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Abstract
Thermal conductivity is a basic characteristic of the heat conduction properties of subsoil. Previous research shows that 
soil thermal conductivity has complex correlations with many soil physical parameters, such as dry density, water content, 
mineral composition and particle-size distribution. In this paper, several artificial intelligence calculation methods are used 
to study the soil heat conduction mechanism and establish predictive models of thermal conductivity: an artificial neural 
network (ANN), adaptive neural network-based fuzzy inference system (ANFIS) and support vector machine (SVM). Their 
modelling performance was evaluated by several metrics: correlation coefficient (R2), root mean square error (RMSE), mean 
absolute error (MAE) and variance account for (VAF). Monte Carlo simulation was used to verify the robustness of the 
models, and the results of traditional empirical relationship models are used for comparison. The ANN, ANFIS and SVM 
models can accurately predict soil thermal conductivity, with R2 > 0.89, RMSE < 0.22 (Wm−1 K−1), MAE < 0.14 (Wm−1 
K−1) and VAF > 88%. The ANN model had the best predictive accuracy, with R2 = 0.9535, RMSE = 0.1338 (Wm−1 K−1), 
MAE = 0.0952 (Wm−1 K−1) and VAF = 95.25%. The SVM model had similar accuracy, while that of the ANFIS model was 
lower. Monte Carlo simulations show that the SVM model provided the most robust predictions and that all three models 
were significantly better than the traditional empirical models. The SVM model is suggested as the best model for predicting 
soil thermal conductivity.

Nomenclature
ANN	� Artificial neural network
ANFIS	� Adaptive neural network-based fuzzy infer-

ence system
SVM	� Support vector machine
R2	� Correlation coefficient
RMSE	� Root mean square error
MAE	� Mean absolute error
VAF	� Variance account for
N1, N2, Nk	� Input parameters

Y	� Output parameter
xmax	� Maximum values
xmin	� Minimum values
x	� Actual value
xnorm	� Normalized value
λdry	� Thermal conductivities of dry soil [Wm−1 

K−1]
λsat	� Thermal conductivities of saturated soil 

[Wm−1 K−1]
γd	� Dry density [kgm−3]
n	� Porosity [%]
λ	� Thermal conductivity [Wm−1 K−1]
Hk	� The predicted value
wx,ji	� Weighting factor
bx,j	� Bias factor at the jth hidden node
wy,j	� Weighting factor for the jth hidden node
by	� Bias factor in the output layer
M	� Number of parameters evaluated by the same 

regression process
N	� Sample number
y0	� Measured value
yp	� Predicted value
m	� Number of Monte Carlo iterations
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S	� Actual random variable considered
Ke	� Normalized thermal conductivity of the soil
Sr	� Soil saturation
λwater	� Thermal conductivities of water [Wm−1 K−1]
λsolid	� Thermal conductivities of soil solid particles 

[Wm−1 K−1]
κ	� Empirical parameters
χ,η	� Influencing parameters of thermal conductiv-

ity of dry soil
a, b	� Parameters related to dry soil
α	� Reflects the influence of soil type on the Ker-

sten variable

1  Introduction

With the recent rapid rates of industrialization and urbaniza-
tion, the rates of fossil fuel consumption and global warm-
ing are increasing. Accordingly, demands for renewable 
energy development and utilization are also increasing [1]. 
Soil has the potential to store energy but requires further 
development before it can be applied. Accurate measurement 
of the thermal conductivity of geotechnical materials is an 
important part of geotechnical engineering temperature field 
analysis and energy pile design. The thermal conductivity of 
soil is a complex parameter that is mainly dependent on the 
soil type, saturation, grain size and packing density. The type 
of soil is considered to be the most important influence on its 
thermal resistance [2–5]. Thermal conductivity is one of the 
most important thermophysical properties of soils, inasmuch 
it is directly connected with the heat transfer mechanism by 
conduction in materials [6].

