Heat and Mass Transfer 33 (1997) 129-136 © Springer-Verlag 1997

Forced convective heat transfer in porous medium

of wire screen meshes

M. Ozdemir, A. F. Ozgiic

Abstract The hydrodynamic and heat transfer character-
istics of a porous medium consisting of 20 wire screen
meshes are examined theoretically and experimentally.
The hydrodynamic experiments are conducted for the
range of Reynolds number based on mean velocity and
wire diameter from 1.5 to 12. The Ergun’s constants and
thermal dispersion coefficients are calculated in this range.
Nusselt number variation is determined in both thermally
developing and fully developed flows by the help of forced
convection heat transfer experiments conducted for the
uniform heat flux boundary condition. Correlation func-
tions of Nusselt number in the range of fully developed
and thermally developing, and of thermal entrance length
are obtained from experimental data. Solutions of mo-
mentum and energy equations simulating the experimen-
tal model are obtained numerically with variable porosity
and the anticipated thermal dispersion coefficients. The
thermal dispersion coefficients well-adjusted to the ex-
perimental data are determined by numerical solution of

the energy equation.

List of symbols

A cross section area

A, surface area of wires in a screen layer

Ap, Bg Ergun’s constants

a b dimensionless coefficients in Eq. (1)

c specific heat of fluid

Da; Darcy number (= L/(K,)"/?)

d wire diameter

h heat transfer coefficient

K, viscous permeability

ks, ks heat conduction coefficients of fluid and
solid, respectively

kr total heat transfer coefficient (= k, + ky)

k, effective heat conduction coefficient

kq dispersion conductivity

Lx W xH length x width x height

/ length of the arc AA’ in Fig. 3

e length of a mesh

L mixing length

m, n dimensionless coefficients in Eq. (8)

N layer number

Nuy, fully developed Nusselt number (= hH /ky)
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Nu, local Nusselt number (= hH /kf)
p pressure

Pe,, Peclet number (= PrRe,,)

Pr Prandtl number (= v/«)

q uniform heat flux

Re,, Reynolds number (= u,,d/vy)
Sy specific surface area

s coefficient of shrinkage

T temperature

Tin inlet fluid temperature

Ty heated wall temperature

(T), mean flow temperature

Up mean velocity

u velocity

U dimensionless velocity

14 volume

V, wire volume of a screen

Xg thermal entrance length

Xy Cartesian coordinates

X, Y dimensionless Cartesian coordinates

o thermal diffusion coefficient of fluid

Y dimensionless dispersion coefficient in
Eq. (11)

€ porosity

&m mean porosity

& core region porosity

0 dimensionless temperature

0w dimensionless heated surface temperature

O dimensionless flow temperature

u dynamic viscosity of fluid

v kinematic viscosity of fluid

p density of fluid

) coefficient of mixing length

() volume average within the REV

Y volume average with respect to the fluid
volume within the REV

c core region

in inlet

f fluid

s solid

1

Introduction

The porous media have been used widely in many engi-
neering fields such as heat storage, solid matrix heat ex-
changers, thermal insulation of buildings, cooling of
electronic equipment, chemical reactors, space researches.
Therefore, momentum and heat transfer through porous
media have been the interest of many researches.
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Depending up the application, natural, forced and mixed
convection through some porous media have been exam-
ined both theoretically and experimentally.

The continuum model of a porous medium, the need for
a continuum approach, the representative elementary
volume (REV) and its selection are described theoretically
in Bear-Bachmat [1]. The conservation equations of po-
rous medium have been found by integrating the conser-
vation equations of fluid and solid phases according to the
REV [1-3]. This approach of obtaining the conservation
equations of porous media is widely accepted by many
researchers because the motion in porous media can be
described in terms of differentiable quantities, and the
measurable macroscopic quantities can be used in solving
field problems.

In momentum and energy equations obtained by the
notion of continuum, there are some terms which are
defined by the microscopic quantities such as pore velocity
and pore temperature. These terms which show the drag
on solid-fluid interfaces, thermal conductivity of the me-
dium and thermal dispersion arising from flow must be
defined by the mean quantities prevailing in the REV.
Therefore, some models developed by using constitutive
theory and experimental studies are needed.

