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E. Zanchini, B. Pulvirenti

Abstract Steady-periodic heat conduction with relaxation
time in an in®nitely long hollow cylinder is considered.
Four boundary value problems, with boundary conditions
of the ®rst and of the second kind, are solved analytically.
The solution for a solid cylinder with a sinusoidally
varying surface temperature is obtained as a special case of
a solution found for the hollow cylinder. The effects of the
relaxation time on the steady-periodic temperature ®eld
are analysed, in details, for a solid cylinder with a sinu-
soidally varying surface temperature and for a hollow
cylinder with a sinusoidally varying heat ¯ux at the inner
surface and with a constant temperature at the outer
surface. The results show that thermal resonances may
occur and suggest that accurate measurements of the re-
laxation time could be obtained by means of experiments
on steady-periodic heat conduction in cylindrical geome-
try.

List of symbols
Arg argument of a complex number
A1 amplitude of the temperature ¯uctuations at

the inner surface [K]
A2 amplitude of the temperature ¯uctuations at

the outer surface [K]
a1 � �ix1 ÿ sx2

1�=a, complex constant �mÿ2�
a2 � �ix2 ÿ sx2

2�=a, complex constant �mÿ2�
B1 amplitude of the heat-¯ux ¯uctuations at the

inner surface �W/m2�
B2 amplitude of the heat-¯ux ¯uctuations at the

outer surface �W/m2�
c speci®c heat at constant density [J/(kgK)]
C0�r� complex function de®ned by Eq. (5) [K]
C1�r� complex function de®ned by Eq. (5) [K]
C2�r� complex function de®ned by Eq. (5) [K]

D0�r� complex function de®ned by Eq. (12) �W/m2�
D1�r� complex function de®ned by Eq. (12) �W/m2�
D2�r� complex function de®ned by Eq. (12) �W/m2�
i � ������ÿ1

p
, imaginary unit

In modi®ed Bessel function of ®rst kind and
order n

k thermal conductivity [W/(mK)]
Kn modi®ed Bessel function of second kind and

order n
m0;m1;m2 complex coef®cients which appear in Eqs. (9)±

(11) [K]
n0; n1; n2 complex coef®cients which appear in Eqs. (9)±

(11) [K]
q heat-¯ux density vector �W/m2�
q heat-¯ux density in the radial direction

�W/m2�
Q0 time average of the heat ¯ux for unit length

[W/m]
r radial coordinate [m]
r1 inner radius of a hollow cylinder [m]
r2 outer radius of a hollow cylinder, radius of a

solid cylinder [m]
Re real part of a complex number
t time [s]
T temperature, complex temperature [K]
T1 time average of the temperature of the inner

surface [K]
T2 time average of the temperature of the outer

surface [K]
u internal energy per unit mass [J/kg]

w �
��������������������
iUÿ U2C
p

, dimensionless complex con-
stant

j j modulus of a complex number

Greek symbols
a thermal diffusivity �m2=s�
C � as=r2

1, dimensionless parameter de®ned in
Eq. (48)

f � r=r1, dimensionless radial coordinate
de®ned in Eq. (48)

g � r=r2, dimensionless radial coordinate
de®ned in Eq. (46)

# dimensionless temperature de®ned in Eq. (46)
K � as=r2

2, dimensionless parameter de®ned in
Eq. (46)

n � t=s, dimensionless time de®ned in Eq. (46)
q mass density [Kg/m3]
s thermal relaxation time [s]
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v dimensionless temperature de®ned in Eq. (48)
U � �x1r2

1�=a, dimensionless angular frequency
de®ned in Eq. (48)

X � �x2r2
2�=a, dimensionless angular frequency

de®ned in Eq. (46)
x1 angular frequency of temperature and heat

¯ux at the inner surface [rad/s]
x2 angular frequency of temperature and heat

¯ux at the outer surface [rad/s]