In recent years, there has been much research on soil 
heat conduction and many predictive models have been 
proposed. Kersten [7] measured the thermal conductivity 
of 19 different types of soil using vertical heating from a 
single-column heat source. They analysed the influences 
of moisture content and dry density on thermal conductiv-
ity, proposed an empirical relationship model for predict-
ing silt, clay and sandy soil. Coté and Konrad [8] measured 
the thermal conductivity of more than 650 soil samples and 
improved Johansen [9] normalized model, establish the κ-Sr 
relationshiped with κ as variable defined in par.6, and used 
κ to reflect the influence of the type of soil on its thermal 
conductivity. Based on the measured thermal conductiv-
ity of clay, silt, silty sand and fine sand, Erzin et al. [10] 
proposed predictive models for single samples and specific 
types of samples, respectively, using on an artificial neural 
network. Wang et al. [11] measured the thermal conductiv-
ity and electrical resistivity of 57 soil samples and found a 
linear relationship between them, although soil saturation 
was not considered. Based on published thermal conductiv-
ity data of 257 unsaturated soils, Zhang et al. [12] used dry 
density, porosity, saturation, quartz content, sand content 

and clay content as input to an artificial neural network 
predictive model. They found that the model can compre-
hensively consider the influences of these parameters and 
provide good predictions. Bi et al. [13] proposed a general 
model for calculating the thermal conductivity of frozen soil 
with consideration of soil composition and frost heave. The 
model is a function of unfrozen water content, frost heave 
effect, porosity and initial water content. In summary, pre-
dictions of soil thermal conductivity are commonly made 
using empirical relationship models, theoretical calculation 
models and artificial neural network models. Some authors 
assert that empirical models give much better accuracy than 
theoretical models [14]. Theoretical calculation models of 
soil thermal conductivity involve many parameters and the 
calculation process is complicated, leading to a difficult 
practical application. Artificial neural network models can 
consider the most factors and have the highest accuracy in 
predicting the thermal conductivity of soil.

The aim of this paper is to establish a predictive model of 
soil thermal conductivity. Firstly, the main factors influenc-
ing soil thermal conductivity are identified, then an artificial 
neural network model, fuzzy neural network model and sup-
port vector machine model are used to predict soil thermal 
conductivity. The results of the three models are compared 
with traditional empirical relationship models to verify their 
effectiveness. Robustness is an important indicator for evalu-
ating intelligent computing models. Monte Carlo simulations 
are used to evaluate the robustness of prediction models. 
The research results are of great significance for discussing 
heat transfer mechanism of soil, and provide a new idea for 
accurately predicting soil thermal conductivity.

2 � Factors influencing soil thermal 
conductivity

Thermal conductivity is an important soil thermophysical 
property. It is closely related to many factors, such as min-
eral composition, saturation, particle size distribution, dry 
density and porosity, among which mineral composition has 
the greatest influence [15]. In the present section the influ-
ence of soil geotechnical parameters on thermal conductivity 
is explored.

Moisture content is the most basic parameter describ-
ing the physical properties of soil and is also one of the 
main factors affecting soil heat transfer. Unsaturated soil 
is composed of a three-phase medium, and changes in 
water content mainly affect the proportions of liquid and 
gas in the soil. An increase in water content increases the 
proportion of water phase in the soil, while the proportion 
of gas phase decreases. Since the thermal conductivity of 
water is significantly greater than that of air, heat transfer 
through water films on particle surfaces and water bridges 
increases, so increasing the effective thermal conductivity 
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of the soil [7, 8]. As the water content increases, the ther-
mal conductivity eventually reaches a maximum and doesn't 
increase any more, at a specific water content [16]. Soil 
with a greater dry density has closer interparticle contact, 
resulting in greater interparticle heat transfer and higher 
thermal conductivity.

The mineral composition of soil plays an important role 
in its thermal conductivity. The solid particles of soil are 
mainly composed of minerals such as quartz, feldspar and 
mica [17]. The thermal conductivity of quartz is about 7.69 
Wm−1 K−1, while that of other minerals is usually between 
1.25–4 Wm−1 K−1. The thermal conductivity of quartz is 
significantly higher than that of other minerals, so soils with 
a high quartz content have significantly higher thermal con-
ductivity [18]. Therefore, the thermal conductivity of soil 
depends on its mineral composition, especially the quartz 
content.

