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Periodic heat conduction with relaxation time in cylindrical geometry
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Abstract Steady-periodic heat conduction with relaxation Dg(r) complex function defined by Eq. (12) [W/m?]
time in an infinitely long hollow cylinder is considered.  D;(r) complex function defined by Eq. (12) [W/m?]
Four boundary value problems, with boundary conditions D,(r) complex function defined by Eq. (12) [W/m?]

of the first and of the second kind, are solved analytically. ; = v/—1, imaginary unit

The solution for a solid cylinder with a sinusoidally I, modified Bessel function of first kind and
varying surface temperature is obtained as a special case of order n

a solution found for the hollow cylinder. The effects of the thermal conductivity [W/(mK)]

relaxation time on the steady-periodic temperature field g, modified Bessel function of second kind and

are analysed, in details, for a solid cylinder with a sinu- order n
soidally varying surface temperature and for a hollow mq, my, m, complex coefficients which appear in Egs. (9)-
cylinder with a sinusoidally varying heat flux at the inner (11) [K]
surface and with a constant temperature at the outer ng,m,n, complex coefficients which appear in Egs. (9)-
surface. The results show that thermal resonances may (11) [K]
occur and suggest that accurate measurements of the re- ¢ heat-flux density vector [W/m?]
laxation time could be obtained by means of experiments g heat-flux density in the radial direction
on steady-periodic heat conduction in cylindrical geome- [W/m?]
try. Qo time average of the heat flux for unit length
[W/m]
List of symbols r radial coordinate [m]
Arg argument of a complex number r inner radius of a hollow cylinder [m]
Ay amplitude of the temperature fluctuations at  , outer radius of a hollow cylinder, radius of a
the inner surface [K] solid cylinder [m]
A, amplitude of the temperature fluctuations at Re real part of a complex number
the outer surface [K] t time [s]
a = (iw; — t0])/0, complex constant [m™~] T temperature, complex temperature [K]
a, = (iwy — 1®3) /0, complex constant [m~?] T, time average of the temperature of the inner
By amplitude of the heat-flux fluctuations at the surface [K]
inner surface [W/m?] T, time average of the temperature of the outer
B, amplitude of the heat-flux fluctuations at the surface [K]
outer surface [W/m?] u internal energy per unit mass [J/kg]
c specific heat at constant density [J/(kgK)] w _ \/m, dimensionless complex con-
Co(r) complex function defined by Eq. (5) [K] stant
Ci(r) complex function defined by Eq. (5) [K] N modulus of a complex number
Cy(r) complex function defined by Eq. (5) [K]

Greek symbols

, , o thermal diffusivity [m?/s]
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Nucleare e del Controllo Ambientale (DIENCA) defined in Eq. (48)
Universita di Bologna n = r/r,, dimensionless radial coordinate
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. Y dimensionless temperature defined in Eq. (46)
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v dimensionless temperature defined in Eq. (48)

) = (w11})/0, dimensionless angular frequency
defined in Eq. (48)

Q = (w,7?) /0, dimensionless angular frequency
defined in Eq. (46)

o angular frequency of temperature and heat
flux at the inner surface [rad/s]

2 angular frequency of temperature and heat
flux at the outer surface [rad/s]

1

Introduction

In the analysis of transient heat conduction with quick
temperature changes, the classical Fourier’s diffusion
theory may be inaccurate. In order to obtain more reliable
previsions one can replace Fourier’s law with Cattaneo-
Vernotte’s constitutive equation for the heat flux density
vector q, namely [1-3]
q—l—r@:—kVT ) (1)
ot
where ¢ is time, T is temperature, 7 is the relaxation time
and k is the thermal conductivity of the substance. Let us
consider a medium such that k, 7, the mass density p and
the specific heat at constant density ¢ can be considered as
constants. For this medium, if the differential of the in-
ternal energy per unit mass can be expressed as du = ¢dT,
Eq. (1) and the energy balance equation
V e q = —pc(0T/0t) yield the telegraph equation for the
temperature field

oT T )
o +1 a2 aVeT , (2)
where o = k/(pc) is the thermal diffusivity.

