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Abstract Multiple steady-state solutions of natural con-
vection in an inclined enclosure with a ¯uid layer and a
heat-generating porous bed is investigated numerically by
the ®nite volume method. The conservation equations for
the porous layer are based on a general ¯ow model which
includes both the effects of ¯ow inertia and friction. The
¯ow in ¯uid layer is modeled by Navier±Stokes equations.
The method of pseudo arc-length continuation is adapted
in studying the effects of tilt angle on ¯ow pattern and heat
transfer. It is found that, in the whole domain of tilt angle,
there exist two groups of solutions with quite different
¯ow pattern and heat transfer behavior. The effects of
aspect ratio on ¯ow pattern and heat transfer have also
been studied.

List of symbols
A aspect ratio, W/H
C inertia coef®cient
Cp speci®c heat [J kgÿ1 Kÿ1]
Da Darcy number, K/H2

~g gravitational acceleration [m sÿ2]
H vertical length of the enclosure [m]
h heat transfer coef®cient [W mÿ2 Kÿ1]
K permeability of the porous medium �m2�
k thermal conductivity of ¯uid �W mÿ1 Kÿ1�
Nu global Nusselt number, hC=k
P pressure [Pa]
Pr Prandtl number, m=a
Ra Rayleigh number, gbT�H3=ma
Rk thermal conductivity ratio, keff=k
_q volumetric heat generating in porous layer �W mÿ3�
T temperature [K]
T� characteristic temperature _qH2=k [K]
Tm mean temperature at the interface [K]
Tw enclosure wall temperature [K]
U dimensionless velocity in x direction
v velocity vector (u, v) [m sÿ1]
V dimensionless velocity in y direction
V dimensionless velocity vector (U , V)

W horizontal length of the enclosure [m]
x; y horizontal and vertical coordinates [m]
X; Y dimensionless coordinates x=W, y=H

Greek symbols
a thermal diffusivity �m2 sÿ1�
b thermal expansion coef®cient of ¯uid �Kÿ1�
C boundaries of the enclosure [m]
e porosity
h dimensionless temperature
hm dimensionless mean temperature at the interface
k binary parameter
l viscosity [kg mÿ1 sÿ1]
m kinematic viscosity �m2 sÿ1�
q ¯uid density �kg mÿ3�
u tilt angle [deg]
w stream function �m2 sÿ1�
x vorticity �sÿ1�

Subscripts
c center of the enclosure
eff effective thermophysical properties
f ¯uid layer
m mean value
p porous layer

1
Introduction
Buoyancy-driven convection in a porous enclosure can be
encountered in many engineering and environmental ap-
plications. For example, cooling of buried nuclear wastes,
transport of heat within the earth crust, and catalitical
chemical reaction in a batch reactor. Therefore, a con-
siderable amount of investigations on this subject have
been performed over the last 30 years.

For an enclosure ®lled with porous material, several in-
vestigations [1±4] have focused on the phenomenon of
natural convection from volumetric heat generating. Most
of these investigations deal with uniform heat generation in
the cavity and isothermal boundaries along the vertical or
horizontal walls. A detail discussion on bifurcation with
respect to the Rayleigh number for a system with uniform
heat generation has been made by Weinitschke et al. [5].
Both symmetric and asymmetric solution branches were
studied over a wide range of Rayleigh number. Vilijoen and
Hlavacek [6], and Subramanian and Balakotaiah [7] worked
with non-uniform heating rate determined by chemical
reaction. They also provided with bifurcation diagrams.
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A system of inclined porous layer has also been noticed.
Inaba et al. [8] performed an experimental study of a
sloped porous layer heated from below with constant
temperature. They reported a correlation equation be-
tween the Nusselt number and the modi®ed Rayleigh
number for any inclined angles. The same system was also
studied numerically by Moya et al. [9]. Flow of multiple
cells and multiple steady states have been found in their
research. The same problem but with uniform wall ¯ux has
also been studied numerically and analytically by Vasseur
et al. [10], and by Sen et al. [11] under the assumption of
parallel ¯ow. According to the report of Sen et al., three
different steady states can be found for unicellular con-
vection within a small tilt angle when the Rayleigh number
is larger than a critical value.