In momentum equation, the drag term defined by av-
eraged velocity is considered as Darcy or Ergun’s equation
obtained experimentally [3]. Three flow regimes are ob-
served normally during the flow of fluid through porous
medium. The first regime is Darcy flow regime in which
the relationship between pressure drop and flow rate is a
linear function. The second one is Forchheimer flow re-
gime in which pressure drop is modeled as a second order
polynomial function of flow rate such as Ergun’s equation.
And the third one is turbulent flow regime in which this
relationship is also a second order polynomial function
but the constants are different from the second one [4, 5].
Three dimensional forms of these experimentally obtained
functions are widely assumed to describe the drag term of
the momentum equation.

The dispersion term within the energy equation of
porous medium can be viewed as a diffusive process.
Therefore, it is related to the overall temperature gradient,
and the proportionality coefficient between dispersional
heat flux and temperature gradient is called thermal dis-
persion conductivity [6-12]. Hunt-Tien [6] consider that
the thermal dispersion conductivity is a function of fluid
density, fluid heat capacity, permeability and volume-av-
eraged velocity. The dispersion coefficient of this function
is determined theoretically for packed beds of spheres at
both wall region and core region by Kuo-Tien [7]. In
Cheng et al [8-12], dispersion conductivity is considered
as a function of fluid density, fluid heat capacity, volume-
averaged velocity and Van Driest’s mixing length.

The presence of wall introduces a number of effects on
fluid flow and heat transfer in a porous medium. These
effects are considered by porosity function near the wall.
Most of the investigators [8-10, 13-16] have assumed that
the porosity variation may be approximated by an expo-
nential function of distance.

In literature, there are many investigation on the
packed-sphere beds, the studies on the other type of po-

rous media such as fibrous media, foammetals, wire screen
meshes are very few. Due to the high porosity of the me-
dium made of wire screen mesh layers, the specific surface
area is decreased, consequently the resistance against flow
is also decreased. On this reason, the characteristics of
forced heat convection through porous medium of wire
screen layers are examined in this study. Viscous and in-
ertial permeabilities, dispersion and heat convection co-
efficients of this medium are examined.

From hydrodynamic experiments, the relationship be-
tween pressure drop and flow rate is obtained in the range
of Reynolds number from 1.5 to 12. The Reynolds number
is based on wire diameter and mean velocity. Then, the
viscous and inertial permeabilities of the medium are
calculated by the help of this relationship.

Local Nusselt number variation based on the flow di-
rection and Peclet number is determined experimentally.
Then, some correlation functions of Nusselt numbers and
the length of thermal entrance region are derived from
experimental data. On the other hand, the fluid tempera-
tures are measured in cross-section perpendicular to flow
direction.

After this experimental study, the momentum and en-
ergy equations obtained by the notion of continuum
model of porous media, are arranged to simulate the ex-
perimental setup. Then, they are solved numerically to
determine the thermal dispersion coefficients of the me-
dium. The solutions obtained by using these dispersion
coefficients are compared with experimental data.

2
Experimental study
The apparatus shown in Fig. 1 is prepared to perform
momentum and heat transfer experiments. This apparatus
is made of 5 and 10 mm thick plexyglass except the up-
stream reservoir. This reservoir which has dimensions of
520 x 520 x 1200 mm (length, width, height respectively)
and made of fiberglass, has series of adjustable overflow
dividers to provide a constant pressure head. The
downstream reservoir measures 180 x 180 x 300 mm.
Water which is held at a constant level in the upstream
reservoir flows through porous medium in the channel
into the downstream reservoir. Water level in the down-
stream reservoir varies according to flow rate. When
water column comes to a certain level at a flow rate ad-
justed by the exit valve, the exit pressure attains a fixed
value, also.

The test section of the experimental apparatus is in
the form of a channel which has dimension of
180 x 50 x 500 mm (width, height, length respectively).
The upper portion of the test section is removable as
shown in Fig. 2. Porous block consisting of 20 wire screen
meshes is placed under this upper portion outside the test
section, and its height is adjusted by four brass bolts. The
adjusted heights are 17.08 and 15.60 mm for the porous
medium of 12 and 14 meshed screens, respectively. Hence,
the heights of the entrance and exit channels of the test
section are decreased to the heights of the porous media
by placing plexyglass plates inside the channel. Thus, the
channel from upstream to downstream reservoirs has
same dimensions with porous media, approximately.
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Fig. 1. Experimental Apparatus. I upstream reservoir; 2 dividers;
3 test section; 4 porous medium; 5 downstream reservoir; 6 valve;
7 pressure taps; 8§ manometer; 9 DC source; 10 temperature
probes; 11 millivoltmeter; 12 scanner; 13 ice bath; 14 water filter;
15 pump