1
Introduction
In the analysis of transient heat conduction with quick
temperature changes, the classical Fourier's diffusion
theory may be inaccurate. In order to obtain more reliable
previsions one can replace Fourier's law with Cattaneo-
Vernotte's constitutive equation for the heat ¯ux density
vector q, namely [1±3]

q� s
oq
ot
� ÿkrT ; �1�

where t is time, T is temperature, s is the relaxation time
and k is the thermal conductivity of the substance. Let us
consider a medium such that k, s, the mass density q and
the speci®c heat at constant density c can be considered as
constants. For this medium, if the differential of the in-
ternal energy per unit mass can be expressed as du � cdT,
Eq. (1) and the energy balance equation
r � q � ÿqc�oT=ot� yield the telegraph equation for the
temperature ®eld

oT

ot
� s

o2T

ot2
� ar2T ; �2�

where a � k=�qc� is the thermal diffusivity.
Many solutions of unsteady heat conduction problems

based on Eqs. (1) and (2) have been presented in the lit-
erature; most of them are reviewed in [4±6]. Almost all the
available solutions concern the transient behaviour of the
temperature ®eld due to a sudden change of the boundary
conditions. Very few solutions of steady-periodic heat
conduction problems based on Eqs. (1) and (2) have been
presented. Glass, OÈ zisik and Vick [7] deal with a semi-
in®nite medium bounded by a plane surface and subjected
to a periodic on-off type heat ¯ux at the surface. At the
initial instant, the medium is in thermodynamic equilib-
rium. Two solutions, with and without heat radiation from
the surface to an external ambient, are presented. Clearly,
in the absence of heat radiation the temperature ®eld
cannot reach a true steady-periodic regime. Yuen and Lee
[8] consider the time evolution, starting from thermody-
namic equilibrium, of a semi-in®nite medium bounded by
a plane surface. For t > 0, the surface is exposed to a
sinusoidal heat ¯ux with zero mean value. The steady-
periodic temperature ®eld is obtained by considering the
limit of the solution for t !1. Tang and Araki [9] ana-
lyse a plane slab whose front surface is exposed to a
sinusoidal heat ¯ux with zero mean value, while the rear
surface is insulated. The medium is initially in thermo-
dynamic equilibrium. The time evolution of the tempera-
ture at both surfaces is evaluated. Novikov [10] studies the

steady-periodic heat conduction in a plane slab such that
the temperature of one surface is a sinusoidal function of
time while the other surface is insulated. Tzou [11] con-
siders a non-uniform heat generation which is a sinusoidal
function of time within a plane slab with insulated sur-
faces. The author points out that resonance phenomena
may occur and determines the values of the resonance
frequencies. The heat source considered in Ref. [11] is not
easily obtained experimentally. Barletta and Zanchini [12]
deal with an in®nitely long solid cylinder with an internal
heat generation produced by an alternating current. The
power generated per unit volume is non-uniform and
steady-periodic. The surface of the cylinder is assumed to
exchange heat by convection with an external ¯uid. The
authors determine the steady-periodic temperature ®eld
within the cylinder and the thermal-resonance frequencies.

Thus, while some attention has already been devoted to
steady-periodic heat conduction with relaxation time and
no heat generation in plane geometry [8, 10], no analysis
of hyperbolic heat conduction in cylindrical geometry, in
the absence of internal heat generation and in steady-
periodic regime, is available in the literature.

The aim of this paper is to analyse the effects of the
relaxation time on the temperature ®eld for steady-peri-
odic heat conduction in an in®nitely long hollow cylinder.
The following boundary conditions are considered: sinu-
soidally varying temperature at each surface; sinusoidally
varying heat ¯ux at each surface; sinusoidally varying
temperature at the inner surface and sinusoidally varying
heat ¯ux at the outer surface; sinusoidally varying heat ¯ux
at the inner surface and sinusoidally varying temperature
at the outer surface. The solution for a solid cylinder with a
sinusoidally-varying temperature at the surface is obtained
as a particular case of the last boundary condition.

The results show that non-Fourier effects are relevant
and that thermal resonances may occur even for rather low
values of the relaxation time s. In particular, for a solid
cylinder whose radius is 2 mm and whose thermal diffus-
ivity is 10ÿ6 m2=s, for s � 1 s a thermal resonance occurs
at the axis if the angular frequency of the sinusoidal
temperature prescribed at the surface is 1:183 rad sÿ1.
Moreover, the amplitude and the phase of the temperature
¯uctuations at the axis of the cylinder are appreciably
different from those predicted by Fourier's theory even for
s � 0:2 s. These results suggest that careful measurements
of the relaxation time could be performed by measuring
the amplitude and the phase of the temperature ®eld in
steady-periodic heat conduction in cylindrical geometry.