Natural convection in an enclosure with a porous bed
and an overlaying ¯uid also attracted some interests [12±
17]. A numerical and experimental study of this system
has been reported by Beckermann et al. [13]. They added
the Brinkman term for friction force, and the Forchheimer
term for inertia effects. The numerical solution were val-
idated by the temperature measurements and interfero-
metric results. System of ¯uid layer overlaying a uniform
heat generating porous bed with three insulated bound-
aries and a top cold wall was investigated numerically by
Poulikakos [17]. According to his study with a general ¯ow
model, two or four even six cells can be obtained for dif-
ferent aspect ratios.

In the present work, we consider a system similar to
that has been studied by Poulikakos, except that the
present cavity is inclined and all the boundaries are iso-
thermal walls. We concentrate our attention on the effect
of tilt angle on the ¯ow pattern and heat transfer perfor-
mance of natural convection in the enclosure. In addition,
we intend to ®nd multiple steady-state solutions of this
system by using pseudo arc-length continuation technique
[18].

2
Formulations
As shown in Fig. 1, consider a rectangular enclosure which
is tilted at an angle u with respect to the horizontal. The
enclosure is bounded by impermeable isothermal walls
and divided equally into a ¯uid layer and a porous layer.
The ¯uid layer is ®lled with Newtonian ¯uid of constant
viscosity l and thermal conductivity k, while the porous
layer is packed with a homogenous porous medium of
effective thermal conductivity keff and viscosity leff .

Thermal energy of volumetric rate _q has been generated
constantly and uniformly in the porous layer, which may
arises from a catalytic reaction or a heat-release adsorp-
tion process.

In the enclosure, the buoyancy-induced ¯ow arising
from heat generation is assumed to be steady, laminar, and
two-dimensional. Besides, the physical properties of the
¯uid and the porous material are assumed to be constant
except that the Boussinesq approximation is invoked to
model the density variation in the buoyancy term.

For the ¯uid layer, the governing equations are:

r � v � 0 �1�
q�v � r�v � lr2v ÿrP� q~gb�T ÿ Tw� �2�
qcp�v � r�T � kr2T : �3�

In the porous layer, the ¯uid-saturated porous medium
is assumed to be homogeneous, isotropic and in local
thermal equilibrium with the ¯uid. The ¯ow in porous
region is modeled by Brinkman-Forchheimer-extended
Darcy model which includes both inertia and viscous
terms. This model is based on a general ¯ow model and
has been derived semi-empirically [19]. The conservation
equations for the porous layer are:

r � v � 0 �4�
q
e2
�v � r�v � leffr2v ÿrPÿ l

K
� C����

K
p jvj

� �
v

� q~gb�T ÿ Tw� �5�
qcp�v � r�T � keffr2T � _q �6�
where jvj � ���������������

u2 � v2
p

is the ¯ow intensity; e and K are,
respectively, the porosity and permeability of the porous
medium; keff and leff are effective thermal conductivity
and effective viscosity of the porous medium.

Since the four bounding walls are solid and isothermal,
the boundary conditions for the above equations are as
follows:

u � 0; v � 0; T � Tw at x � 0 and x � W �7a�
u � 0; v � 0; T � Tw at y � 0 and y � H: �7b�

At the interface of the ¯uid and the porous layers, the
following matching conditions must be satis®ed:

uf � up; vf � vp; sf � sp; Pf � Pp; Tf � Tp

l
ou

oy
� ov

ox

� �����
y�y�

f

� leff

ou

oy
� ov

ox

� �����
y�yÿp

�8�

Tf � Tp; k
oT

oy

����
y�y�

f

� keff
oT

oy

����
y�yÿp

:

These matching conditions, proposed by Neale and
Nader [20], describe the continuation of the shear stress,
velocity components, temperature, and heat ¯ux. The in-
clusion of the Brinkman term in the momentum equation
for the porous media makes it possible to satisfy the above
matching condition at porous-¯uid interface.

From the continuation of physical quantities,
Beckermann [13] suggested that the conservation equa-Fig. 1. Physical model and coordinate system
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tions for the ¯uid and porous layers can be combined into
a single set of equations by introducing the binary pa-
rameter:

k � 0 in the fluid layer
1 in the porous layer .