There are two pressure taps at the inlet and outlet of the
test section as shown in Fig. 1 and Fig. 2. They are con-
nected to a vertical manometer. Thus, the pressures that
can be determined by the water levels in the upstream and
downstream reservoirs, are measured precisely by the help
of the manometer. The set flow rate is determined by
measuring the volume of water drained for a given period
of time.

The medium is heated from the top in order to elimi-
nate natural convection effects. Heating is supplied by five
identical strip heaters put on the copper plate which is
15mm thick. Each heater provides 200 watts maximum.
These electrical heaters are supplied by an adjustable DC
source. The uniform heat flux boundary condition can be
maintained by supplying each heater with same voltage
and current. The test section is insulated with asbestos
cloth, asbestos plate and fiberglass.

The surface and fluid temperatures are measured by
NiCr-Ni thermocouples. Twelve thermocouples were em-
bedded in the copper plate close to the upper surface of the
medium in order to measure the surface temperatures.
Fifteen thermocouples were installed on the bottom sur-
face. There are five thermocouples on the upper surface of
the heaters and five at inner and upper parts of the insu-
lation, also.

There are three taps of thermocouple probes in order to
measure temperature profile in porous medium at the
cross-section perpendicular to flow direction. Porous
medium is drilled at the positions of these taps to move the
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Fig. 2. Test section and upper portion 3 Test section; 4 porous
medium; 7 pressure taps; 10 temperature probes; 16 copper plate;
17 heaters

probes. The sensitive point of the temperature probe that
has same kind of thermocouple is surrounded with a small
copper ring. This copper ring is placed on top of a ceramic
tube which houses the thermocouple leads. An ice bath is
used as the cold junction for all thermocouples. A milli-
voltmeter is used to measure the voltage of the signals
from thermocouples.

The objective of these experiments is to obtain Ergun’s
constants by the help of the relationship between the
measured pressure drop and flow rate. But the Ergun’s
equation valid for the porous medium consisting of 20
wire screen layers is needed. For this, the following general
statement
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AP iy, puZ, 1)
L ag,/S: be,/S

obtained by a little modification on the Ergun’s equation
[17] of the packed beds of particles, can be used to define
Forchheimer flow regime for all kinds of porous media.
Here, S, is the specific surface area of the medium, a and b
are the dimensionless coefficients which need to be de-
termined experimentally. a = 36/150 and b = 6/1.75 for
the packed beds of spheres [17].

The volume and surface area of the solid phase inside
the medium should be known for determination of S;. The
wire volume of a wire screen layer which is L in length and
W in width is V; = nd?sLW 2/, where s = {//,, the coef-
ficient of shrinkage [18]. As shown in Fig. 3, /. is the
distance between two adjacent pores and / is the length of
the arc AA’. The surface area of wires A, is found as
2ndsLW /£, easily. Thus, the specific surface area of the
medium consisting of N layers is

NA; A 4
Sp = v _Vs(l sm)—d(l &m) - (2)
If Eq. 2 is replaced in Eq. 1 and if it is written in dimen-
sionless form,

L ) uuy, &,

1—¢y

+ BE Rem

(3)
is obtained where Ay = 16/d and Bg = 4/d show the
Ergun’s constants, and Re,, = pu,,d/u.

At the heat transfer experiments conducted in the
condition of constant heat flux, the local Nusselt number
of the heated surface is calculated as
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Fig. 3. Structure of a screen.
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hH _ q'H
ki ke(Ty —(T),) “

where (T), is the mean flow temperature, and it is defined

(M =z [ [ ) aa )

(T), is obtained by the help of the measured inlet-outlet
temperatures and the integration of the overall heat bal-
ance equation (lumped formulation) in the cross-section
perpendicular to flow direction.