2
Steady-periodic solutions of the telegraph equation
In this section, the telegraph equation for the temperature
®eld in cylindrical geometry is recalled. Then, the general
solution of this equation in steady-periodic regime is ob-
tained for an in®nitely long hollow cylinder with either a
periodically varying temperature or a periodically varying
heat ¯ux at each boundary surface. Finally, the corre-
sponding heat ¯ux distribution in steady-periodic regime
is determined.

Let us consider an in®nitely long hollow cylinder, with
internal radius r1 and external radius r2. Let us assume
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that the density, the thermal conductivity, the thermal
diffusivity and the thermal relaxation time of the annulus
are constants and that the temperature of the annulus
depends only on time and on the radial coordinate r. With
this assumptions, Eq. (2) holds and can be expressed as

1

r

oT

or
� o2T

or2
� 1

a
oT

ot
� s

a
o2T

ot2
: �4�

If either a periodically varying temperature or a periodi-
cally varying heat ¯ux is prescribed at each boundary
surface, the steady-periodic solutions of Eq. (4) are of the
kind

T�r; t� � C0�r� � C1�r�eix1t � C2�r�eix2t ; �5�
where T is the complex temperature, x1 and x2 are the
angular frequencies at r1 and at r2, C0�r�, C1�r� and C2�r�
are undetermined complex functions. By substituting
Eq. (5) in Eq. (4), the following conditions on C0�r�, C1�r�
and C2�r� are obtained:

1

r

dC0

dr
� d2C0

dr2
� 0 ; �6�

1

r

dC1

dr
� d2C1

dr2
� 1

a
�ix1 ÿ sx2

1�C1�r� ; �7�
1

r

dC2

dr
� d2C2

dr2
� 1

a
�ix2 ÿ sx2

2�C2�r� : �8�
Equations (6), (7) and (8) yield

C0�r� � m0 ln r � n0 ; �9�
C1�r� � m1I0� �����a1

p
r� � n1K0� �����a1

p
r� ; �10�

C2�r� � m2I0� �����a2
p

r� � n2K0� �����a2
p

r� ; �11�
where a1 � �ix1 ÿ sx2

1�=a, a2 � �ix2 ÿ sx2
2�=a. The coef-

®cients mi and ni, �i � 0; 1; 2� are determined by the
boundary conditions.

Moreover, if either a periodically varying temperature
or a periodically varying heat ¯ux is prescribed at each
boundary surface, the steady-periodic heat ¯ux distribu-
tions are of the kind

q�r; t� � D0�r� � D1�r�eix1t � D2�r�eix2t : �12�
From Eq. (12), Eq. (5) and Eq. (1), the following condi-
tions on D0�r�, D1�r� and D2�r� are obtained:

D0�r� � ÿk
dC0

dr
; �13�

D1�r��1� ix1s� � ÿk
dC1

dr
; �14�

D2�r��1� ix2s� � ÿk
dC2

dr
: �15�

By substituting Eqs. (9)±(11) in Eqs. (13)±(15) and by
applying the properties of Bessel functions [13], one ob-
tains

D0�r� � ÿk
m0

r
; �16�

D1�r� � ÿ k
�����
a1
p

�1� ix1s� �m1I1� �����a1
p

r� ÿ n1K1� �����a1
p

r�� ;

�17�

D2�r� � ÿ k
�����
a2
p

�1� ix2s� �m2I1� �����a2
p

r� ÿ n2K1� �����a2
p

r�� :

�18�

3
Boundary value problems
In this section, four steady-periodic boundary conditions
for an in®nitely long hollow cylinder are selected and the
corresponding steady-periodic distributions of tempera-
ture and heat ¯ux are determined.

Let us consider the following steady-periodic boundary
conditions.

T�r1; t� � T1 � A1eix1t

T�r2; t� � T2 � A2eix2t ;

(
�19�

q�r1; t� � Q0

2pr1
� B1eix1t

q�r2; t� � Q0

2pr2
� B2eix2t ;

8>><>>: �20�

T�r1; t� � T1 � A1eix1t

q�r2; t� � Q0

2pr2
� B2eix2t ;

8<: �21�

q�r1; t� � Q0

2pr1
� B1eix1t

T�r2; t� � T2 � A2eix2t :

8<: �22�

In Eqs. (19)±(22), T is the complex temperature, while T1,
T2, A1, A2, B1, B2 and Q0 are real quantities. Thus, for
instance, Eq. (19) represents the real boundary condition
Re�T�r1; t�� � T1 � A1 cos�x1t� and Re�T�r2; t�� � T2�
A2 cos�x2t�. In Eqs. (20)±(22), Q0 is the time average of the
heat ¯ux per unit length which crosses the annulus.