�
�9�

In order to normalize all the variables in Eqs. (1)±(8),
we de®ne the following dimensionless variables:

�X;Y� � x

W
;

y

H

� �
; �U;V� � uW

a
;
vH

a

� �
;

T� � _qH2

k
; h � T ÿ Tw

T�
; �10�

Ra � gbT�H3

ma
; Da � K

H2
:

In addition, to eliminate the pressure term in the mo-
mentum equations and for numerical convenience, the
stream function and vorticity have been introduced as
follow:

U � ÿA
ow
oY

; V � 1

A

ow
oX

; x � 1

A

oU

oY
ÿ oV

oX

� �
:

�11�
By using the variables de®ned in Eqs. (8)±(11), the two

sets of governing equations, Eqs. (1)±(3) and Eqs. (4)±(6),
can be combined and reduced to the following:

r2w � ÿxA2 �12�

1ÿ k� k
e2

� �
U

A

ox
oX
� AV

ox
oY

� �
� Pr

A
r2

Ax� Pr Ra A
oh
oY

sin uÿ oh
oX

cos u

� �
ÿ k

Pr

Da
Ax� kAC������

Da
p o

oX
jVjV ÿ o

oY
jVjU

� � �13�

U
oh
oX
� A2V

oh
oY
� �k�Rk ÿ 1� � 1�r2

Ah� kA2 �14�
where r2

A is de®ned as

r2
A �

o2

oX2
� A2 o2

oY2
�15�

and the thermal conductivity ratio Rk is the ratio of the
¯uid conductivity to the effective conductivity of porous
medium.

At the boundaries, the dimensionless boundary condi-
tion is

y � 0; h � 0 : �16�
During the procedure of equation uni®cation, the ef-

fective viscosity leff has been set to be equal to the ¯uid
viscosity. For most porous medium, this approximation
provides good agreement with experimental data [21].
Besides, Lauriat and Prasad [22] also performed a nu-
merical analysis on the effects of viscosity ratio. They
conclude that in the range of 0:5 < leff=l < 2:5, the
variation in the viscosity ratio has little in¯uence on the
Darcy±Brinkman solutions if RaDa < 103 and Da < 10ÿ5.

3
Numerical procedure
Equations (12)±(14) were discretized into algebraic, ®nite
difference equations by using the control volume formu-
lations [23]. This method assures that the conservation
laws are obeyed over arbitrarily large or small control
volume. The harmonic mean formulation was used to
obtain the interface diffusion coef®cients between two
control volumes. The nonlinear Forchheimer term in the
momentum equations of porous layer was split into two

parts, i.e. kAC����
Da
p jVjx� kC����

Da
p V ojVj

oX � U ojVj
oY

� �
. The ®rst part

was combined with the Darcy term and numerically
treated as an unknown with a non-linear coef®cient. The
other part that includes ®rst-order derivatives of ¯ow
intensity was modeled as a source term.

As a ®rst step of the solution procedure, the governing
equations and the continuation equation have been dis-
cretized. Then, the resulting nonlinear coupled algebraic
equations were solved simultaneously by using Newton±
Raphson method for all variables. The Jacobin matrix used
in Newton's iteration is calculated numerically by the
forward difference, and the resulting linear equations are
solved by GMRES method with ILU(0) precondition.
GMRES is an iterative technique introduced by Saad and
Schultz [24] for solving general large sparse asymmetric
linear system of equations by minimizing the 2-norm of
the residual vector. It has the feature of robustness, less
CPU time consuming and memory saving. This sparse
matrix package has also been used widely in ¯uid ¯ow
computation.

In order to locate the solution from one to the other, the
pseudo arc-length continuation [18] is adapted in the
present study. Besides, for many nonlinear systems there
may exist a turning or a bifurcation point in parameter
space. To such a point, Newton's method may fail to get a
convergent solution because of the singular Jacobian ma-
trix. To defeat this, the technique of continuation is usu-
ally helpful. The idea of continuation is to trace the
solutions alone a branch through an arc-length s by in-
cluding an additional equation for the continuation pa-
rameter p:

�f�s�ÿ f�s0��T � of

os

����
s0

��p�s�ÿ p�s0��T � op

os

����
s0

ÿ�sÿ s0� � 0

�17�
where f � �w;x; h�T , the arc-length s � k�f ; p�Tk2 and
�sÿ s0� is the step size along the solution branch. The aim
of the present study is focused on the incline of the system,
hence, the tilt angle u is chosen as the continuation pa-
rameter.