Many solutions of unsteady heat conduction problems
based on Egs. (1) and (2) have been presented in the lit-
erature; most of them are reviewed in [4-6]. Almost all the
available solutions concern the transient behaviour of the
temperature field due to a sudden change of the boundary
conditions. Very few solutions of steady-periodic heat
conduction problems based on Egs. (1) and (2) have been
presented. Glass, Ozisik and Vick [7] deal with a semi-
infinite medium bounded by a plane surface and subjected
to a periodic on-off type heat flux at the surface. At the
initial instant, the medium is in thermodynamic equilib-
rium. Two solutions, with and without heat radiation from
the surface to an external ambient, are presented. Clearly,
in the absence of heat radiation the temperature field
cannot reach a true steady-periodic regime. Yuen and Lee
[8] consider the time evolution, starting from thermody-
namic equilibrium, of a semi-infinite medium bounded by
a plane surface. For ¢ > 0, the surface is exposed to a
sinusoidal heat flux with zero mean value. The steady-
periodic temperature field is obtained by considering the
limit of the solution for t — co. Tang and Araki [9] ana-
lyse a plane slab whose front surface is exposed to a
sinusoidal heat flux with zero mean value, while the rear
surface is insulated. The medium is initially in thermo-
dynamic equilibrium. The time evolution of the tempera-
ture at both surfaces is evaluated. Novikov [10] studies the

steady-periodic heat conduction in a plane slab such that
the temperature of one surface is a sinusoidal function of
time while the other surface is insulated. Tzou [11] con-
siders a non-uniform heat generation which is a sinusoidal
function of time within a plane slab with insulated sur-
faces. The author points out that resonance phenomena
may occur and determines the values of the resonance
frequencies. The heat source considered in Ref. [11] is not
easily obtained experimentally. Barletta and Zanchini [12]
deal with an infinitely long solid cylinder with an internal
heat generation produced by an alternating current. The
power generated per unit volume is non-uniform and
steady-periodic. The surface of the cylinder is assumed to
exchange heat by convection with an external fluid. The
authors determine the steady-periodic temperature field
within the cylinder and the thermal-resonance frequencies.

Thus, while some attention has already been devoted to
steady-periodic heat conduction with relaxation time and
no heat generation in plane geometry [8, 10], no analysis
of hyperbolic heat conduction in cylindrical geometry, in
the absence of internal heat generation and in steady-
periodic regime, is available in the literature.

The aim of this paper is to analyse the effects of the
relaxation time on the temperature field for steady-peri-
odic heat conduction in an infinitely long hollow cylinder.
The following boundary conditions are considered: sinu-
soidally varying temperature at each surface; sinusoidally
varying heat flux at each surface; sinusoidally varying
temperature at the inner surface and sinusoidally varying
heat flux at the outer surface; sinusoidally varying heat flux
at the inner surface and sinusoidally varying temperature
at the outer surface. The solution for a solid cylinder with a
sinusoidally-varying temperature at the surface is obtained
as a particular case of the last boundary condition.

The results show that non-Fourier effects are relevant
and that thermal resonances may occur even for rather low
values of the relaxation time 7. In particular, for a solid
cylinder whose radius is 2 mm and whose thermal diffus-
ivity is 107 m?/s, for t = 1's a thermal resonance occurs
at the axis if the angular frequency of the sinusoidal
temperature prescribed at the surface is 1.183rads ™.
Moreover, the amplitude and the phase of the temperature
fluctuations at the axis of the cylinder are appreciably
different from those predicted by Fourier’s theory even for
7 = 0.2s. These results suggest that careful measurements
of the relaxation time could be performed by measuring
the amplitude and the phase of the temperature field in
steady-periodic heat conduction in cylindrical geometry.

2
Steady-periodic solutions of the telegraph equation
In this section, the telegraph equation for the temperature
field in cylindrical geometry is recalled. Then, the general
solution of this equation in steady-periodic regime is ob-
tained for an infinitely long hollow cylinder with either a
periodically varying temperature or a periodically varying
heat flux at each boundary surface. Finally, the corre-
sponding heat flux distribution in steady-periodic regime
is determined.