The case of a solid cylinder with a surface temperature
T�r2; t� � T2 � A2eix2t can be obtained from Eq. (22), as
follows: r1 tends to zero, as well as q�r1; t�. The case of an
in®nite solid medium which surrounds a cylindrical sur-
face with a temperature T�r1; t� � T1 � A1eix1t can be
obtained from Eq. (21) as follows: r2 tends to in®nity,
q�r2; t� tends to zero and Q0 � 0.

By employing Eq. (1), Eqs. (20)±(22) can be rewritten as
follows:

oT

or

�����
r1;t

� ÿ Q0

2pkr1
ÿ B1

k
�1� ix1s�eix1t

oT

or

�����
r2;t

� ÿ Q0

2pkr2
ÿ B2

k
�1� ix2s�eix2t ;

8>>>>><>>>>>:
�23�

T�r1; t� � T1 � A1eix1t

oT

or

�����
r2;t

� ÿ Q0

2pkr2
ÿ B2

k
�1� ix2s�eix2t ;

8>><>>: �24�

oT

or

�����
r1;t

� ÿ Q0

2pkr1
ÿ B1

k
�1� ix1s�eix1t

T�r2; t� � T2 � A2eix2t :

8>><>>: �25�
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Let us ®rst consider the boundary condition given by
Eq. (19).
On account of Eq. (5), Eq. (19) can be rewritten as

C0�r1� � C1�r1�eix1t � C2�r1�eix2t � T1 � A1eix1t

C0�r2� � C1�r2�eix1t � C2�r2�eix2t � T2 � A2eix2t
:

(
�26�

Equation (26) implies

C0�r1� � T1

C0�r2� � T2

;

(
�27�

C1�r1� � A1

C1�r2� � 0
;

(
�28�

C2�r1� � 0

C2�r2� � A2

:

(
�29�

Equations (9)±(11) and (27)±(29) yield

m0 � ÿ T1 ÿ T2

ln�r2=r1�
n0 � T1 ln r2 ÿ T2 ln r1

ln�r2=r1�
;

8>><>>: �30�

m1 � A1K0� �����a1
p

r2�
I0� �����a1
p

r1�K0� �����a1
p

r2� ÿ I0� �����a1
p

r2�K0� �����a1
p

r1�
n1 � ÿA1I0� �����a1

p
r2�

I0� �����a1
p

r1�K0� �����a1
p

r2� ÿ I0� �����a1
p

r2�K0� �����a1
p

r1� ;

8>>><>>>:
�31�

m2 � ÿA2K0� �����a2
p

r1�
I0� �����a2
p

r1�K0� �����a2
p

r2� ÿ I0� �����a2
p

r2�K0� �����a2
p

r1�
n2 � A2I0� �����a2

p
r1�

I0� �����a2
p

r1�K0� �����a2
p

r2� ÿ I0� �����a2
p

r2�K0� �����a2
p

r1�
:

8>>><>>>:
�32�

By substituting Eqs. (30)±(32) in Eqs. (9)±(11), one ob-
tains the following steady-periodic temperature distribu-
tion in the hollow cylinder:

T�r; t� � A1
K0� �����a1
p

r2�I0� �����a1
p

r� ÿ I0� �����a1
p

r2�K0� �����a1
p

r�
I0� �����a1
p

r1�K0� �����a1
p

r2� ÿ I0� �����a1
p

r2�K0� �����a1
p

r1�
� eix1t

� A2
I0� �����a2
p

r1�K0� �����a2
p

r� ÿ K0� �����a2
p

r1�I0� �����a2
p

r�
I0� �����a2
p

r1�K0� �����a2
p

r2� ÿ K0� �����a2
p

r1�I0� �����a2
p

r2�
� eix2t

� T1 ÿ T1 ÿ T2

ln�r2=r1� ln�r=r1�: �33�

By substituting Eqs. (30)±(32) in Eqs. (16)±(18), one
obtains the following steady-periodic heat-¯ux distribu-
tion in the hollow cylinder:

