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Abstract The hydrodynamic and heat transfer character-
istics of a porous medium consisting of 20 wire screen
meshes are examined theoretically and experimentally.
The hydrodynamic experiments are conducted for the
range of Reynolds number based on mean velocity and
wire diameter from 1.5 to 12. The Ergun's constants and
thermal dispersion coef®cients are calculated in this range.
Nusselt number variation is determined in both thermally
developing and fully developed ¯ows by the help of forced
convection heat transfer experiments conducted for the
uniform heat ¯ux boundary condition. Correlation func-
tions of Nusselt number in the range of fully developed
and thermally developing, and of thermal entrance length
are obtained from experimental data. Solutions of mo-
mentum and energy equations simulating the experimen-
tal model are obtained numerically with variable porosity
and the anticipated thermal dispersion coef®cients. The
thermal dispersion coef®cients well-adjusted to the ex-
perimental data are determined by numerical solution of
the energy equation.

List of symbols
A cross section area
As surface area of wires in a screen layer
AE, BE Ergun's constants
a, b dimensionless coef®cients in Eq. (1)
c speci®c heat of ¯uid
DaL Darcy number �� L=�Kv�1=2�
d wire diameter
h heat transfer coef®cient
Kv viscous permeability
kf , ks heat conduction coef®cients of ¯uid and

solid, respectively
kT total heat transfer coef®cient �� ko � kd�
ko effective heat conduction coef®cient
kd dispersion conductivity
L�W � H length � width � height
l length of the arc AA0 in Fig. 3
le length of a mesh
lv mixing length
m, n dimensionless coef®cients in Eq. (8)
N layer number
Nub fully developed Nusselt number �� hH=kf �

Nux local Nusselt number (� hH=kf )
P pressure
Pem Peclet number �� PrRem�
Pr Prandtl number �� m=a�
q00 uniform heat ¯ux
Rem Reynolds number �� umd=mf �
Sb speci®c surface area
s coef®cient of shrinkage
T temperature
Tin inlet ¯uid temperature
Tw heated wall temperature
hTib mean ¯ow temperature
um mean velocity
u velocity
U dimensionless velocity
V volume
Vs wire volume of a screen
xg thermal entrance length
x, y Cartesian coordinates
X, Y dimensionless Cartesian coordinates
a thermal diffusion coef®cient of ¯uid
c dimensionless dispersion coef®cient in

Eq. (11)
e porosity
em mean porosity
ec core region porosity
h dimensionless temperature
hw dimensionless heated surface temperature
hb dimensionless ¯ow temperature
l dynamic viscosity of ¯uid
m kinematic viscosity of ¯uid
q density of ¯uid
x coef®cient of mixing length
h:i volume average within the REV
h:if volume average with respect to the ¯uid

volume within the REV
c core region
in inlet
f ¯uid
s solid

1
Introduction
The porous media have been used widely in many engi-
neering ®elds such as heat storage, solid matrix heat ex-
changers, thermal insulation of buildings, cooling of
electronic equipment, chemical reactors, space researches.
Therefore, momentum and heat transfer through porous
media have been the interest of many researches.
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Depending up the application, natural, forced and mixed
convection through some porous media have been exam-
ined both theoretically and experimentally.

The continuum model of a porous medium, the need for
a continuum approach, the representative elementary
volume (REV) and its selection are described theoretically
in Bear-Bachmat [1]. The conservation equations of po-
rous medium have been found by integrating the conser-
vation equations of ¯uid and solid phases according to the
REV [1±3]. This approach of obtaining the conservation
equations of porous media is widely accepted by many
researchers because the motion in porous media can be
described in terms of differentiable quantities, and the
measurable macroscopic quantities can be used in solving
®eld problems.

In momentum and energy equations obtained by the
notion of continuum, there are some terms which are
de®ned by the microscopic quantities such as pore velocity
and pore temperature. These terms which show the drag
on solid-¯uid interfaces, thermal conductivity of the me-
dium and thermal dispersion arising from ¯ow must be
de®ned by the mean quantities prevailing in the REV.
Therefore, some models developed by using constitutive
theory and experimental studies are needed.