Let us consider an infinitely long hollow cylinder, with
internal radius r; and external radius r,. Let us assume



that the density, the thermal conductivity, the thermal
diffusivity and the thermal relaxation time of the annulus
are constants and that the temperature of the annulus
depends only on time and on the radial coordinate r. With
this assumptions, Eq. (2) holds and can be expressed as

16T+62 16T+1:62T (@
ror 0rr o0t ol
If either a periodically varying temperature or a periodi-

cally varying heat flux is prescribed at each boundary
surface, the steady-periodic solutions of Eq. (4) are of the

kind
T(r,t) = Co(r) + C(r)e ™! 4 Cy(r)e™" | (5)

where T is the complex temperature, ¢, and w, are the
angular frequencies at r; and at r,, Cy(r), C1(r) and C,(r)
are undetermined complex functions. By substituting

Eq. (5) in Eq. (4), the following conditions on Cy(r), C;(r)
and C,(r) are obtained:

1dc, d*C,

v taE =0 ©)
1dc; d°CG, 1, 2

T Taer T &(lwl —107)Ci(r) , (7)
1dG, d°¢, 1. 2

4 + a2 —&(zwz —105)Cy(1) . (8)
Equations (6), (7) and (8) yield

Co(r) =molnr+ng (9)

Ci(r) = mlpy(v/air) + mKo(v/air) ,
G(r) = mly(Vazr) + Ko (Varr) (11)

where a; = (iw, — 10?) /0, a; = (iw; — tw3) /0. The coef-
ficients m; and n;, (i =0, 1, 2) are determined by the
boundary conditions.

Moreover, if either a periodically varying temperature
or a periodically varying heat flux is prescribed at each
boundary surface, the steady-periodic heat flux distribu-
tions are of the kind

q(r, t) = Do(r) + Dy (r)e™! + Dy(r)ei’ . (12)

From Eq. (12), Eq. (5) and Eq. (1), the following condi-
tions on Dy(r), D;(r) and D,(r) are obtained:

(10)

dCy
Dy(r) = —k? ; (13)
D](T’)(l + iwlr) —k% s (14)
D, (r)(1 + iwyt) = —k% . (15)

By substituting Eqs. (9)-(11) in Egs. (13)-(15) and by
applying the properties of Bessel functions [13], one ob-
tains

Do(r) = —k=2 (16)
= k\/_ —n r
Dy(r) = "+ iond) [0 (Varr) — mKi(yarr)]

(17)

ky/a%

Dy(r) = T+ iyt

[maIy (\/asr) — mKi(y/aar)]
(18)

3
Boundary value problems
In this section, four steady-periodic boundary conditions
for an infinitely long hollow cylinder are selected and the
corresponding steady-periodic distributions of tempera-
ture and heat flux are determined.

Let us consider the following steady-periodic boundary
conditions.

T(ri,t) = Ty + Ae™
T(T27 t) = T2 + A2eiw2t )

(19)

q(rlv t) = 2_20 + B1eiwlt
20
_ Q im,t ( )
q(r2, 1) ——+B g
2m
T(T], t) = T1 —+ Alelwlt
21
=2 2
Tir
QO it
T, t) = > Bel
an ) = o T B (22)
T(Tz, t) = T2 + Azelwzt .

In Egs. (19)-(22), T is the complex temperature, while Ty,
T,, Ay, Ay, By, B, and Qp are real quantities. Thus, for
instance, Eq. (19) represents the real boundary condition
Re[T(ry,t)] = Ty + A; cos(w;t) and Re[T(ry,t)] = T+

A, cos(w,t). In Egs. (20)-(22), Qo is the time average of the
heat flux per unit length which crosses the annulus.

The case of a solid cylinder with a surface temperature
T(ry,t) = T, + A,e'?* can be obtained from Eq. (22), as
follows: r; tends to zero, as well as g(r;, t). The case of an
infinite solid medium which surrounds a cylindrical sur-
face with a temperature T(ry,t) = T; + A;e’*! can be
obtained from Eq. (21) as follows: r, tends to infinity,
q(ra,t) tends to zero and Qp = 0.