q�r; t� �

ÿ kA1
�����
a1
p

1� ix1s
K0� �����a1
p

r2�I1� �����a1
p

r� � I0� �����a1
p

r2�K1� �����a1
p

r�
I0� �����a1
p

r1�K0� �����a1
p

r2� ÿ I0� �����a1
p

r2�K0� �����a1
p

r1� eix1t

� kA2
�����
a2
p

1� ix2s

K0
�����
a1
p

r1

ÿ �
I1

�����
a2
p

r
ÿ �� I0

�����
a2
p

r1

ÿ �
K1

�����
a2
p

r
ÿ �

I0
�����
a2
p

r1

ÿ �
K0

�����
a2
p

r2

ÿ �ÿ I0
�����
a2
p

r2

ÿ �
K0

�����
a2
p

r1

ÿ � eix2t

� k
T1 ÿ T2

rln�r2=r1� : �34�

Let us now consider the boundary condition given by
Eq. (23).
On account of Eq. (5), Eq. (23) can be rewritten as

dC1

dr

����
r1

eix1t � dC2

dr

����
r1

eix2t � dC0

dr

����
r1

� ÿ Q0

2pkr1
ÿ B1

k
�1� ix1s�eix1t

dC1

dr

����
r2

eix1t � dC2

dr

����
r2

eix2t � dC0

dr

����
r2

� ÿ Q0

2pkr2
ÿ B2

k
�1� ix2s�eix2t

8>>>>>>>>>>>><>>>>>>>>>>>>:
: �35�

By means of the same procedure as that employed to de-
duce Eq. (33), from Eqs. (9)-(11) and Eq. (35) one obtains

T�r; t� �

ÿ B1�1� ix1s��K1� �����a1
p

r2�I0� �����a1
p

r� � I1� �����a1
p

r2�K0� �����a1
p

r�������
a1
p

k�I1� �����a1
p

r1�K1� �����a1
p

r2� ÿ I1� �����a1
p

r2�K1� �����a1
p

r1�� eix1t

ÿ B2�1� ix2s��K1� �����a2
p

r1�I0� �����a2
p

r� � I1� �����a2
p

r1�K0� �����a2
p

r�������
a2
p

k�I1� �����a2
p

r2�K1� �����a2
p

r1� ÿ I1� �����a2
p

r1�K1� �����a2
p

r2�� eix2t

� T2 ÿ Q0

2pk
ln�r=r2� :

(36)
By the same method as that used to deduce Eq. (34), one
obtains the following steady-periodic heat-¯ux distribu-
tion in the hollow cylinder:

q�r; t� �

B1
K1� �����a1
p

r2�I1� �����a1
p

r� ÿ I1� �����a1
p

r2�K1� �����a1
p

r�
I1� �����a1
p

r1�K1� �����a1
p

r2� ÿ I1� �����a1
p

r2�K1� �����a1
p

r1� eix1t

� B2
K1� �����a2
p

r1�I1� �����a2
p

r� ÿ I1� �����a2
p

r1�K1� �����a2
p

r�
I1� �����a2
p

r2�K1� �����a2
p

r1� ÿ I1� �����a2
p

r1�K1� �����a2
p

r2� eix2t

� Q0

2pr
: �37�

Let us consider the boundary condition given by
Eq. (24).
On account of Eq. (5), Eq. (24) can be rewritten as

C0�r1� � C1�r1�eix1t � C2�r1�eix2t

� T1 � A1eix1t

dC0

dr

����
r2

� dC1

dr

����
r2

eix1t � dC2

dr

����
r2

eix2t

� ÿQ0

2pkr2
ÿ B2

k
�1� ix2s�eix2t

8>>>>>>>><>>>>>>>>:
: �38�

By means of the same procedure as that employed to de-
duce Eq. (33), from Eqs. (9)-(11) and Eq. (38) one obtains
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T�r; t� �

