 �

Dg
2

/03 � D/3 ÿ 2R2/3 � 0 �18�
h00 � Pr �f � Cg�h0 � D

2 gh0 � 2Dh
� � � 0 �19�

where,

R � k

l
; R1 � c

lj
; R2 � lL

Ujq
; R3 � a� b� c

lj
;

Pr � lCp

Kf
; G � geb1 Tw ÿ T1� �L3q2

l2
:

where R is the micropolar parameter and G is the Grashof
number, Pr is the Prandtl number, and the remainder are
micropolar constants.

The boundary conditions (9) reduce to

f � g � 0; f 0 � g0 � 0; h � 1; at g � 0

f 0 ! 1; g0 ! 1; h! 0; as g!1 �20a�
Case (i): /1 � 1

2 g00�0�; /2� ÿ 1
2 f 00�0�; /3 � 0; at g � 0

/1 ! 0 /2 ! 0 /3 ! 0; as g!1
�20b�

Case (ii): /1 � 0; /2 � 0; /3 � 0; at g � 0

/1 ! 0; /2 ! 0; /3 ! 0; as g!1 :

�20c�
From Eq. (18) and the corresponding boundary condi-

tions, it is clear that the microrotation component /3 does
not exist. It is to be noted that Eqs. (13±14), (16±17) and
(19) are coupled while Eq. (15) is independent and it can
be directly integrated after evaluating the functions f , g,
/1, /2, h and their derivatives.

2.1
Method of solution
To solve the set of non linear differential equations (13, 14,
16, 17, and 19) subject to boundary conditions (20), the
®nite element method as given by Reddy [9] has been
applied. Following this, the equations and boundary con-
ditions may be written as

f 0 ÿ h � 0 �21�
�1� R�h00 � Dg

2 h0 � Dhÿ h2 � �f � Cg�h0
� CGhÿ R/02 � �Dÿ 1� �22�

g0 ÿ s � 0 �23�
�1� R�s00 � Dg

2 s0 ÿ Cs2 � �f � Cg�s0
� Gh� R/01 � �Dÿ C� �24�

R1/
00
1 � �f � Cg�/01 ÿ Cs/1 � D 3

2 /1 � g
2 /01

ÿ �
ÿ RR2 s0 � 2/1� � � 0 �25�

R1/
00
2 � �f � Cg�/02 ÿ h/2 � D 3

2 /1 � g
2 /01

ÿ �
� RR2 h0 ÿ 2/2� � � 0 �26�

h00 � Pr �f � Cg�h0 � D
2 gh0 � 2Dh

� � � 0 �27�
f �0� � 0; h�0� � 0; g�0� � 0; s�0� � 0; h�0� � 1

h�1� � 1; s�1� � 1; h�1� � 0 �28a�
and

Case (i): /1�0� � 1
2 s0�0�; /2�0� � 1

2 h0�0�; /3�0� � 0

/1�1� � 0; /2�1� � 0; /3�1� � 0

�28b�
Case (ii): /1�0� � 0; /2�0� � 0; /3�0� � 0

/1�1� � 0; /2�1� � 0; /3�1� � 0 :

�28c�
For computational purposes the1 is taken at g � 8 and

the domain is divided into a set of line elements say
�N � 40�. The variational form associated with the
Eqs. (21±27) over a typical element ge � ge�g

ÿ �
is

given byZ ge�1

ge

w1 f 0 ÿ h� � dg � 0Z ge�1

ge

w2

�
�1� R�h00 � Dg

2
h0 � Dhÿ h2 � �f � Cg�h0

� CGhÿ R/02 ÿ �Dÿ 1�
�

dg � 0Z ge�1

ge

w3 g0 ÿ s� � dg � 0Z ge�1

ge

w4

�
�1� R�s00 � Dg

2
s0 ÿ Cs2 � �f � Cg�s0

� Gh� R/01 ÿ �Dÿ C�
�

dg � 0Z ge�1

ge

w5

�
R1/

00
1 � �f � Cg�/01 ÿ Cs/1 � D 3

2 /1 � g
2 /01

ÿ �
ÿ RR2 s0 � 2/1� �� dg � 0Z ge�1

ge

w6

�
R1/

00
2 � �f � Cg�/2 ÿ h/2 � D 3

2 /1 � g
2 /01

ÿ �
� RR2 h0 ÿ 2/2� �

�
dg � 0Z ge�1

ge

w7 h00 � Pr �f � Cg�h0 � D
2 gh0 � 2Dh

� �� �
dg � 0
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where wj, j � �1; 7� are arbitrary test functions and may be
viewed as the variation in f , g, h, s, /1, /2 and h respec-
tively. The ®nite element approximations are taken in the
form

f �
X2

j�1

fjwj; h �
X2

j�1

hjwj; g �
X2

j�1

gjwj; s �
X2

j�1

sjwj ;

/1 �
X2

j�1

/1jwj; /2 �
X2

j�1

/2jwj; h �
X2

j�1

hjwj

and

w1 � w2 � w3 � w4 � w5 � w6 � w7 � wi �i � 1; 2� :
Then the ®nite element model of equations in accordance
with Reddy [9] may be written as:

Kij
� �

Fj

� � � Ri� �
where Kij

� �
is the stiffness matrix. Fj are the column vec-

tors of known functions. The global matrix is obtained
through the assembly of element equations and are solved
for velocity, microrotation and temperature. The details
can be seen from Reddy [9]. The system of equations, so
obtained, is non-linear and is solved using the Newton
linearization process.