Nu, =

3

Governing equations

The experiments on momentum and heat transfer through
porous medium prepared by adding layers on top of the
others and by compressing altogether are considered as a
flow problem in a rectangular channel as shown in Fig. 4.
The diffusive process on z-direction can be ignored by
comparing it to the y-directional diffusion because ac-
cording to the channel dimensions, H/W = 0.095. Thus,
this problem can be examined as a flow through porous
medium between two parallel plates. The momentum and
energy equations can be written as

pclu) % = —I—% |:(ko +kq) %] (7)

where p, 1, ¢, k, and k; are density, dynamic viscosity and
specific heat of fluid and effective thermal conductivity,
thermal dispersion conductivity, respectively. The
boundary conditions are

(u)(0) = 0, (u)(H) =0

o(T)(x,H) 0
Oy
~k(0)+ kd<o>1%(y"’°> — ' (D)0y) =T,
w
H |

b L

l

Fig. 4. Shape of the porous channel

The porosity variation near the wall region of porous
medium is considered with the following porosity func-
tion. The values of ¢, n and m are presented in Table 1.

8:86[1+nexp($)}, 0<y<H)/2

—m(H —y)

s—sc[l—i—nexp( 7 )], H/2<y<H

(8)
K, viscous permeability and f coefficients are obtained as

S Vab-BVE )
v Si AE(l _ 8)2 9 E E
from Eq. 1 and Eq. 2.
The effective thermal conductivity of the porous me-
dium of wire screen meshes at stagnant condition is con-
sidered as

o e(l—e)(1—Ag) Lok

=0 — 1— —
K e+ (1—¢)iy 2 o1 iy)

(10)
according to the Rayleigh-Ivanovski model [19, 20]. This
statement obtained for medium of cylindrical particles
gives the value of effective thermal conductivity of the
medium of non-sintered screen meshes with 3% error in
the range Ay < 30 [19].

Thermal dispersion conductivity k, is considered as

ki _ 0y o) (1)

— = '})_
f o
by comparing with turbulent flow analogicaly. Here, ¢,

l, =1—exp (;—Z) (12)

shows the mixing length [8-12] where y and w are
dimensionless dispersion coefficients.

Eq. 6 and Eq. 7 can be written in non-dimensional form
as
2

U
A,A(2) + B,B(2) 555 — U — C,C(¥)Re,, U = 0

dy
g0 _ 2 (krd0
0X Y \ ks 0Y

using the following definitions:

(13)
(14)

y (u)
= Y = — = —
dPe,,’ d’ u Up
 Kmd(P) (D -T,
Con dx q'd/ky

K=K,/Kym &= ¢/em, A, =uc/um, A(E)=K

Table 1. Characteristics of the

media consisting of 20 wire Mesh Mean Core region n m REV’s Total height
screen layers (wire diameter No Porosity ¢,  porosity & height 6/d  H [mm]
=0. 21
0.5 mm) [21] 1 12 0.7832 0.7812 0.2801 1.90 6.771 17.08
2 14 0.7320 0.7280 0.3763 2.15 6.148 15.60




o Kom - /= . ﬁVKvm
Bo—gmdz, B(S)—K/S, CU m s
C(e) = V/B(&)/2 kr =ko+ka

The non-dimensional boundary conditions are

U()=0, UH/d)=0

00(X,H/d) _ _ kr(0)00(X,0) .
oY ’ ks oY ’

0(0,Y) =0

The momentum equation given by Eq. (6) is a non-linear
differential equation with variable coefficients. After the
second order differential term of this equation is written in
the form of finite difference, Eq. (6) is solved iteratively
using Newton-Raphson method. The solution well-ad-
justed with experiments is found out by comparing the
flow rate calculated by numerically in 800 grids, with ex-
perimental value.

The numerical formulation of the energy equation given
Eq. (7) is obtained by control volume method. The energy
equation is solved with the anticipated values of dispersion
coefficients, y and w. The numerical solution is repeated to
find out the agreeable values of y and @ by comparing the
experimental data of Nusselt number, heated surface
temperature and temperature profiles.

4

Results and discussion

The highest mean velocity, u,,, measured in the hydro-
dynamic experiments was 1.4654 x 102 m/s. If the pore
velocity of fluid is calculated as u,,/¢ by Dupuit-
Forchheimer relation, Reynolds number based on the pore
velocity and wire diameter is found as 10.7 approximately.
Thus, it is clear that flow inside pores is laminar according
to the explanations of Fand et al. [5]. Disjointing of fluid
from solid surfaces and passing to the turbulent flow re-
gime are not expected at these velocities.