A1
K1� �����a1
p

r2�I0� �����a1
p

r� � I1� �����a1
p

r2�K0� �����a1
p

r�
I0� �����a1
p

r1�K1� �����a1
p

r2� � I1� �����a1
p

r2�K0� �����a1
p

r1� eix1t

� B2�1� ix2s��I0� �����a2
p

r1�K0� �����a2
p

r� ÿ K0� �����a2
p

r1�I0� �����a2
p

r�������
a2
p

k�I1� �����a2
p

r2�K0� �����a2
p

r1� � I0� �����a2
p

r1�K1� �����a2
p

r2�� eix2t

� T1 ÿ Q0

2pk
ln�r=r1�: �39�

By the same method as that used to deduce Eq. (34), one
obtains the following steady-periodic heat-¯ux distribu-
tion in the hollow cylinder:
q�r; t� �

ÿ kA1
�����
a1
p

1� ix1s
K1� �����a1
p

r2�I1� �����a1
p

r� ÿ I1� �����a1
p

r2�K1� �����a1
p

r�
I0� �����a1
p

r1�K1� �����a1
p

r2� � I1� �����a1
p

r2�K0� �����a1
p

r1� eix1t

� B2
K0� �����a2
p

r1�I1� �����a2
p

r1 � I0� �����a2
p

r1�K1� �����a2
p

r�
I1� �����a2
p

r2�K0� �����a2
p

r1� � I0� �����a2
p

r1�K1� �����a2
p

r2� eix2t

� Q0

2pr
: �40�

Finally, let us consider the boundary condition given by
Eq. (25).
On account of Eq. (5), Eq. (25) can be rewritten as

dC0

dr

����
r1

� dC1

dr

����
r1

eix1t � dC2

dr

����
r1

eix2t �

ÿ Q0

2pkr1
ÿ B1

k
�1� ix1s�eix1t :

C0�r2� � C1�r2�eix1t � C2�r2�eix2t �
T2 � A2eix2t

8>>>>>>>><>>>>>>>>:
�41�

By means of the same procedure as that employed to de-
duce Eq. (33), from Eqs. (9)-(11) and Eq. (41) one obtains

T�r; t� �
B1�1� ix1s��I0� �����a1

p
r2�K0� �����a1

p
r� ÿ K0� �����a1

p
r2�I0� �����a1

p
r�������

a1
p

k�I1� �����a1
p

r1�K0� �����a1
p

r2� � I0� �����a1
p

r2�K1� �����a1
p

r1��
� eix1t

� A2
K1� �����a2
p

r1�I0� �����a2
p

r� � I1� �����a2
p

r1�K0� �����a2
p

r�
I0� �����a2
p

r2�K1� �����a2
p

r1� � I1� �����a2
p

r1�K0� �����a2
p

r2�
� eix2t

� T2 ÿ Q0

2pk
ln�r=r2�: �42�

By the same method as that used to deduce Eq. (34), one
obtains the following steady-periodic heat-¯ux distribu-
tion in the hollow cylinder:

q�r; t� �

B1
K0� �����a1
p

r2�I1� �����a1
p

r� � I0� �����a1
p

r2� � K1� �����a1
p

r�
I1� �����a1
p

r1�K0� �����a1
p

r2� � I0� �����a1
p

r2�K1� �����a1
p

r1�
� eix1t

ÿ kA2
�����
a2
p

1� ix2s
K1� �����a2
p

r1�I1� �����a2
p

r� ÿ I1� �����a2
p

r1�K1� �����a2
p

r�
I0� �����a2
p

r2�K1� �����a2
p

r1� � I1� �����a2
p

r1�K0� �����a2
p

r2�
� eix2t

� Q0

2pr
: �43�

4
Examples
In this section, two special cases of the boundary value
problem given by Eq. (25) are illustrated. The ®rst case is a
solid cylinder whose surface temperature is a sinusoidal
function of time. The second is a hollow cylinder whose
inner surface is exposed to a heat ¯ux which varies in time
with a sinusoidal law and whose outer surface is kept at
constant temperature.

Let us ®rst consider an in®nitely long solid cylinder,
with radius r2, with the steady-periodic surface tempera-
ture

T�r2; t� � T2 � A2eix2t: �44�
Since for r1 ! 0 the condition q�r1; t� � 0 must be ful-
®lled, Eq. (22) yields Q0 � 0 and B1 � 0. By considering
the limit for r1 ! 0 of Eq. (42), with these values of Q0 and
B1, one obtains

T�r; t� � T2 � A2
I0� �����a2
p

r�
I0� �����a2
p

r2� eix2t: �45�

By employing the dimensionless quantities

# � T ÿ T2

A2
; g � r=r2; n � t=s;