The anisotropy of soils also influences their thermal con-
ductivity. Macaulay et al. [19] tested the thermal conductivity 
of Australian siltstone and found that the bedding-direction 
angle of siltstone began to increase and its thermal conduc-
tivity also increased. The thermal conductivity of siltstone 
varies smoothly with the increase in bedding-direction angle 
at angles > 40°. This conclusion is consistent with Popov 
et al.’s [20] research on sedimentary rocks.

Many factors can affect the thermal conductivity of soils, 
such as particle-size distribution, particle size, particle 
shape and temperature [21–23]. The particle-size distribu-
tion changes the interparticle contact area, thus affecting 
thermal conductivity [24], as heat conducts more rapidly 
through particles than between them. At a given dry den-
sity, the smaller the particle size is, the more interparticle 
contact points and the lower the thermal conductivity of soil 
are [9]. Additionally, temperature affects the thermal motion 
of molecules. Mitchell and Soga [25] found that the ther-
mal conductivity of all crystalline minerals decreases with 
increasing temperature. However, the thermal conductivity 
of soil water increases slightly as temperature increases. 
Furthermore, increases in temperature significantly increase 
the thermal conductivity of the air in soils, although some 
researchers have reached the opposite conclusion. There-
fore, the influences on soil thermal conductivity are com-
plex and require further study to more clearly understand 
them.

3 � Artificial intelligence computing model

Artificial intelligence technology has developed rapidly and 
has recently been applied to the field of geotechnical engi-
neering. It can accurately calculate engineering parameters 
in a time and cost-effective manner so that projects can be 
completed in less time and at lower cost. For this purpose, in 

this paper there different algorithms are described and tested 
in calculating the thermal conductivity of soils: an artificial 
neural network model (ANN), an adaptive neural network-
based fuzzy inference system (ANFIS) and a support vector 
machine model (SVM).

3.1 � Artificial neural network analysis

Artificial neural network models are based on an information 
processing system that mimics the structure and function of 
the human brain [26, 27]. An ANN is a complex network 
composed of many neurons that can process and learn a 
large amount of input data. Many neural network algorithms 
have been developed, such as the Levenberg–Marquardt  
algorithm, conjugate gradient algorithm and Bayesian 
regularization algorithm [28–30]. A neural network model 
consists of an input layer, one or more hidden layers and 
an output layer. The layers are composed of many neurons. 
The number of hidden layers depends on the complexity 
of the problem. For general geotechnical engineering, one 
hidden layer is enough effective [31]. The function of the 
input layer is to obtain input data, filter and pass them to 
the hidden layer. The main function of the hidden layer 
node function is to receive data from the input layer and 
learn from them to construct a training model. The out-
put layer performs the final step of processing the data and 
deriving calculated values [32]. Artificial neural networks 
have been effectively applied to geotechnical engineering 
problems such as foundation pit support, tunnel monitoring, 
slope treatment and prediction of soil thermal conductivity 
[33–39]. Figure 1 shows a typical neural network structure, 
where N1, N2 and Nk are input parameters and Y is an output 
parameter. The advantage of ANN models is that there is 
no need to restrict the input data. The model only needs 
to learn the given input data and then calculate the result.

Fig. 1   The recurrent neural network architecture
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This paper trains an established neural network model based 
on the Bayesian regularization algorithm, which uses ridge 
regression to convert nonlinear regression problems into sta-
tistical ones. The advantage of this method is that it has better 
performance than other backpropagation algorithms because 
an ANN based on a Bayesian regularization algorithm does 
not need to use cross-validation in the verification process, 
which can simplify model training and reduce calculation time.

3.2 � Fuzzy inference system based on adaptive 
neural network

The adaptive neural network-based fuzzy inference system 
(ANFIS) is a new type of fuzzy inference system structure 
that organically combines fuzzy logic and neural networks. 
It uses a hybrid algorithm of backpropagation and least 
squares to adjust the first trial and conclusion parameters, and 

Table 1   Physical properties 40 
Canadian

Soil Code Texture λdry λsat Quartz
content(%)

γd (kgm−3) n GSD(%)