In momentum equation, the drag term de®ned by av-
eraged velocity is considered as Darcy or Ergun's equation
obtained experimentally [3]. Three ¯ow regimes are ob-
served normally during the ¯ow of ¯uid through porous
medium. The ®rst regime is Darcy ¯ow regime in which
the relationship between pressure drop and ¯ow rate is a
linear function. The second one is Forchheimer ¯ow re-
gime in which pressure drop is modeled as a second order
polynomial function of ¯ow rate such as Ergun's equation.
And the third one is turbulent ¯ow regime in which this
relationship is also a second order polynomial function
but the constants are different from the second one [4, 5].
Three dimensional forms of these experimentally obtained
functions are widely assumed to describe the drag term of
the momentum equation.

The dispersion term within the energy equation of
porous medium can be viewed as a diffusive process.
Therefore, it is related to the overall temperature gradient,
and the proportionality coef®cient between dispersional
heat ¯ux and temperature gradient is called thermal dis-
persion conductivity [6±12]. Hunt-Tien [6] consider that
the thermal dispersion conductivity is a function of ¯uid
density, ¯uid heat capacity, permeability and volume-av-
eraged velocity. The dispersion coef®cient of this function
is determined theoretically for packed beds of spheres at
both wall region and core region by Kuo-Tien [7]. In
Cheng et al [8±12], dispersion conductivity is considered
as a function of ¯uid density, ¯uid heat capacity, volume-
averaged velocity and Van Driest's mixing length.

The presence of wall introduces a number of effects on
¯uid ¯ow and heat transfer in a porous medium. These
effects are considered by porosity function near the wall.
Most of the investigators [8±10, 13±16] have assumed that
the porosity variation may be approximated by an expo-
nential function of distance.

In literature, there are many investigation on the
packed-sphere beds, the studies on the other type of po-

rous media such as ®brous media, foammetals, wire screen
meshes are very few. Due to the high porosity of the me-
dium made of wire screen mesh layers, the speci®c surface
area is decreased, consequently the resistance against ¯ow
is also decreased. On this reason, the characteristics of
forced heat convection through porous medium of wire
screen layers are examined in this study. Viscous and in-
ertial permeabilities, dispersion and heat convection co-
ef®cients of this medium are examined.

From hydrodynamic experiments, the relationship be-
tween pressure drop and ¯ow rate is obtained in the range
of Reynolds number from 1.5 to 12. The Reynolds number
is based on wire diameter and mean velocity. Then, the
viscous and inertial permeabilities of the medium are
calculated by the help of this relationship.

Local Nusselt number variation based on the ¯ow di-
rection and Peclet number is determined experimentally.
Then, some correlation functions of Nusselt numbers and
the length of thermal entrance region are derived from
experimental data. On the other hand, the ¯uid tempera-
tures are measured in cross-section perpendicular to ¯ow
direction.

After this experimental study, the momentum and en-
ergy equations obtained by the notion of continuum
model of porous media, are arranged to simulate the ex-
perimental setup. Then, they are solved numerically to
determine the thermal dispersion coef®cients of the me-
dium. The solutions obtained by using these dispersion
coef®cients are compared with experimental data.

2
Experimental study
The apparatus shown in Fig. 1 is prepared to perform
momentum and heat transfer experiments. This apparatus
is made of 5 and 10 mm thick plexyglass except the up-
stream reservoir. This reservoir which has dimensions of
520� 520� 1200 mm (length, width, height respectively)
and made of ®berglass, has series of adjustable over¯ow
dividers to provide a constant pressure head. The
downstream reservoir measures 180� 180� 300 mm.
Water which is held at a constant level in the upstream
reservoir ¯ows through porous medium in the channel
into the downstream reservoir. Water level in the down-
stream reservoir varies according to ¯ow rate. When
water column comes to a certain level at a ¯ow rate ad-
justed by the exit valve, the exit pressure attains a ®xed
value, also.

The test section of the experimental apparatus is in
the form of a channel which has dimension of
180� 50� 500 mm (width, height, length respectively).
The upper portion of the test section is removable as
shown in Fig. 2. Porous block consisting of 20 wire screen
meshes is placed under this upper portion outside the test
section, and its height is adjusted by four brass bolts. The
adjusted heights are 17.08 and 15:60 mm for the porous
medium of 12 and 14 meshed screens, respectively. Hence,
the heights of the entrance and exit channels of the test
section are decreased to the heights of the porous media
by placing plexyglass plates inside the channel. Thus, the
channel from upstream to downstream reservoirs has
same dimensions with porous media, approximately.
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There are two pressure taps at the inlet and outlet of the
test section as shown in Fig. 1 and Fig. 2. They are con-
nected to a vertical manometer. Thus, the pressures that
can be determined by the water levels in the upstream and
downstream reservoirs, are measured precisely by the help
of the manometer. The set ¯ow rate is determined by
measuring the volume of water drained for a given period
of time.