X � x2r2
2

a
; K � as

r2
2

;

�46�

Eq. 45 can be rewritten as

#�g; n� � I0�
��������������������
iXÿ X2K
p

g�
I0�

��������������������
iXÿ X2K
p

�
eiXKn: �47�

The amplitude of # versus g, for X � 8, is plotted in
Fig. 1 for K � 1, K � 0:25 and K � 0. The ®gure shows
that, both for K � 1 and for K � 0:25, the dimensionless
temperature ®eld is quite different from that predicted by
Fourier's law �K � 0�. Indeed, for K � 0 the amplitude of
# decreases monotonically from the surface to the axis of
the cylinder. For K � 1 the amplitude of # presents three
maxima, with the greatest in g � 0. For K � 0:25 the
amplitude of # presents a maximum in g � 0. All maxima
are greater than 1.

Fig. 1. Solid cylinder: amplitude of # versus g for X � 8 and
K � 1, K � 0:25, K � 0
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The amplitude of # versus X, for g � 0, is plotted in
Fig. 2, for K � 1, K � 0:25 and K � 0. For K � 1 several
maxima, whose values increase with X, are present in the
range 0 < X � 20. These maxima occur for the following
values of X : 2.4030, 5.5215, 8.6548, 11.792, 14.932, 18.072.
For K � 0:25 three maxima, whose values increase with X,
are present in the same range and occur for
X � 4:7314; X � 11:082; X � 17:344. The values of X
which maximize the amplitude of # correspond to ther-
mal-resonance frequencies. Thermal resonances do not
occur for K � 0 : in this case the amplitude of # is a de-
creasing function of X. The phase of # for n � 0 and g � 0
is plotted versus X in Fig. 3, for K � 1, K � 0:25 and
K � 0. The ®gure shows that, for the values of K consid-
ered, also the phase of # is quite different from that pre-
dicted by Fourier's law. Indeed, for K � 0 the phase of #
decreases from 0 to )2.748 when X increases from 0 to 20.
For K � 1, the phase of # decreases from 0 to ÿp and from
�p to 0 when X increases from 0 to 6.992. The same
changes of the phase of # occur in the intervals
6:992 � X � 13:311 and 13:311 � X � 19:607. For
K � 0:25, the phase of # decreases from 0 to ÿp and from
�p to 0 in the interval 0 � X � 13:847. The discontinuities
of Arg(#) which appear in Fig. 3 have no physical rele-
vance, since Arg(#) is de®ned up to integer multiples of
2p.

The amplitude of # versus X for g � 0 and the phase of
# for n � 0 and g � 0 are plotted in Fig. 4 and Fig. 5
respectively, for K � 0:1, K � 0:05 and K � 0. Figure 4
shows that for K � 0:1 the amplitude of # presents two

maxima in the range 0 < X � 20, for X � 6:2104 and for
X � 17:863. For K � 0:05 the amplitude of # is a de-
creasing function of X, but has values higher than those
predicted by Fourier's law. Figure 5 shows that, if X > 10,
the values of the phase of # are appreciably different from
those predicted by Fourier's law, both for K � 0:1 and for
K � 0:05. Therefore, Figs. 4 and 5 reveal that even for
K � 0:05 the effects of the relaxation time should be easily
observed experimentally. For a medium with
a � 10ÿ6 m2=s and a solid cylinder with radius r2 � 2 mm,
this value of K corresponds to a relaxation time s � 0:2 s.

Let us now consider an in®nitely long hollow cylinder
with the boundary conditions given by Eq. (22), in the
special case A2 � 0.
By employing the dimensionless quantities

t �
�����
a1
p

k

B1

�
T ÿ T2 ÿ Q0

2kp
ln

r2

r

�
; f � r=r1 ;

n � t=s ; U � x1r2
1

a
; C � as

r2
1

;

�48�

from Eq. (42), with A2 � 0, one obtains

t�f; n� �
�1� iUC��I0�wf2�K0�wf� ÿ K0�wf2�I0�wf��

I1�w�K0�wf2� � I0�wf2�K1�w� eiUCn ;

�49�
where w �

��������������������
iUÿ U2C
p

:

Fig. 2. Solid cylinder: amplitude of # versus X for g � 0 and
K � 1, K � 0:25, K � 0