By employing Eq. (1), Eqs. (20)-(22) can be rewritten as
follows:

oT Qo B, i

it _ _21n iopt

or 2nkr,  k (1+ior)e

or| Q @)
0 BZ iwyt

= S 1 2

or| T mkn K (14 donz)e™

12,

T(ri,t) = Ty + A

orT _ QO B2 iyt (24)
or t ~ 2mkr, k (1 fpT)e™

oT _ Qo Bl ot

or| T amkn (14 ior)e (25)

T(Tz, t) = T2 + Azeiwzt .
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Let us first consider the boundary condition given by
Eq. (19).
On account of Eq. (5), Eq. (19) can be rewritten as

CO(Tl) + Cl(rl)eiwlt + Cz(rl)eiwzt — T1 +Alei0)1t
CO(’"Z) + Cl(Tz)eiwlt + Cz(rz)eiwzf =T, + Azeiwzt :

Equation (26) implies

Equations (9)-(11) and (27)-(29) yield

S T, - T,
0 _ln(rz/rl)
, ~ Tylnr,—TInn (30)
0 In(ry/r1)
my = AKo(Varr)
' o(Vam)Ko(Vain) — I(Vain)Ko(/an)
- —AIy(/air,)
' h(Vam)Ko(Varn) — b(vam)Ko(Varn)
(31)
I —A,Ko(y/azr1)
2T L(yan)Ko(yazrs) — I(y/ar)Ko(y/ar)
. Axlo(y/a@n) |
27 Io(yan)Ko(yazrs) — I(y/azr:)Ko(y/azr)

(32)

By substituting Egs. (30)-(32) in Eqgs. (9)-(11), one ob-
tains the following steady-periodic temperature distribu-
tion in the hollow cylinder:

1 Ko(vaira)lo(y/air) — Ip(y/air:)Ko(y/arr)
In(y/air)Ko(y/airs) — Ip(y/air2)Ko(\/aim)

% ew)lt

I (y/axr)Ko(y/a2r) — Ko(y/azr)Io(y/@2r)

T(r,t)=A

T L (@) Koly/@n) — Ko(yan)lo(y/ar)
X eiwzt
+ T, ——Ig%;§7%%jln(r/r1). (33)

By substituting Eqs. (30)-(32) in Egs. (16)-(18), one
obtains the following steady-periodic heat-flux distribu-
tion in the hollow cylinder:

q(r,t) =
B kAyy/a, Ko(y/air)L(y/air) + L(y/air)Ki(y/ar) giont
1+ iotIo(y/air)Ko(y/air2) — Ip(y/air)Ko(y/aim)
kaya Ko(varn)h(Var) + 1 (Van)Ki(vVar) .
1+ iwst 10(\/51?1)1(0(\/!1-272) — Iy(y/aar2) Ko (\/11-27’1)
4kl
rin(ry/r) "
Let us now consider the boundary condition given by
Eq. (23).
On account of Eq. (5), Eq. (23) can be rewritten as

(34)

E iyt g iwyt @
dr |, dr |, dr |,
B .
= — QO — —1 (1 + ia)lf)elwlt
27'Ck7'1 k (35)
dG, it dG, imyt dCo
| e = e+
dr |, dr |, dr |,
QO BZ . i
— _ - 1 Wyt
dnkr, & LT ene)e

By means of the same procedure as that employed to de-

duce Eq. (33), from Egs. (9)-(11) and Eq. (35) one obtains
T(r,t) =

_ Bl +img)[Ki(Van)h(Varr) + h(Var

Varklh (yain)Ki(vair,) — L(yair) K

B By (1 + iw,7) [Ki (y/azr)Io(v/aar) + L (v/aar

Vark[l (y/azr) K (Vasn) — Li(y/azn) K

Qo
+ Tz — mln(r/rz) .

Ko(\/ﬂ—ﬂ')] eimlt
Vairi)]
Ko(\/@21)] ios

N

—~|— [

(36)
By the same method as that used to deduce Eq. (34), one
obtains the following steady-periodic heat-flux distribu-
tion in the hollow cylinder:

q(T, t) =
Ki(vain)h(yair) — h(yVain)Ki(Vair)
! Il(\/aT?'])Kl(\/_ﬂ—frz) — Il(\/&TrZ)KI(\/EITrl)
Ki(Van)h(Var) — Li(yan)Ki(Vaar)

imyt

=+ 32 iw,t
I (\/axry) Ky (vaar1) — Li(y/axr) K (y/azr2)
Qo
=0 37
2nr ( )
Let us consider the boundary condition given by
Eq. (24).
On account of Eq. (5), Eq. (24) can be rewritten as
Co(r1) + Cl(rl)ei‘“‘t + Cz(rl)ei“’zt
=Ti + A
dGy dG it dG, iyt (38)
dr " dr rze + dr -
_QO BZ . iyt
= _— l 2
amkr, & LT en)e