3
Numerical results and discussion
The numerical results for the velocity, microrotation and
temperature functions are obtained correct to six decimal
places for different values of C, the parameter character-
ising the surface around the stagnation point. D the degree
of acceleration, R the micropolar parameter and G the
Grashof number.

The results for the velocity, microrotation and tem-
perature for C � 0:5 only (C < 0 corresponds to saddle
point of attachment and C > 0 to the nodal point of at-
tachment) have been shown graphically due to the sym-
metric nature of the velocity pro®les. The parameter D � 0
(i.e. e � 0) gives the steady state ¯ow, the case D < 0 (i.e.
e < 0) corresponds to the acceleration ¯ow while D > 0
(i.e. e > 0) to the deceleration ¯ow. However, the range of
D from ÿ1:0 to 1.0 covers most practical cases of accel-
erating or decelerating ¯ow. The value of the micropolar
parameter R � 0 corresponds to the viscous case while
Gr � 0 gives the pure forced convective ¯ow, the numer-
ical results for Gr � 0 are similar to Agarwal [5]. Also it
has been noticed that the velocity variations with the
change in R1 and R2 are not appreciable and as such they
are ®xed for 1.5 and 1.0 respectively.

Figures 1 and 2 show the velocity pro®le for various
values of R, Gr and D. From Fig. 1, it is clear that the
boundary layer thickness increases as R increases for both
accelerating �D < 0� and decelerating �D > 0� ¯ow. The
situation is reversed with an increase in Gr for a ®xed
R � 5 (Fig. 2). The change in velocity is not very signi®-
cant for change in D.

Figures 3 and 4 show the microrotation distribution for
various values of R, G and D respectively. These show that
the angular velocity is maximum at the surface which

decreases monotonically. The microrotation decreases
near the surface but increases after a ®nite distance on
increasing R for both D > 0 and D < 0. Figure 4 depicts
that the microrotation increases near the surface but
decreases as one moves away from the surface with an
increase in Grashof number. A similar behaviour is
observed for decelerating and steady ¯ow.

In Figs. 5 and 6 the temperature distribution is shown.
It is evident that the surface cools down as the temperature
decreases monotonically for accelerating ¯ow �D < 0�,

Fig. 1. Velocity distribution for various values of R
�C � 0:5; G � 1:0�

Fig. 2. Velocity distribution for various values of G
�R � 1:0; C � 0:5�
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while there is slight increase in temperature near the surface
for decelerating ¯ow. Figure 5 shows that the cooling takes
place slowly as R increases however, the temperature
decreases sharply with an increase in buoyancy parameter
G (Fig. 6). It is also observed that for decelerating ¯ow the
temperature near the surface exceeds the surface temper-
ature which implies that heat is being transferred from the
¯uid to the surface and therefore the surface will be heated
instead of being cooled which may be useful in practice.

The numerical values of the skin friction coef®cients
f 00�0� and g 00�0� for x and y direction are tabulated in

Table 1. It shows that the micropolar ¯uid reduces the skin
friction coef®cient as compared to the Newtonian ¯uid
�R � 0�, but the skin friction coef®cient increases as the
buoyancy force increases. For D < 0, the skin friction is
more while the reverse happens for D > 0 as compared to
the steady case. The nature of couple stress coef®cients with
varying D is the same as that of the skin friction coef®cients.

In contrast to the skin friction and the couple stress, the
heat transfer is strongly affected by D for all values of R
and G. It is observed from Table 2 that the heat transfer
parameter h0�0� decreases as R increases while the reverse

Fig. 3. Microrotation distribution for various values of R
�C � 0:5; Gr � 1:0�

Fig. 4. Microrotation distribution for various values of G
�R � 1:0; C � 0:5�

Fig. 5. Temperature distribution for various values of R
�C � 0:5; Gr � 1:0�

Fig. 6. Temperature distribution for various values of G
�R � 1:0; C � 0:5�
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happens as G increases. From the analysis, it may be in-
ferred that the presence of micropolar additives thor-
oughly in¯uences the characteristic features of the ¯ow
and heat transfer. The heat transfer and skin friction are
found to decrease as the micropolar parameter increases.
In a nuclear reactor, considerable reduction in heat
transfer is needed. The present analysis could be of help in
choosing a micropolar ¯uid with appropriate combination
of material particles so that the reduction in heat transfer
and drag may be achieved accordingly.
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Table 2. Numerical values of the heat transfer coef®cients
C � 0:5

D � ÿ0:5 D � 0:0 D � 0:5

ÿh0�0� ÿh0�0� ÿh0�0�

R � 0, G � 0 0.9390 0.5882 0.0900
R � 1, G � 1 0.9364 0.5905 0.1167
R � 3, G � 1 0.9151 0.5521 0.0309
R � 3, G � 3 0.9340 0.5931 0.1403

Table 1. Numerical values of the skin-friction coef®cients for the x and y directions C � 0:5

D � ÿ0:5 D � 0:0 D � 0:5

f 00�0� g00�0� f 00�0� g00�0� f 00�0� g00�0�

R � 0, G � 0 1.2915 1.0833 1.1957 0.9640 1.0904 0.8304
R � 1, G � 1 1.2375 1.2322 1.1835 1.1989 1.1420 1.1983
R � 3, G � 1 0.9783 0.9508 0.9289 0.9139 0.8896 0.9053
R � 3, G � 3 1.1741 1.3513 1.1590 1.3881 1.1677 1.4781
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