According to the study of Nishmura [16], the thickness
of the region near the interface, d, in which the ¯ow in the
porous region is dominated by viscous force is roughly
estimated as d=W � ������

Da
p

. In the region near the interface,
the grid size should be smaller than

������
Da
p

. Otherwise, a
remarkable error would probably arise in the numerical
solution, and the resulting ¯ow patterns may be quite
different. In the present study, the grid size near the in-
terface is generated according to this law, and non-uni-
form mesh is calculated by the stretch function mentioned
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in Ref. [25]. It was found that a grid of 60� 30 yielded
results not signi®cantly different from a grid of 80� 40 for
the case of A � 2. Hence, the grid number used in the
present study is 80� 40. The grid is dense near the
boundary and interface.

The validation of the numerical code is very important
and dif®cult. In order to verify the solution, a comparison
with the previous works is necessary. Sen, Vasseur and
Robillard [11] propounded analytical solution for a tilted
slender rectangular cavity ®lled with porous medium and
heated uniformly from the bottom. The system was re-
solved by the numerical code developed in the present
study to assure the correctness of the numerical approach.
By using the same ¯ow model (Darcy model), and the
same aspect ratio �A � 4�, the numerical results agree well
with the analytical solution. The maximum error is less
than 0:5%.

4
Results and discussion

4.1
System parameters and variables
From Eqs. (13) and (14), we know that natural convection
in an enclosure with ¯uid and porous layers is affected by
several dimensionless groups: the Rayleigh number Ra, the
Prandtl number Pr, the Darcy number Da, the aspect ratio
A, and the thermal conductivity ratio Rk. In addition, the
porosity e, the inertia coef®cient C, and the tilt angle u also
in¯uence the ¯ow pattern and heat transfer of the system.

The effect of the porosity on ¯ow is not signi®cant as
shown in Table 1 for a system of u � 90�. In the range of
0:1 < e < 1, the stream function at the center of the en-
closure, wc, changes within 3 percent. The little effect of
the porosity also appear in the numerical data of Lauriat
and Prasad [22] which varying e from 0.1 to 0.9 and have
small change in Nusselt number. This is because that the
porosity appear only in the convective term which is not
signi®cant for the porous media [26].

In the present study, we focus our attention on the ef-
fects of tilt angle and the Rayleigh number on ¯ow pattern
and heat transfer performance. Hence, the other parame-
ters were speci®ed as: Pr � 0:7 and A � 2. The inertia
coef®cient C is chosen as 0.55 from Ergun model.

4.2
Two groups of solutions
The stream function at the center of the enclosure, wc, is
chosen to characterize the ¯ow. The variation of wc over

the whole domain of tilt angle is shown in Fig. 2 for A � 2
and Ra � 106. There are two groups of different wc ÿ u
relationship shown as solid and dashed lines in Fig. 2. For
the purpose of clarity, these two groups have been shown
separately in Figs. 3 and 4 for A � 2 and some selected
values of Ra. Due to the symmetry (as shown in Fig. 2),
only the curves in the region of 0� � u � 180� is needed to
be shown.

Table 1. Stream function at the center of the enclosure, wc, for
A � 2 and u � 90�

e Da � 10ÿ4 Da � 10ÿ7

Ra � 105 Ra � 106 Ra � 105 Ra � 106

0.1 ÿ4:008 ÿ12:65 ÿ3:938 ÿ12:15
0.2 ÿ3:986 ÿ12:35 ÿ3:938 ÿ12:16
0.4 ÿ3:981 ÿ12:31 ÿ3:938 ÿ12:16
0.8 ÿ3:979 ÿ12:30 ÿ3:938 ÿ12:16
1.0 ÿ3:979 ÿ12:30 ÿ3:938 ÿ12:16

Fig. 2. Variations of wc with tilt angle, A � 2; Ra � 106

Fig. 3. Variations of wc with tilt angle for the ®rst group of so-
lutions, A � 2

Fig. 4. Variations of wc with tilt angle for the second group of
solutions, A � 2
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It is also shown in Fig. 2 that the Darcy number has
weak effect on wc. A variation of Da from 10ÿ4 to 10ÿ7

changes wc slightly. Hence, all the numerical simulation
performed here are based on Da � 10ÿ4.