By means of the same procedure as that employed to de-
duce Eq. (33), from Egs. (9)-(11) and Eq. (38) one obtains



T(r,t) =
Ki(yan)b(yarir) + h(Vair) Ko(Vair) o,
Io(\/—rl)Kl(\/wrz)+Il(\/—”2)K0(\/er)
By (1 + i) [Io(y/az2r1 ) Ko (y/azr) — Ko(y/@2r1)Io(y/@a7)] eiont
Vark[l (v/az12) Ko (/axri) + Io(y/azr)Ki (yazr,)]

Qo
o kln(r/rl)

By the same method as that used to deduce Eq. (34), one
obtains the following steady-periodic heat-flux distribu-
tion in the hollow cylinder:

q(rv t) =
_ kAryar Ki(yain)L(yair) — h(yair)Ki(Vair) eiont
1+ iyt Io(y/arr)Ki(y/airy) + I (y/air2)Ko(y/ain)
Ko(var)L(van + b(var)Ki(Var) e,
L(Varr)Ko(ya@r) + Io(y/ar)Ki(Vazrs)
Q.
2nr’
Finally, let us consider the boundary condition given by
Eq. (25).
On account of Eq. (5), Eq. (25) can be rewritten as
dc, dc, dc,
dr |, dr dr
QB
27'CkT1
CO(T’z) + Cl(rz)e"’)lt -+ Cz(rz)e"“lt =
T2 +A2€iw2t
By means of the same procedure as that employed to de-
duce Eq. (33), from Egs. (9)-(11) and Eq. (41) one obtains
T(r,t) =

Bi(1 + i 7)[lo(/arr) Ko (y/arr) — Ko(y/arr)Io(y/arr)]
Vark[L (yairn)Ko(yair) + I(v/ar) K (vair))]

X eiwlt
. Ki(y/ayr)lo(y/axr) +
I(y/axr2)Ki(y/axn) + I

% el(})z[

+ T - (39)

+ B,

(40)

iyt
e =

ei(/)ll’ +

r

r

(1 + i 7)e "

I (v/azr1)Ko(v/a27)

o Varr ) Kolv/am)

Q
+ T, —ﬁln(r/rz). (42)

By the same method as that used to deduce Eq. (34), one
obtains the following steady-periodic heat-flux distribu-
tion in the hollow cylinder:

q(?’, t) =
B Ko(y/air2)Li(y/air) + L(y/air2) + Ki(y/ai7)

: I{(WVI)KO(\/ETZ) + Io(v/arr2)Ki (v/arm)

_ kAyay Ki(yan)hi(y/axr) — Li(y/an)
1+ i(l)zf[o(\/arz)Kl(\/a—zrl) + Il(\/Erl)

iwyt

Ki(yazr)
Ko(y/az12)

X e

Q

- (43)

4
Examples
In this section, two special cases of the boundary value
problem given by Eq. (25) are illustrated. The first case is a
solid cylinder whose surface temperature is a sinusoidal
function of time. The second is a hollow cylinder whose
inner surface is exposed to a heat flux which varies in time
with a sinusoidal law and whose outer surface is kept at
constant temperature.

Let us first consider an infinitely long solid cylinder,
with radius r,, with the steady-periodic surface tempera-
ture

T(Tz, t) = T2 + Azeiwzt. (44)

Since for r; — 0 the condition g(r;, ) = 0 must be ful-
filled, Eq. (22) yields Qo = 0 and B; = 0. By considering
the limit for r; — 0 of Eq. (42), with these values of Qp and
B, one obtains

I
T(T, t) = T2 —|—A2 0(\/_7’) lwzt.