The experiments done in the range of 1.5 < Re,, < 12
cover the beginning and developing regions of Forch-
heimer flow regime. Darcy regime in which AP/L changes
linearly with u,, could not be observed in this study be-
cause of high error in measurement of pressure. Running
experiments at high velocities were not needed because the
working range was limited with the range of Reynolds
numbers in heat transfer experiments.

In Fig. 5, the data of hydrodynamic experiments pre-
sented with dimensionless parameters are shown for two
media. The curve-fit equation of experimental data is

p_ (_AP d?
N L ) puy,
= 3.0972(+£0.1432)Re,, + 10.8462(+0.9924)

(15)

for first medium, and
p_ (AP d?
N L/ uuy,
= 3.1493(40.1859)Re,, + 58.8837(+1.4754)

(16)
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Fig. 5. Variation of dimensionless pressure gradient with respect
to Reynolds number

for second medium. When these equations are compared
with Eq. 3, the Ergun’s constants are found easily as fol-
lows.

Ap = 110.8585 + (%9.15), By = 6.8632 + (%4.62)
for first medium,
Ap = 321.5592 + (%2.51), Bg = 4.6091 + (%5.90)

for second medium.

The values of mean porosity presented at Table 1 have
been used in the calculation of Ergun’s constants. Viscous
permeability K, and f coefficients of each medium can be
found easily by using these constants. Velocity domain
calculated by the numerical solution of Eq. 13 with vari-
able porosity and with Ergun’s constants, is used in the
solution of energy equation.

The variation of local Nusselt number which is found
out experimentally for the constant heat flux boundary
condition is shown in Fig. 6 and Fig. 7 for the first and
second media, respectively. The theoretical solution well-
adjusted to the Nu, variation which is found out experi-
mentally at three different flow rates in the first medium, is
provided by considering the values of the thermal dis-
persion coefficients y and  as 0.08 and 1.5, respectively.

50
40 First medium Pep,
T ¥=008 =15 A 12.66
301
3><
-4
20+
10
0 } u + t
0 0.2 0.4 0.6 0.8 1.0
x/L

Fig. 6. Nu, — x/L variation calculated by considering y = 0.08
and o = 1.5 for the first medium
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Second medium 04945
100 ¥y=027 ® =15 046.49

0 0.2 0.4 0.6 0.8 1.0
x/L

Fig. 7. Nu, — x/L variation calculated by considering y = 0.27
and o = 1.5 for the second medium

For the second medium, the theoretical solution by taking
y and o as 0.27 and 1.5, respectively and the experimental
data are shown in Fig. 7.

The variation of heated surface temperature obtained by
the solution of energy equation with these thermal dis-
persion coefficients is shown in Fig. 8 and Fig. 9 together

8
Pe,
glggg First medium
6 22094 vy=008 0 =15

0 02 04 06 08 1.0
XL

Fig. 8. The variation of ®,, — x/I calculated with y = 0.08 and
o = 1.5 for the first medium

Fem Second medi
1 ¢49.45 econd medium
4T 01849 y=027 0 =15
| a3766 A
©031.97

018.14

x/L

Fig. 9. The variation of ®,, — x/I calculated with y = 0.27 and
® = 1.5 for the second medium

with experimental data for the first and second media,
respectively.

Temperature profiles of the second medium at the
cross-section perpendicular to flow direction were mea-
sured by temperature probes for three different flow rates.
One turn of the probe corresponds to the linear dis-
placement of 1.4 mm and temperature measurement is
recorded at every quarter of a turn. Approximately eight
measurements were made within a REV. Thus, the mean
was the average of the measurements in the REV. As
shown in Fig. 10, temperature values are not present in the
region of the half REV near the wall as a result of averaging
the temperature data with respect to the REV. In fact,
temperature values measured beginning from the copper
surface are represented in the mean temperature value
nearest to the wall. The theoretical solutions of tempera-
ture profiles obtained by considering y and w as 0.27 and
1.5 are shown in Fig. 10 for x = 245 mm. y and o coeffi-
cients which give better agreement of theoretical results
with experimental data of temperature profiles at x = 245
could be found. But, at this time, theoretical Nu, and T,
would deviate from their experimental data.