Figure 3 presents the variations of wc for the ®rst group
between u � 0� (horizontal) and u � 180�. As can be seen
from Fig. 3, wc reaches a minimum at tilt angles about 80�
for a speci®ed Ra. It is worthy to note that, on each curve
of Ra greater than 106, there are two turning points which
have been indicated as a dot in Fig. 3. The angles corres-
pond to turning point is named as the turning angles. The
turning angles for the case of A � 2 and Da � 10ÿ4 have
been listed in Table 2.

The second group of wc ÿ u relationship is shown in
Fig. 4. Each branch of this group is a closed loop between
u � 0� and a extreme turning angle. The turning angles of
the second group for some speci®ed Ra have also been
listed in Table 2.

As can be seen from Fig. 4, the branches of
Ra � 5� 105 and 106 are simple in shape. However, the
branch of Ra � 2� 106 or larger is quite complicated.

4.3
Flow patterns and temperature fields
Flow patterns (stream lines) for some representative tilt
angles �u � 0�; 45�; 68�; 90�; 135�; 180� and 315�� have
been plotted in Figs. 5±11 for A � 2; Ra � 106 and

Da � 10ÿ4. The positive and negative signs in the center of
the cells represent clockwise and counter-clockwise cir-
culation, respectively.

Temperature ®elds (isotherms) for these angles have
also been presented in Figs. 5±10.

(1) Flow patterns for u � 0�
For a horizontal enclosure �u � 0�� with Ra � 106, three
steady solutions can be found. The ¯ow patterns of these
solutions are shown on the left side of Figs. 5a±c, while the
temperature ®elds are shown on the right.

Figure 5a shows a two-cells ¯ow pattern which belongs
to the ®rst group of solutions. In the region near the
central line, the ¯uid rises from the porous layer to the
¯uid layer. It goes away from the center and then falls
down along the side boundaries.

The ¯ow pattern shown in Fig. 5b belongs to the second
group of solutions. It consists of two primary cells and two
secondary cells. At the region near the central line, the
primary cells bring ¯uid upward while the secondary cells
bring ¯uid downward.

The ¯ow pattern shown in Fig. 5c also belongs to the
second group of solutions. It consists of four cells. The outer
cells are larger than the inner ones. The ¯uid ¯ows down-
ward near the central line and the two side boundaries.

As can be seen from the right side of Figs. 5a±c, the
temperature ®elds depend strongly on the ¯ow patterns.
For the patterns shown in Figs. 5a and 5b, the maximum
temperature is located near the center of the enclosure. For
the four cells pattern shown in Fig. 5c, the maximum
temperature is located in two different places in the porous
region.

(2) Flow patterns for u � 45�
As shown in Fig. 6, there are also three solutions for an
enclosure with tilt angle u � 45� and Ra � 106. The one
belongs to the ®rst group of solutions is a two-cells ¯ow

Table 2. Turning angles for the ®rst and second groups, A � 2;
Da � 10ÿ4

Ra � 5� 105 Ra � 106 Ra � 2� 106 Ra � 5� 106

1st group ± 68.84° 75.23° 79.90°
66.31° 63.20° 55.67°

2nd group 38.71° 49.96° 56.79° 53.03°
34.98° and many
26.72° others

Fig. 5a±c. Stream lines and isotherms for u � 0�. a wc � 0;
Dw � 1:470; Dh � 2:614� 10ÿ3; b wc � 0; Dw � 1:1249;
Dh � 2:991� 10ÿ3; c wc � 0; Dw � 1:120; Dh � 2:409� 10ÿ3

Fig. 6a±c. Stream lines and isotherms for ®rst solution group
at u � 45�. a wc � ÿ7:763; Dw � 1:275; Dh � 2:759� 10ÿ3;
b wc � ÿ6:926; Dw � 1:060; Dh � 3:017� 10ÿ3; c wc � ÿ2:614;
Dw � 1:020; Dh � 2:766� 10ÿ3
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pattern shown in Fig. 6a. The ¯uid ¯ows downward along
the side boundaries into porous layer. It is similar to
Fig. 5a except that the right cell is smaller than the left one.

