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Abstract The method of similarity solution is used to
study the in¯uence of lateral mass ¯ux and thermal dis-
persion on non-Darcy natural convection over a vertical
¯at plate in a ¯uid saturated porous medium. Forchheimer
extension is considered in the ¯ow equations and the
coef®cient of thermal diffusivity has been assumed to be
the sum of molecular diffusivity and the dispersion
thermal diffusivity due to mechanical dispersion. The
suction/injection velocity distribution has been assumed
to have power function form A xl, where x is the distance
from the leading edge and the wall temperature distribu-
tion is assumed to be uniform. When l � ÿ1=2, similarity
solution is possible, and the results indicate that the
boundary layer thickness decreases where as the heat
transfer rate increases as the mass ¯ux parameter passes
from injection domain to the suction domain. The increase
in the thermal dispersion parameter is observed to en-
hance the heat transfer. The combined effect of thermal
dispersion and ¯uid suction/injection on the heat transfer
rate is discussed.

List of symbols
A constant
C empirical constant
d pore diameter
f non-dimensional streamfunction
fw non-dimensional mass ¯ux parameter
g gravitational constant
K permeability
k molecular thermal conductivity
kd dispersion thermal conductivity
ke effective thermal conductivity
l real constant
p pressure
q local heat ¯ux
T temperature
u; v velocity components in the x and y directions
vw dimensional mass ¯ux parameter
x; y Cartesian coordinates

Greek symbols
q ¯uid density
l viscosity of the ¯uid
m ¯uid kinematic viscosity
ax; ay thermal diffusion coef®cients in x and y directions

respectively
a molecular thermal diffusivity
ad dispersion diffusivity
b thermal expansion coef®cient
c mechanical dispersion coef®cient
dT boundary layer thickness evaluated at h�g� � 0:01
g similarity parameter
w dimensional streamfunction
h non-dimensional temperature

Subscripts
w evaluated on the wall
1 evaluated at the outer edge of the boundary layer

1
Introduction
Study of convective heat transfer in porous media has been
the interest of several researches owing to its wide ap-
plicability in engineering and geophysical problems such
as in oil recovery technology, in the use of ®brous mate-
rials for thermal insulations, in the design of aquifer as an
energy storage system, in utilization of porous layers for
transpiration cooling by water for ®re ®ghting, and also in
Resin Transfer Molding process in which ®bre reinforced
polymeric parts are produced in ®nal shape.

Most of the works dealing with convective heat transfer
in porous media have been motivated by geothermal ap-
plications. Understanding the formation of geothermal
reservoirs and its utilization for energy extraction needs
thorough understanding of the convection in porous
media. Inspite of the fact many of the geothermal re-
servoirs are known to be fracture dominated, the studies
based on the idealization of geothermal reservoir as a sa-
turated porous medium can provide considerable insight
into the physical process involved. To understand the
convection phenomena in the geothermal reservoir, ¯uid
is injected from the side walls and at the same time, the
response of the ¯uid reservoir resulting from the sudden
heating is observed. A nice review about heat transfer in
geothermal systems has been presented in Cheng [1].

In this direction, the study of the effect of injection and
suction of ¯uid along the vertical and horizontal surfaces
has been the subject of numerous researches. Cheng [2]
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studied the effect of ¯uid suction and injection the natural
convection heat transfer from a vertical wall in a Darcian
¯uid saturated porous medium. He obtained similarity
solution for different wall temperature variations and for
different injection/suction velocity distributions. But un-
fortunately, when both the wall temperature and injection/
suction velocity remain constant, similarity solution is not
possible. This realistic case has been dealt by Merkin [3]. A
series solution method has been adopted. The asymptotic
analysis which is valid at large distances from the wall has
also been done. It was found that for the case of with-
drawal, the boundary layer remains very thin and settles
down quickly to one of constant thickness.