45
L(van) )
By employing the dimensionless quantities
T-T
= 27 1’]:7/1’27 é:t/f,
Az
w,1? ot (46)
Q=-"22 A=—,
o 13
Eq. 45 can be rewritten as
I(ViQ — Q*A
a(r.£) = o ) gons, (47)

Io(VlQ QZ )

The amplitude of ¥ versus #, for Q = 8, is plotted in
Fig. 1 for A =1, A =0.25 and A = 0. The figure shows
that, both for A =1 and for A = 0.25, the dimensionless
temperature field is quite different from that predicted by
Fourier’s law (A = 0). Indeed, for A = 0 the amplitude of
9 decreases monotonically from the surface to the axis of
the cylinder. For A =1 the amplitude of ¥} presents three
maxima, with the greatest in # = 0. For A = 0.25 the
amplitude of ¥ presents a maximum in n = 0. All maxima
are greater than 1.

0 0.2 0.4 0.6 0.8 1.0

Fig. 1. Solid cylinder: amplitude of ¥ versus 5 for Q = 8 and
A=1,A=025A=0
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The amplitude of ¥ versus Q, for # = 0, is plotted in
Fig. 2, for A =1, A=0.25 and A = 0. For A =1 several
maxima, whose values increase with €, are present in the
range 0 < Q < 20. These maxima occur for the following
values of Q : 2.4030, 5.5215, 8.6548, 11.792, 14.932, 18.072.
For A = 0.25 three maxima, whose values increase with Q,
are present in the same range and occur for
Q =4.7314, Q =11.082, Q = 17.344. The values of Q
which maximize the amplitude of ¥ correspond to ther-
mal-resonance frequencies. Thermal resonances do not
occur for A = 0: in this case the amplitude of ¢ is a de-
creasing function of Q. The phase of ¥ for £ =0and n =0
is plotted versus Q in Fig. 3, for A =1, A = 0.25 and
A = 0. The figure shows that, for the values of A consid-
ered, also the phase of ¥ is quite different from that pre-
dicted by Fourier’s law. Indeed, for A = 0 the phase of ¥
decreases from 0 to —2.748 when Q increases from 0 to 20.
For A = 1, the phase of ¥ decreases from 0 to —= and from
+7m to 0 when Q increases from 0 to 6.992. The same
changes of the phase of ¥ occur in the intervals
6.992 < Q < 13.311 and 13.311 < Q < 19.607. For
A = 0.25, the phase of ¥ decreases from 0 to —n and from
+7 to 0 in the interval 0 < Q < 13.847. The discontinuities
of Arg(v) which appear in Fig. 3 have no physical rele-
vance, since Arg(?)) is defined up to integer multiples of
2.

The amplitude of ¥ versus Q for # = 0 and the phase of
¥ for £ =0 and 5 = 0 are plotted in Fig. 4 and Fig. 5
respectively, for A = 0.1, A = 0.05 and A = 0. Figure 4
shows that for A = 0.1 the amplitude of ¥ presents two

Fig. 2. Solid cylinder: amplitude of ) versus Q for n = 0 and
A=1,A=025A=0

Fig. 3. Solid cylinder: phase of ¥ versus Q for # =0 and A =1,
A=025A=0

1.4

0.2 it

Fig. 4. Solid cylinder: amplitude of ) versus Q for n = 0 and
A=01,A=005A=0

0 5 10 15 20

Fig. 5. Solid cylinder: phase of ¥ versus Q for n =0 and A = 0.1,
A=005A=0

maxima in the range 0 < Q < 20, for Q = 6.2104 and for
Q = 17.863. For A = 0.05 the amplitude of 9 is a de-
creasing function of Q, but has values higher than those
predicted by Fourier’s law. Figure 5 shows that, if Q > 10,
the values of the phase of J are appreciably different from
those predicted by Fourier’s law, both for A = 0.1 and for
A = 0.05. Therefore, Figs. 4 and 5 reveal that even for
A = 0.05 the effects of the relaxation time should be easily
observed experimentally. For a medium with
%2 107%m?/s and a solid cylinder with radius r, = 2 mm,
this value of A corresponds to a relaxation time 7 2 0.2s.
Let us now consider an infinitely long hollow cylinder
with the boundary conditions given by Eq. (22), in the
special case A, = 0.
By employing the dimensionless quantities

\/61_1k( Q , 1

VAR, - 0 —), —r/n
V=B, 2 gy ) C=T/n
o 12

(48)

c=t/t,

)

from Eq. (42), with A, = 0, one obtains

v((, &) =
(1 +i®) [Io(wl,)Ko(w() — Ko(wly)Io(w()] £1OTE
L (w)Ko(wlp) + I(wly)Ki (w) ’
(49)

where w = Vi® — ®’T .