The ¯ow patterns shown in Figs. 6b and 6c belong to the
second group of solutions. They are more complicated
than the previous one.

The ¯ow shown in Fig. 6b consists of a main counter-
clockwise cell and three much smaller secondary cells. One
of the secondary cells is in the porous layer, and other two
are essentially in the ¯uid layer.

The ¯ow pattern shown in Fig. 6c consists of three cells.
A clockwise cell lies between two counter-clockwise cells.

(3) Flow patterns for u � 68�
As has been mentioned, there are two turning points for
Ra greater than 106 in the ®rst group of solutions. Three
different solutions for a speci®ed Ra can be found at any
angle between the two turning angles. The basic ¯ow
pattern of these solutions is a main circulation with a
secondary cell on the right side, as can be seen from
Fig. 7 for u � 68� and Ra � 106.

(4) Flow pattern for u � 90�
Figure 8 shows that, for a vertical enclosure �u � 90�� with
Ra � 106, the ¯ow pattern is simply a single cell. In the
heat-generating porous layer the ¯uid ¯ows upward. While
in the ¯uid layer, it ¯ows downward.

(5) Flow pattern for u � 135�
A single cell ¯ow is found and shown in Fig. 9 for
u � 135�. This pattern is like the pattern shown in Fig. 8,
except that the stream lines are denser on the upper corner
of the ¯uid layer.

(6) Flow pattern for u � 180�
The ¯ow pattern for u � 180� shown in Fig. 10 is similar
to that shown in Fig. 5a for u � 0�. Both of them consists
of two symmetry cells with reverse circulation. In addition,
¯uid near the central region ¯ows upward for both cases.
However, the intensity of the cell for u � 180� is much
smaller (about an order) than that for u � 0�.

The temperature ®eld shown in Fig. 10 indicates clearly
that heat conduction is a dominating process, and the
maximum temperature is located in the porous layer.

(7) Flow patterns for u � 315�
Figure 11 shows the ¯ow patterns of the three solutions for
u � 315� �ÿ45��. This ®gure is almost the same as Fig. 6

Fig. 7a±c. Stream lines and isotherms for ®rst solution group
at u � 68� a wc � ÿ11:68; Dw � 0:800; Dh � 2:983� 10ÿ3;
b wc � ÿ10:65; Dw � 0:910; Dh � 2:964� 10ÿ3; c wc � ÿ10:27;
Dw � 1:079; Dh � 2:912� 10ÿ3

Fig. 8. Stream lines and isotherms for ®rst solution group at
u � 90�: wc � ÿ12:35; Dw � 0:962; Dh � 2:945� 10ÿ3

Fig. 9. Stream lines and isotherms for u � 135�: wc � ÿ7:696;
Dw � 0:684; Dh � 3:093� 10ÿ3

Fig. 10. Stream lines and isotherms for ®rst solution group at
u � 180�, wc � 0; Dw � 0:350; Dh � 3:275� 10ÿ3
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for u � 45�, except that they are with reverse ¯ow circu-
lation and reverse location of cells. This situation can be
found for the cases of any two symmetric angles (e.g.,
u � 90� and 270�; u � 135� and 225�, etc.).

An inspection on all the ¯ow patterns shown in
Figs. 5±11 reveals that the center of the cells are located in
the ¯uid layer. In addition, the stream lines are denser in
this layer. It means that most of the ¯ow activities take
place in the ¯uid layer.

4.4
Global Nusselt number
In order to express the heat transfer rate, the global
Nusselt number is introduced as follows:

Nu � hC
k
� 1

Tm ÿ Tw

Z
C

dT

dn
dC �18�

where C represents the boundary of the enclosure; n the
normal vector of the boundary; and Tm the mean tem-
perature at the interface of the ¯uid and porous layers.
Since the total heat ¯ow out of the boundaries is equal to
the heat generation inside the porous layer, Eq. (18) can be
simpli®ed as:

Nu � A

2hm
�19�

where hm � �Tm ÿ Tw�=T� � �Tm ÿ Tw��k= _qH2� is a
dimensionless mean temperature.

4.5
Variations of Nu with u for the first group
Variations of the global Nusselt number with u and Ra are
presented in Fig. 12 for the ®rst group of solutions. Heat
transfer of this group is resulted from the ¯ow pattern of
either a single cell or two cells.