When the pore diameter dependent Reynolds number is
high enough for the Darcy model to break down, For-
chheimer extension has been used by Plumb and Huenefeld
[4], Bejan and Poulikakos [5], and Nakayama et al. [6], to
study the non-Darcy natural convection from the vertical
wall. All these studies assume that the thermal diffusivity is
constant. But under the conditions at which the inertial
effects are prevalent, the thermal dispersion effect become
signi®cant as observed in Plumb [7], Hong and Tien [8],
Nield and Bejan [9]. In the present paper, we aim at
studying the effect of lateral mass ¯ux on the Forchheimer
free convection over a vertical wall when thermal disper-
sion effects are considered and neglected. It has been ob-
served that the similarity solution is possible only for
uniformly heated hot wall with injection/suction velocity
varying as A xÿ1=2. Results indicate the general trend that
the heat transfer rate increases as the mass ¯ux parameter
passes from injection domain to suction domain, and the
increase in thermal dispersion parameter further increases
the heat transfer.

2
Governing equations
Consider the problem of non-Darcy natural convection
¯ow and heat transfer over a semi in®nite vertical surface
in a ¯uid saturated porous medium as shown in the Fig. 1.
The isothermal hot wall is assumed to be permeable with a
lateral mass ¯ux in the form vw�x� � A xl. x � 0 represents
the leading edge of the hot wall. Here it is worth noting
that vw � 0 corresponds to the impermeable wall case. The
wall temperature Tw is considered greater than the ambi-
ent temperature T1. The governing equations for the ¯ow
and heat transfer from the wall y � 0 into the ¯uid satu-
rated porous medium x � 0 and y > 0 in this case are
given by
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q � q1�1ÿ b�T ÿ T1�� �5�
along with the boundary conditions

y � 0; vw�x� � Axl;Tw � const

y!1; u � 0;T ! T1

)
: �6�

Here x and y are the Cartesian coordinates, u and v are the
Darcian velocity components in x and y directions, p is the
pressure, T is the temperature, K is the permeability
constant, C is an empirical constant, b is the coef®cient of
thermal expansion, l is the viscosity of the ¯uid, m is the
kinematic viscosity, q is the density, g is the acceleration
due to gravity, ax and ay are the components of thermal
diffusivity in x and y directions. The suf®x w and 1 in-
dicate the conditions at the wall and at the outer edge of
the boundary layer respectively.

Experimental and numerical studies on convective heat
transfer in a porous medium show that thermal bound-
ary layers exist adjacent to the heated or cooled walls.
When the thermal boundary layer is thin (i.e.,
x� y � dT ; dT is the boundary layer thickness),
boundary layer approximations analogous to classical
boundary layer theory can be applied [9]. Near the
boundary, the normal component of seepage velocity is
small compared with the other component of the seepage
velocity and the derivatives of any quantity in the nor-
mal direction are large compared with derivatives of the
quantity in the direction of the wall. Under these as-
sumptions, the Eqs. (1)±(5) become
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Fig. 1. External natural convection over a vertical wall in a ¯uid
saturated porous medium
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Eliminating the pressure and invoking the Boussinesq
approximation, the Eqs. (8)±(10) become
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Here ay is a variable quantity which is the sum of mole-
cular thermal diffusivity a and dispersion thermal diffu-
sivity ad. Following Plumb [7], the expression for
dispersion thermal diffusivity will be ad � c d u, where c is
the mechanical dispersion coef®cient whose value depends
on the experiments and d is the pore diameter.

3
Similarity solution
First we represent the governing Eqs. (11) and (12) in
terms of streamfunction and temperature formulation. The
velocity components u and v can be written in terms of
streamfunction w as: u � ow

oy and v � ÿ ow
ox. This re-

presentation is valid since the expressions for velocity
components clearly satisfy the continuity equation. Now
the resulting equations are
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Comparing the order magnitudes of Darcy and buoyancy
terms in the momentum equation, we get the order mag-
nitude estimate for w as

w � Rax a
dT

x
�15�

where Rax is the modi®ed Rayleigh number,

Rax � Kgb�TwÿT1�x
am . The energy equation gives the order

magnitude estimate for w as

w � ax

dT
�16�

From the above estimates for w, we get an estimate for the
boundary layer thickness dT as