At the downstream locations of 45 mm, 145 mm and
245 mm, fluid temperature distribution across the medium
are shown in Fig. 10, Fig. 11 and Fig. 12 for the Peclet
numbers of 46.49, 18.14 and 11.46, respectively. In these
figures, it is seen that the theoretical results are in rea-
sonable agreement with experimental data except the re-
sults for x = 245 mm. At lower Peclet numbers, the
agreement between theoretical and experimental data is
not as good. At the downstream location where thermal
entrance effects prevail, the agreement of experimental
and theoretical data was not also as good for all the Peclet
numbers considered, while the agreement gets better
downstream for the mentioned Peclet numbers.

Thermal entrance effect prevails up to the channel exit
at high flow rates as seen by the variation of Nu, with
respect to x/L in Fig. 6 and Fig. 7. Fully developed flow
conditions do not occur and the boundary layer flow
continues along the length of the channel. Consequently,
the fully developed Nusselt number can not be determined

4
Pe,, Second medium /
] 046.49 ¥=027 =15
3]l  a18.14 X =245 mm

y/H

Fig. 10. Fluid temperature profiles at the location x = 245 mm for
different Peclet numbers. y = 0.27 and v = 1.5
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Fig. 11. Fluid temperature profiles at the location x = 145 mm for

different Peclet numbers. ) = 0.27 and o = 1.5
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Fig. 12. Fluid temperature profiles at the location x = 45 mm for
different Peclet numbers. y = 0.27 and w = 1.5

directly by experimental data, so that, a curve fit is applied
to the heated surface temperature data, and Nusselt
numbers are calculated up to 2L by using the extrapolated
surface temperature data. If Darcy number of the porous
medium is defined as Da; = L/(K,,)"/? and if the varia-
tion of fully developed Nusselt number data with respect
to Pe,, are reduced using Pem(DaL)l/ ?, the data collapse to
a single curve in Fig. 13. A correlation function for this
data can be obtained as

Nuy, = 0.2211(Pe,,v/Da; )*****, 10 < Pe,, < 50

(17)
as seen in Fig. 13.

The thermal entrance length is defined as the axial
distance required to achieve a value of local Nusselt
number, which is 1.05 times the fully developed Nusselt
number value. A correlation function between the thermal
entrance length and Peclet number is obtained as follow
for the second medium experimental data as seen in
Fig. 13.

X
fg = 0.0402Pe%*%® 10 < Pe,, < 50

(18)
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Nu, = 0.221 1(Pem(Da|_)”2)°<5992
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Pep(Day)"?(x10?)

Fig. 13. Variation of Nusselt-number with respect to Pem(DaL)l/2

On the other hand, thermally developing Nusselt number
data are correlated with respect to the axial distance and
Peclet number as

Nu, = 1.4842Pe%7%* (x/L)"**' | 10 < Pe,, < 50

(19)

5

Conclusion

Hydrodynamic and forced heat convection characteristics
of the porous media of wire screen layers have been in-
vestigated for a limited range of parameters in this study.
Ergun’s constants have been obtained by the relationship
between pressure drop and flow rate measured in the
range of Re,, form 1.5 to 12. The curve-fit equations of
hydrodynamic experiments are compared with Eq. 3 which
is obtained from Eq. 1, in order to find Ergun’s constants.
Eq. 1 can be considered as a general statement for all
porous media. If the specific surface area S, of a medium
can be determined from geometrical structure of the me-
dium, the Ergun’s equation belonging to that medium is
obtained, easily.

The definition of Eq. 1 with respect to the REV, and
putting it in three dimensional form can be done by the
method explained in Vafai-Tien [3]. Thus, K, and F co-
efficients of the formulation of Vafai-Tien are found as
K, = a&’/S, and F = (\/a/b)/(e\/¢).

In this range of Re,,, the thermal dispersion coefficients
which give approximate agreement of theoretical results
with experimental data of local Nusselt number, heated
surface temperature and temperature profiles across the
medium have been determined. In addition, correlation
functions have been obtained for the experimental data of
the fully developed Nusselt number, local Nusselt number
and thermal entrance length.

It is hopped that this study will be useful guide for
future studies of wire screen mesh or similar media.
However, the present study could be extended to cover a
wide range of independent parameters such as mesh
numbers, compression ratios, wire diameters etc. in order
to determine hydrodynamic and heat transfer character-
istics of the medium.
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