As has been shown in Fig. 12 that, for a ®xed Ra, the
system reaches a maximum value of Nu around u � 115�

at which the porous layer is turned to the upper side of the
enclosure. At this angle, heat transfer by conduction and
convection has been adjusted to a best heat transfer result.
A further increase in tilt angle will increase the conduction
rate but decrease the rate of convection, and thus reduce
the overall heat transfer performance.

It is worthy to note from Fig. 12 that the global Nusselt
number increases signi®cantly around the turning angles.
This is due to a stronger secondary ¯ow covering the ¯uid
and the porous layers.

The dependence of the Nusselt number on the tilt angle
is very weak when the angle is less than 45�, as shown in
Fig. 12. At small tilt angles the intensity of the secondary
¯ow is strong enough to bring heat away ef®ciently by
convection. A further increase in the strength of the sec-
ondary ¯ow by reducing tilt angle will not signi®cantly
change the average interfacial temperature and the Nusselt
number.

4.6
Variations of Nu with u for the second group
The effect of the tilt angle on Nu for the second group of
solutions is shown in Fig. 13. Each curve of Nu for a
speci®ed Ra can be divided into the upper part and the
lower part, which arise from two different types of ¯ow
patterns. The Nusselt number above the turning point
corresponds to the ¯ow patterns shown in Figs. 5c and 6c.
Higher Nu is resulted from the effective ¯ow circulation. In
these ¯ow patterns, all the cells circulate across both the
¯uid and the porous layers. While the Nusselt number
below the turning point corresponds to the patterns shown
in Figs. 5b and 6b.

4.7
The effects of aspect ratio
As has just been mentioned, the ¯ow patterns and heat
transfer performance of the present system are affected
strongly by the tilt angle and Ra. In addition, they are also
dependent on the aspect ratio of the enclosure.

To examine the effects of aspect ratio, we take the
horizontal enclosure �u � 0�� as a typical example.

Fig. 11a±c. Stream lines for ®rst solution group at u � 315�.
a wc � 7:763; Dw � 1:275; b wc � 6:926; Dw � 1:060;
c wc � 2:614;Dw � 1:020

Fig. 12. Variations of the global Nusselt number with tilt angle
for the ®rst group of solutions
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The ¯ow patterns of the multiple steady solutions for the
horizontal enclosures of A � 3, 4 and 5 have been shown
in Fig. 14, while those for A � 2 has been presented in
Fig. 5. It is seen from these ®gures that the ¯ow patterns
with 2, 4 and 6 symmetric cells as well as 2 and 4 asym-
metric cells can be found for u � 0� and Ra � 106. As the
asymmetric patterns exist conjugately, only one of the pair
is shown on this ®gure.

The effects of aspect ratio on the global Nusselt number
are also presented in Fig. 14 for u � 0� and Ra � 106. This
®gure shows that the global Nusselt number increases with
increasing aspect ratio for ¯ows of similar pattern with the
same number of cells.

A comparison on the heat transfer performance for the
multiple solutions of a speci®ed aspect ratio �A � 3; 4
and 5� has also been made. It is seen that the global Nu-
sselt number increases with increasing number of cells.

5
Conclusion
The effects of tilt angle on natural convection in an en-
closure divided into a ¯uid layer and a heat generating
porous layer has been investigated numerically.

For a ®xed aspect ratio A � 2, two groups of steady
solutions with different ¯ow patterns and heat transfer
performance were found by adapting the pseudo arc-
length continuation method with tilt angle as the contin-
uation parameter. The ®rst group lies in between u � 0�
and 360�. At any tilt angle, the ¯ow pattern of this group is
either a single cell or two cells. The second group of so-
lutions exist between u � 0� and a extreme turning angle
which varies with the Rayleigh number. The ¯ow patterns
of this group consist of multiple cells.

The effects of aspect ratio on the ¯ow patterns and heat
transfer performance for the case of u � 0� have also been
studied. It has been shown that the global Nusselt number
increases with increasing aspect ratio for ¯ows of similar
pattern with the same number of cells.

The sensitivity of the porosity as well as the Darcy
number on ¯ow are also investigated. According to our
study, both of the effects has small in¯uence on ¯ow.
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