dT � xRaÿ1=2
x : �17�

Now, the similarity variable g which is de®ned as

g � y

dT
�18�

will become

g � y

x
Ra1=2

x : �19�
Then from the above expressions, we obtain the non-
dimensional streamfunction as

f �g� � w

aRa
1=2
x

�20�

and write the non-dimensional temperature distribution as

h�g� � T ÿ T1
Tw ÿ T1

: �21�

Now Eqs. (19), (20) and (21) constitute the similarity
transformation if this set transforms the governing partial
differential Eqs. (13) and (14) into ordinary differential
equations with x being eliminated completely explicitly
and also from the boundary conditions. Then from the
de®nition of the streamfunction, the velocity components
become

u � a
x

Raxf 0�g� ; �22�

v � ÿ a
2x

Ra1=2
x � f ÿ gf 0� : �23�

Applying the similarity transformation to the governing
Eqs. (11) and (12), we get

f 00 � 2FoRadf 0f 00 ÿ h0 � 0 �24�
h00 � 1

2
f h0 � cRad�f 0h0�0 � 0 �25�

and the boundary conditions (6) are transformed as

g � 0; f � fw; h � 1

g!1; f 0 � 0; h � 0

)
: �26�

On the wall �g � 0� Eq. (23) becomes

vw�x� � ÿ a
2x

Ra1=2
x fw �27�

and the particular value of l for which vw will be free from
x is l � ÿ1=2. So with this value of l, f � fw will become
constant and the boundary conditions also become free
from x. Thus the resulting ordinary differential equations
with the boundary conditions can be solved using the
generalized techniques for solving ordinary differential
equations. The negative power distribution for injection/
suction will lead to in®nite injection/suction at the leading
edge, which is unrealistic, but the method of similarity
solution will still give accurate results suf®ciently far from
the leading edge.

The governing parameters are identi®ed as Fo;Rad and
Ds. The parameter Fo � C

���
K
p

a
md represents the structural and

thermophysical properties of the porous medium,

Rad � kgb�TwÿT1�d
am is the pore diameter dependent Rayleigh

number which describes the relative intensity of the
buoyancy force, and the dispersion parameter Ds � cRad

represents the thermal dispersion effects, c is the me-
chanical dispersion coef®cient. In general c should be
found out from the experiment, and it has been observed
from the previous experimental results that its value lies
between 1/7 and 1/3 [7]. For all calculations, c is assigned a
value 0.3 in the present study. Note that Fo � 0 correspond
to the Darcian free convection and c � 0 represents the
case where the thermal dispersion effects neglected.

4
Results and discussion
The resulting ordinary differential Eqs. (24) and (25) with
the corresponding boundary conditions (26) are solved by
numerical integration using the fourth-order Runge-Kutta
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method and Newton-Raphson technique by giving proper
guess values for f 0�0� and h0�0�. The present results are
accurate upto the sixth decimal place. The present analysis
consists of two related problems. These are (a) the effect of
lateral mass ¯ux on the Forchheimer free convection and
(b) the combined effect of thermal dispersion and lateral
mass ¯ux on Forchheimer free convection in a ¯uid sa-
turated porous medium. To understand the effect of var-
ious parameters on the free convection process, in the
present analysis, the parameter Fo is varied from 0 to 1.0,
the Rayleigh number Rad is varied from 1.0 to 10. The
mass ¯ux parameter fw is varied from ÿ1:0 to 1.0. It is
clear from the analysis that fw � 0 corresponds to the
impermeable surface, fw > 0 corresponds to suction and
fw < 0 corresponds to injection of the ¯uid into the porous
medium.