The medium is heated from the top in order to elimi-
nate natural convection effects. Heating is supplied by ®ve
identical strip heaters put on the copper plate which is
15 mm thick. Each heater provides 200 watts maximum.
These electrical heaters are supplied by an adjustable DC
source. The uniform heat ¯ux boundary condition can be
maintained by supplying each heater with same voltage
and current. The test section is insulated with asbestos
cloth, asbestos plate and ®berglass.

The surface and ¯uid temperatures are measured by
NiCr-Ni thermocouples. Twelve thermocouples were em-
bedded in the copper plate close to the upper surface of the
medium in order to measure the surface temperatures.
Fifteen thermocouples were installed on the bottom sur-
face. There are ®ve thermocouples on the upper surface of
the heaters and ®ve at inner and upper parts of the insu-
lation, also.

There are three taps of thermocouple probes in order to
measure temperature pro®le in porous medium at the
cross-section perpendicular to ¯ow direction. Porous
medium is drilled at the positions of these taps to move the

probes. The sensitive point of the temperature probe that
has same kind of thermocouple is surrounded with a small
copper ring. This copper ring is placed on top of a ceramic
tube which houses the thermocouple leads. An ice bath is
used as the cold junction for all thermocouples. A milli-
voltmeter is used to measure the voltage of the signals
from thermocouples.

The objective of these experiments is to obtain Ergun's
constants by the help of the relationship between the
measured pressure drop and ¯ow rate. But the Ergun's
equation valid for the porous medium consisting of 20
wire screen layers is needed. For this, the following general
statement

DP

L
� lum

ae3
m=S2

b

� qu2
m

be3
m=Sb

�1�

obtained by a little modi®cation on the Ergun's equation
[17] of the packed beds of particles, can be used to de®ne
Forchheimer ¯ow regime for all kinds of porous media.
Here, Sb is the speci®c surface area of the medium, a and b
are the dimensionless coef®cients which need to be de-
termined experimentally. a � 36=150 and b � 6=1:75 for
the packed beds of spheres [17].

The volume and surface area of the solid phase inside
the medium should be known for determination of Sb. The
wire volume of a wire screen layer which is L in length and
W in width is Vs � pd2sLW=2`e where s � `=`e, the coef-
®cient of shrinkage [18]. As shown in Fig. 3, `e is the
distance between two adjacent pores and ` is the length of
the arc AA0. The surface area of wires As is found as
2pdsLW=`e easily. Thus, the speci®c surface area of the
medium consisting of N layers is

Sb � NAs

V
� As

Vs
�1ÿ em� � 4

d
�1ÿ em� : �2�

If Eq. 2 is replaced in Eq. 1 and if it is written in dimen-
sionless form,

P0 � ÿDP

L

� �
d2

lum
� AE

�1ÿ em�2
e3

m

� BE
1ÿ em

e3
m

Rem

�3�
is obtained where AE � 16=d and BE � 4=d show the
Ergun's constants, and Rem � qumd=l.

At the heat transfer experiments conducted in the
condition of constant heat ¯ux, the local Nusselt number
of the heated surface is calculated as

Fig. 1. Experimental Apparatus. 1 upstream reservoir; 2 dividers;
3 test section; 4 porous medium; 5 downstream reservoir; 6 valve;
7 pressure taps; 8 manometer; 9 DC source; 10 temperature
probes; 11 millivoltmeter; 12 scanner; 13 ice bath; 14 water ®lter;
15 pump

Fig. 2. Test section and upper portion 3 Test section; 4 porous
medium; 7 pressure taps; 10 temperature probes; 16 copper plate;
17 heaters Fig. 3. Structure of a screen.
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Nux � hH

kf
� q00H

kf Tw ÿ hTib
ÿ � �4�

where hTib is the mean ¯ow temperature, and it is de®ned
as

hTib �
1

umA

ZZ
A

huihTi dA �5�

hTib is obtained by the help of the measured inlet-outlet
temperatures and the integration of the overall heat bal-
ance equation (lumped formulation) in the cross-section
perpendicular to ¯ow direction.