Fig. 3. Solid cylinder: phase of # versus X for g � 0 and K � 1,
K � 0:25, K � 0

Fig. 4. Solid cylinder: amplitude of # versus X for g � 0 and
K � 0:1, K � 0:05, K � 0

Fig. 5. Solid cylinder: phase of # versus X for g � 0 and K � 0:1,
K � 0:05, K � 0
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The amplitude of t versus f, for U � 8, is plotted in
Fig. 6 for C � 1; C � 0:25 and C � 0. Both for C � 1 and
for C � 0:25, the dimensionless temperature ®eld is quite
different from that predicted by Fourier's law �C � 0�. In
particular, for C � 1 the amplitude of t presents three
maxima, with the greatest in f � 1. All maxima are greater
than 10. On the other hand, for C � 0 the amplitude of t is
less than 1 for every value of f and decreases monotoni-
cally from f � 1 to f � 2.

The amplitude of t versus U, in f � 1, is plotted in
Fig. 7, for C � 1; C � 0:25 and C � 0. For C � 1, three
maxima are present in the range 0 < U � 10, for
U � 1:7940; U � 4:8046 and U � 7:9104. For C � 0:25,
two maxima are present in the same range and occur for
U � 3:3755 and U � 9:6501. The phase of t for n � 0 and
f � 1 is plotted versus U in Fig. 8, for C � 1; C � 0:25 and
C � 0. While the phase of t predicted by Fourier's law is a
decreasing function of U, both for C � 1 and for C � 0:25
the phase of t is an oscillating function of U.

The amplitude of t for f � 1 and the phase of t for
n � 0 and f � 1 are plotted versus U in Fig. 9 and in
Fig. 10 respectively, for C � 0:1; C � 0:05 and C � 0. As it
is shown by Fig. 9, for C � 0:1 the amplitude of t presents
two maxima in the range 0 < U � 20, namely for
U � 4:4109 and for U � 15:807; moreover, for U > 2 it has
values higher than 1. The same ®gure reveals that for
C � 0:05 the amplitude of t has still values higher than
those predicted by Fourier's law. Finally, Fig. 10 shows

that the values of the phase of v are appreciably different
from those predicted by Fourier's law even for C � 0:05.

5
Conclusions
The differential equation of hyperbolic heat conduction
has been solved analytically, in steady periodic regime, for
an in®nitely long hollow cylinder exposed to the following
boundary conditions: sinusoidally varying temperature at
each surface; sinusoidally varying heat ¯ux at each surface;
sinusoidally varying temperature at the inner surface and
sinusoidally varying heat ¯ux at the outer surface, and vice

Fig. 6. Hollow cylinder with 1 � f � 2: amplitude of t versus f
for U � 8 and C � 1, C � 0:25, C � 0

Fig. 7. Hollow cylinder with 1 � f � 2: amplitude of t versus U
for f � 1 and C � 1, C � 0:25, C � 0

Fig. 8. Hollow cylinder with 1 � f � 2: phase of t versus U for
f � 1 and C � 1, C � 0:25, C � 0

Fig. 9. Hollow cylinder with 1 � f � 2: amplitude of t versus U
for f � 1 and C � 0:1, C � 0:05, C � 0

Fig. 10. Hollow cylinder with 1 � f � 2: phase of t (see caption
of Fig. 10) versus U for f � 1 and C � 0:1, C � 0:05, C � 0
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versa. The solution for a solid cylinder with a sinusoidally
varying surface temperature has been obtained as a par-
ticular case of the last boundary condition. The effects of
the relaxation time on the steady-periodic temperature
®eld have been analysed, in dimensionless form, for a solid
cylinder with a sinusoidally varying surface temperature
and for a hollow cylinder with a sinusoidally varying heat
¯ux at the inner surface and with a constant temperature
at the outer surface. Results show that, for a solid cylinder
with a 2 mm radius and a thermal diffusivity of about
10ÿ6 m2sÿ1, thermal resonances occur for a relaxation time
s � 1 s and the temperature ®eld is appreciably different
from that predicted by Fourier's equation for s � 0:2 s.
Similar results hold for a hollow cylinder with an internal
radius of 2 mm, an external radius of 4 mm and a thermal
diffusivity of about 10ÿ6 m2sÿ1. Therefore, measurements
of the relaxation time by means of experiments on steady-
periodic heat conduction in cylindrical geometry could be
very accurate.
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