The ¯ow ®eld and the temperature distribution are
presented in terms of the non-dimensional velocity com-
ponent in the x-direction f 0�g� and non-dimensional
temperature distribution h�g�. Figs. 2 and 3 correspond to
f 0�g� and h�g� versus the similarity variable g by con-
sidering and neglecting the thermal dispersion effects for
three different values of the non-dimensional mass ¯ux
parameter fw, for ®xed value of Fo � 0:1 and Rad � 5:0. In
both the cases, the velocity and temperature pro®les
thicken as the mass ¯ux parameter passes from the suction
domain to the injection domain. Also it is worth noting
here that the increase in the value of the parameter Fo will
thicken these pro®les, because the Forchheimer term ac-
counts for the form drag in the porous medium.

The boundary layer thickness dT as a function of the
mass ¯ux parameter is plotted in the Fig. 4 for varying
values of the dispersion parameter. The value of the si-
milarity variable at which h�g� becomes equal to 0.01 is
noted as the boundary layer thickness. From (17), it is

noted that the boundary layer thickness varies inversely as
1/2 power of the Rayleigh number. From the de®nition of
the dispersion parameter it is clear that Ds varies directly
linearly with the Rayleigh number. By ®xing Fo � 0:1 and
Rad � 5:0, the increase in the value of c�0ÿ 0:3� is ob-
served to increase the boundary layer thickness as seen
from the Fig. 4. Also, the boundary layer thickness de-
creases as the mass ¯ux parameter moves from the injec-
tion domain to the suction domain, and favors the heat
transfer in the suction domain.

Fig. 2. Variation of f 0�g� with similarity variable g for Fo � 0:1,
Rad � 5:0, for varying dispersion and mass ¯ux parameter values

Fig. 3. Variation of h�g� with similarity variable g for Fo � 0:1,
Rad � 5:0, for varying dispersion and mass ¯ux parameter values

Fig. 4. Variation of boundary layer thickness dT with mass ¯ux
parameter in the non-Darcy �Fo � 0:1;Rad � 5:0� porous medium for
varying values of dispersion parameter
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The local heat transfer rate which is the primary interest
of the study is given by

q � ÿke
dT

dy

��
y�0
� ÿ�k� kd� dT

dy

��
y�0

�28�

where ke is the effective thermal conductivity of the porous
medium which is the sum of the molecular thermal con-
ductivity k and the dispersion thermal conductivity kd.

The heat transfer coef®cient in terms of Nusselt number
is given by

Nu

Ra
1=2
x

� �1� Ds f 0�0���ÿh0�0�� �29�

Nusselt number results for varying values of the Fo and
Rad are presented in Table 1 for c � 0 and c � 0:3. Since
the value of f 0�0� is always positive, it can be noticed from
Eq. (29) that dispersion always enhances the heat transfer
coef®cient. In Fig. 5 the Nusselt number results are plotted
as a function of mass ¯ux parameter for varying Rad,
®xing c at 0.3. From this ®gure, it is clear that the value of
the Nusselt number increases as the non-dimensional
mass ¯ux parameter moves from the injection domain to
suction domain. Moreover, it has been observed that the
increase in the value of the dispersion parameter enhances
the Nusselt number. Also, the increase in the value of the
parameter Fo decreases the heat transfer rate. The com-
bined effect of thermal dispersion and surface mass ¯ux on
natural convection heat transfer over the vertical wall in
porous medium is that the Nusselt number increases as the
mass ¯ux parameter moves from injection domain to
suction domain. But the relative increase in the Nusselt
number values of injection, no injection/no suction and
suction domains is observed to be enhanced with the in-
crease in the value of Rad.
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Table. 1. Combined effect of thermal dispersion and surface mass
¯ux on Nusselt number results

Rad c � 0 c � 0:3

fw � ÿ1 fw � 0 fw � 1 fw � ÿ1 fw � 0 fw � 1

1.0 0.1909 0.4295 0.7740 0.2293 0.4709 0.8103
2.0 0.1804 0.4180 0.7641 0.2479 0.4911 0.8284
5.0 0.1579 0.3929 0.7424 0.2847 0.5308 0.8646

Fig. 5. Variation of Nusselt number results with mass ¯ux parameter
for ®xed Fo � 0:1, c � 0:3 and varying values of the Rayleigh number
Rad
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