3
Governing equations
The experiments on momentum and heat transfer through
porous medium prepared by adding layers on top of the
others and by compressing altogether are considered as a
¯ow problem in a rectangular channel as shown in Fig. 4.
The diffusive process on z-direction can be ignored by
comparing it to the y-directional diffusion because ac-
cording to the channel dimensions, H=W � 0:095. Thus,
this problem can be examined as a ¯ow through porous
medium between two parallel plates. The momentum and
energy equations can be written as

0 � ÿ dhPi
dx
� l

o2hui
oy2
ÿ le

Kv
hui ÿ bq�������

eKv
p hui2 �6�

qchui ohTi
ox
� � o

oy
�ko � kd� ohTioy

� �
�7�

where q, l, c, ko and kd are density, dynamic viscosity and
speci®c heat of ¯uid and effective thermal conductivity,
thermal dispersion conductivity, respectively. The
boundary conditions are

hui�0� � 0; hui�H� � 0

ohTi�x;H�
oy

� 0

ÿ ko�0� � kd�0�� � ohTi�x; 0�
oy

� q00; hTi�0; y� � Tg

The porosity variation near the wall region of porous
medium is considered with the following porosity func-
tion. The values of ec, n and m are presented in Table 1.

e � ec 1� n exp
ÿmy

d

� �h i
; 0 � y � H=2

e � ec 1� n exp
ÿm�H ÿ y�

d

� �� �
; H=2 � y � H

�8�
Kv viscous permeability and b coef®cients are obtained as

Kv � ae3

S2
b

� e3d2

AE�1ÿ e�2 ; b � ���
a
p

=b � BE=
������
AE

p �9�

from Eq. 1 and Eq. 2.
The effective thermal conductivity of the porous me-

dium of wire screen meshes at stagnant condition is con-
sidered as

ko

kf
� e� �1ÿ e�ksf ÿ e�1ÿ e��1ÿ ksf �2

2ÿ e�1ÿ ksf � ; ksf � ks

kf

�10�
according to the Rayleigh-Ivanovski model [19, 20]. This
statement obtained for medium of cylindrical particles
gives the value of effective thermal conductivity of the
medium of non-sintered screen meshes with 3% error in
the range ksf < 30 [19].

Thermal dispersion conductivity kd is considered as

kd

kf
� c
hui
a
`v�y=d� �11�

by comparing with turbulent ¯ow analogicaly. Here, `v

`v � 1ÿ exp
ÿy

xd

� �
�12�

shows the mixing length [8±12] where c and x are
dimensionless dispersion coef®cients.

Eq. 6 and Eq. 7 can be written in non-dimensional form
as

AoA�e� � BoB�e� d2U

dY2
ÿ U ÿ CoC�e�RemU2 � 0 �13�

U
oh
oX
� o

oY

kT

kf

oh
oY

� �
�14�

using the following de®nitions:

X � x

dPem
;Y � y

d
;U � hui

um
;

uc � ÿKvm

l
dhPif

dx
; h � hTi ÿ Tin

q00d=kf

K � Kv=Kvm; e � e=em; Ao � uc=um; A�e� � KFig. 4. Shape of the porous channel

Table 1. Characteristics of the
media consisting of 20 wire
screen layers (wire diameter
� 0.5 mm) [21]

Mesh
No

Mean
Porosity em

Core region
porosity ec

n m REV's
height d/d

Total height
H [mm]

1 12 0.7832 0.7812 0.2801 1.90 6.771 17.08
2 14 0.7320 0.7280 0.3763 2.15 6.148 15.60
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Bo � Kvm

emd2
; B�e� � K=e; Co � b

��������
Kvm

p
dem

�����
em
p ;

C�e� �
���������
B�e�

p
=e; kT � ko � kd

The non-dimensional boundary conditions are

U�0� � 0; U�H=d� � 0

oh�X;H=d�
oY

� 0; ÿ kT�0�
kf

oh�X; 0�
oY

� 1; h�0;Y� � 0

The momentum equation given by Eq. (6) is a non-linear
differential equation with variable coef®cients. After the
second order differential term of this equation is written in
the form of ®nite difference, Eq. (6) is solved iteratively
using Newton-Raphson method. The solution well-ad-
justed with experiments is found out by comparing the
¯ow rate calculated by numerically in 800 grids, with ex-
perimental value.