The amplitude of v versus {, for ® = 8, is plotted in
Fig. 6 for ' =1, =0.25 and I' = 0. Both for I' = 1 and
for I' = 0.25, the dimensionless temperature field is quite
different from that predicted by Fourier’s law (I = 0). In
particular, for I' = 1 the amplitude of v presents three
maxima, with the greatest in { = 1. All maxima are greater
than 10. On the other hand, for I' = 0 the amplitude of v is
less than 1 for every value of { and decreases monotoni-
cally from { =1to { = 2.

The amplitude of v versus @, in { = 1, is plotted in
Fig. 7, for ' =1, ' = 0.25 and I' = 0. For I' = 1, three
maxima are present in the range 0 < ® < 10, for
® =1.7940, ® = 4.8046 and ® = 7.9104. For I' = 0.25,
two maxima are present in the same range and occur for
® = 3.3755 and ® = 9.6501. The phase of v for £ = 0 and
{ = 11is plotted versus @ in Fig. 8, for ' = 1, I' = 0.25 and
I' = 0. While the phase of v predicted by Fourier’s law is a
decreasing function of @, both for I' = 1 and for I' = 0.25
the phase of v is an oscillating function of ®.

The amplitude of v for { =1 and the phase of v for
¢=0and { =1 are plotted versus ® in Fig. 9 and in
Fig. 10 respectively, for ' = 0.1, ' = 0.05and I' = 0. As it
is shown by Fig. 9, for I' = 0.1 the amplitude of v presents
two maxima in the range 0 < @ < 20, namely for
® = 4.4109 and for ® = 15.807; moreover, for ® > 2 it has
values higher than 1. The same figure reveals that for
I' = 0.05 the amplitude of v has still values higher than
those predicted by Fourier’s law. Finally, Fig. 10 shows
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Fig. 6. Hollow cylinder with 1 < { < 2: amplitude of v versus {
for®=8and I'=1,I=025T=0

15.0
12.5
__10.0
— 75
5.0
25

Fig. 7. Hollow cylinder with 1 < { < 2: amplitude of v versus @
for({=1landI'=1,1T=025T1T=0

Arg (v)

Fig. 8. Hollow cylinder with 1 < { < 2: phase of v versus ® for
(=1land T =1,T'=025T=0

D

Fig. 9. Hollow cylinder with 1 < { < 2: amplitude of v versus ®
for(=1and I'=0.1,T=0.05,T=0

Fig. 10. Hollow cylinder with 1 < { < 2: phase of v (see caption
of Fig. 10) versus ® for (=1and I'=0.1, T =0.05, I =0

that the values of the phase of v are appreciably different
from those predicted by Fourier’s law even for I' = 0.05.

5

Conclusions

The differential equation of hyperbolic heat conduction
has been solved analytically, in steady periodic regime, for
an infinitely long hollow cylinder exposed to the following
boundary conditions: sinusoidally varying temperature at
each surface; sinusoidally varying heat flux at each surface;
sinusoidally varying temperature at the inner surface and
sinusoidally varying heat flux at the outer surface, and vice
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versa. The solution for a solid cylinder with a sinusoidally
varying surface temperature has been obtained as a par-
ticular case of the last boundary condition. The effects of
the relaxation time on the steady-periodic temperature
field have been analysed, in dimensionless form, for a solid
cylinder with a sinusoidally varying surface temperature
and for a hollow cylinder with a sinusoidally varying heat
flux at the inner surface and with a constant temperature
at the outer surface. Results show that, for a solid cylinder
with a 2mm radius and a thermal diffusivity of about
107° m2s~!, thermal resonances occur for a relaxation time
7 > 1s and the temperature field is appreciably different
from that predicted by Fourier’s equation for 7 > 0.2s.
Similar results hold for a hollow cylinder with an internal
radius of 2 mm, an external radius of 4 mm and a thermal
diffusivity of about 107% m?*s~!. Therefore, measurements
of the relaxation time by means of experiments on steady-
periodic heat conduction in cylindrical geometry could be
very accurate.
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