The numerical formulation of the energy equation given
Eq. (7) is obtained by control volume method. The energy
equation is solved with the anticipated values of dispersion
coef®cients, c and x. The numerical solution is repeated to
®nd out the agreeable values of c and x by comparing the
experimental data of Nusselt number, heated surface
temperature and temperature pro®les.

4
Results and discussion
The highest mean velocity, um, measured in the hydro-
dynamic experiments was 1:4654� 10ÿ2 m/s. If the pore
velocity of ¯uid is calculated as um=e by Dupuit-
Forchheimer relation, Reynolds number based on the pore
velocity and wire diameter is found as 10.7 approximately.
Thus, it is clear that ¯ow inside pores is laminar according
to the explanations of Fand et al. [5]. Disjointing of ¯uid
from solid surfaces and passing to the turbulent ¯ow re-
gime are not expected at these velocities.

The experiments done in the range of 1:5 < Rem < 12
cover the beginning and developing regions of Forch-
heimer ¯ow regime. Darcy regime in which DP=L changes
linearly with um could not be observed in this study be-
cause of high error in measurement of pressure. Running
experiments at high velocities were not needed because the
working range was limited with the range of Reynolds
numbers in heat transfer experiments.

In Fig. 5, the data of hydrodynamic experiments pre-
sented with dimensionless parameters are shown for two
media. The curve-®t equation of experimental data is

P0 � ÿDP

L

� �
d2

lum

� 3:0972��0:1432�Rem � 10:8462��0:9924�
�15�

for ®rst medium, and

P0 � ÿDP

L

� �
d2

lum

� 3:1493��0:1859�Rem � 58:8837��1:4754�
�16�

for second medium. When these equations are compared
with Eq. 3, the Ergun's constants are found easily as fol-
lows.

AE � 110:8585� �%9:15�; BE � 6:8632� �%4:62�
for first medium,

AE � 321:5592� �%2:51�; BE � 4:6091� �%5:90�
for second medium.

The values of mean porosity presented at Table 1 have
been used in the calculation of Ergun's constants. Viscous
permeability Kv and b coef®cients of each medium can be
found easily by using these constants. Velocity domain
calculated by the numerical solution of Eq. 13 with vari-
able porosity and with Ergun's constants, is used in the
solution of energy equation.

The variation of local Nusselt number which is found
out experimentally for the constant heat ¯ux boundary
condition is shown in Fig. 6 and Fig. 7 for the ®rst and
second media, respectively. The theoretical solution well-
adjusted to the Nux variation which is found out experi-
mentally at three different ¯ow rates in the ®rst medium, is
provided by considering the values of the thermal dis-
persion coef®cients c and x as 0.08 and 1.5, respectively.

Fig. 5. Variation of dimensionless pressure gradient with respect
to Reynolds number

Fig. 6. Nux ÿ x=L variation calculated by considering c � 0:08
and x � 1:5 for the ®rst medium
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For the second medium, the theoretical solution by taking
c and x as 0.27 and 1.5, respectively and the experimental
data are shown in Fig. 7.

The variation of heated surface temperature obtained by
the solution of energy equation with these thermal dis-
persion coef®cients is shown in Fig. 8 and Fig. 9 together

with experimental data for the ®rst and second media,
respectively.

Temperature pro®les of the second medium at the
cross-section perpendicular to ¯ow direction were mea-
sured by temperature probes for three different ¯ow rates.
One turn of the probe corresponds to the linear dis-
placement of 1:4 mm and temperature measurement is
recorded at every quarter of a turn. Approximately eight
measurements were made within a REV. Thus, the mean
was the average of the measurements in the REV. As
shown in Fig. 10, temperature values are not present in the
region of the half REV near the wall as a result of averaging
the temperature data with respect to the REV. In fact,
temperature values measured beginning from the copper
surface are represented in the mean temperature value
nearest to the wall. The theoretical solutions of tempera-
ture pro®les obtained by considering c and x as 0.27 and
1.5 are shown in Fig. 10 for x � 245 mm. c and x coef®-
cients which give better agreement of theoretical results
with experimental data of temperature pro®les at x � 245
could be found. But, at this time, theoretical Nux and Tw

would deviate from their experimental data.
At the downstream locations of 45 mm, 145 mm and

245 mm, ¯uid temperature distribution across the medium
are shown in Fig. 10, Fig. 11 and Fig. 12 for the Peclet
numbers of 46.49, 18.14 and 11.46, respectively. In these
®gures, it is seen that the theoretical results are in rea-
sonable agreement with experimental data except the re-
sults for x � 245 mm. At lower Peclet numbers, the
agreement between theoretical and experimental data is
not as good. At the downstream location where thermal
entrance effects prevail, the agreement of experimental
and theoretical data was not also as good for all the Peclet
numbers considered, while the agreement gets better
downstream for the mentioned Peclet numbers.

Thermal entrance effect prevails up to the channel exit
at high ¯ow rates as seen by the variation of Nux with
respect to x=L in Fig. 6 and Fig. 7. Fully developed ¯ow
conditions do not occur and the boundary layer ¯ow
continues along the length of the channel. Consequently,
the fully developed Nusselt number can not be determined

Fig. 7. Nux ÿ x=L variation calculated by considering c � 0:27
and x � 1:5 for the second medium

Fig. 8. The variation of Hw ÿ x=l calculated with c � 0:08 and
x � 1:5 for the ®rst medium

Fig. 9. The variation of Hw ÿ x=l calculated with c � 0:27 and
x � 1:5 for the second medium

Fig. 10. Fluid temperature pro®les at the location x � 245 mm for
different Peclet numbers. c � 0:27 and x � 1:5
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directly by experimental data, so that, a curve ®t is applied
to the heated surface temperature data, and Nusselt
numbers are calculated up to 2L by using the extrapolated
surface temperature data. If Darcy number of the porous
medium is de®ned as DaL � L=�Kvm�1=2 and if the varia-
tion of fully developed Nusselt number data with respect
to Pem are reduced using Pem�DaL�1=2, the data collapse to
a single curve in Fig. 13. A correlation function for this
data can be obtained as

Nub � 0:2211�Pem

��������
DaL

p �0:5992; 10 � Pem � 50

�17�
as seen in Fig. 13.

The thermal entrance length is de®ned as the axial
distance required to achieve a value of local Nusselt
number, which is 1.05 times the fully developed Nusselt
number value. A correlation function between the thermal
entrance length and Peclet number is obtained as follow
for the second medium experimental data as seen in
Fig. 13.

xg

L
� 0:0402Pe0:8368

m ; 10 < Pem < 50 �18�

On the other hand, thermally developing Nusselt number
data are correlated with respect to the axial distance and
Peclet number as

Nux � 1:4842Pe0:7884
m �x=L�ÿ0:2751; 10 � Pem � 50

�19�

5
Conclusion
Hydrodynamic and forced heat convection characteristics
of the porous media of wire screen layers have been in-
vestigated for a limited range of parameters in this study.
Ergun's constants have been obtained by the relationship
between pressure drop and ¯ow rate measured in the
range of Rem form 1.5 to 12. The curve-®t equations of
hydrodynamic experiments are compared with Eq. 3 which
is obtained from Eq. 1, in order to ®nd Ergun's constants.
Eq. 1 can be considered as a general statement for all
porous media. If the speci®c surface area Sb of a medium
can be determined from geometrical structure of the me-
dium, the Ergun's equation belonging to that medium is
obtained, easily.

The de®nition of Eq. 1 with respect to the REV, and
putting it in three dimensional form can be done by the
method explained in Vafai-Tien [3]. Thus, Kv and F co-
ef®cients of the formulation of Vafai-Tien are found as
Kv � ae3=Sb and F � � ���ap =b�=�e ��

e
p �.

In this range of Rem, the thermal dispersion coef®cients
which give approximate agreement of theoretical results
with experimental data of local Nusselt number, heated
surface temperature and temperature pro®les across the
medium have been determined. In addition, correlation
functions have been obtained for the experimental data of
the fully developed Nusselt number, local Nusselt number
and thermal entrance length.

It is hopped that this study will be useful guide for
future studies of wire screen mesh or similar media.
However, the present study could be extended to cover a
wide range of independent parameters such as mesh
numbers, compression ratios, wire diameters etc. in order
to determine hydrodynamic and heat transfer character-
istics of the medium.

Fig. 11. Fluid temperature pro®les at the location x � 145 mm for
different Peclet numbers. c � 0:27 and x � 1:5

Fig. 12. Fluid temperature pro®les at the location x � 45 mm for
different Peclet numbers. c � 0:27 and x � 1:5

Fig. 13. Variation of Nusselt-number with respect to Pem�DaL�1=2
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