Clay Silt Sand

1 AB-1 Silt loam 0.2 1.2 55 2640 0.55 10 52 38
2 BC-1 Silty clay 0.2 1.21 21 2740 0.51 42 58 0
3 BC-2 Silty clay 0.2 1.3 19 2718 0.5 42 58 0
4 BC-3 Silt clay loam 0.2 1.12 27 2713 0.51 30 70 0
5 BC-4 Silty clay 0.2 1.14 17 2782 0.52 41 59 0
6 BC-5 Silt clay loam 0.2 1.35 17 2775 0.53 33 67 0
7 BC-6 Silty loam 0.2 1.46 37 2757 0.52 10 58 32
8 MN-1 Silt loam 0.3 1.97 38 2685 0.55 14 69 17
9 MN-2 Silt loam 0.2 1.27 20 2788 0.41 24 55 22
10 MN-3 Silt loam 0.2 1.05 21 2739 0.63 21 76 3
11 MN-4 Loamy sand 0.2 1.46 61 2706 0.47 3 15 81
12 NB-1 Silt loam 0.2 1.16 57 2590 0.54 15 82 3
13 NB-2 Silt loam 0.2 1.43 56 2540 0.56 17 83 0
14 NB-3 Silt loam 0.3 2.19 55 2569 0.62 10 66 24
15 NB-4 Silt loam 0.2 1.4 60 2588 0.54 10 64 26
16 NB-5 Silt clay loam 0.1 1.14 39 2707 0.54 33 67 0
17 NS-1 Silt loam 0.2 1.31 51 2708 0.55 10 57 32
18 NS-2 Sandy loam 0.3 1.46 61 2711 0.45 5 34 61
19 NS-3 Sandy loam 0.2 1.43 63 2680 0.4 5 37 57
20 NS-4 Sand 0.2 1.46 100 2662 0.36 0 0 100
21 NS-5 Loamy sand 0.3 1.6 72 2662 0.4 3 13 85
22 NS-6 Sandy loam 0.2 1.39 65 2684 0.51 6 38 56
23 NS-7 Silt loam 0.3 1.92 34 2781 0.57 12 67 22
24 ON-1 Silt loam 0.3 1.94 28 2704 0.43 8 56 37
25 ON-2 Silt loam 0.3 1.74 17 2758 0.51 18 75 7
26 ON-3 Loamy sand 0.2 1.76 41 2706 0.46 4 26 71
27 ON-4 Sand 0.3 2.17 38 2755 0.39 1 10 89
28 ON-5 Sandy loam 0.3 1.93 36 2754 0.38 7 37 56
29 ON-6 Loamy sand 0.2 1.73 38 2739 0.44 2 14 84
30 ON-7 Silt loam 0.2 1.84 25 2760 0.45 14 54 32
31 PE-1 Loam 0.2 1.52 66 2636 0.44 8 42 50
32 PE-2 Loam 0.2 1.57 58 2663 0.42 9 39 51
33 PE-3 Loamy sand 0.2 1.93 54 2656 0.41 3 14 83
34 QC-1 Sand 0.2 1.82 35 2727 0.43 2 5 93
35 QC-2 Loamy sand 0.3 1.98 42 2693 0.48 3 17 79
36 SK-1 Silt loam 0.2 1.6 48 2693 0.41 26 74 0
37 SK-2 Sandy loam 0.3 2.39 61 2703 0.45 6 27 67
38 SK-3 Silt loam 0.3 1.67 37 2702 0.53 15 83 2
39 SK-4 Loamy sand 0.2 1.59 67 2683 0.42 3 14 83
40 SK-5 Sandy loam 0.3 3.17 63 2677 0.45 5 28 68
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automatically generates If–Then rules. A fuzzy reasoning sys-
tem is very suitable for expressing fuzzy experience knowl-
edge but lacks an effective learning mechanism. Although neu-
ral networks have a self-learning function, they cannot express 
the reasoning function of the human brain well. ANFIS organi-
cally combines a neural network and fuzzy reasoning. It not 
only exerts the advantages of both but also makes up for their 
shortcomings. ANFISs are hybrid models in which multiple 
nodes related to direction connections can estimate the fuzzy 
parameters of the model. This paper uses a subtractive cluster-
ing algorithm to train the ANFIS model, which can automati-
cally estimate the number of clusters and their locations. The 
main process of the subtractive clustering algorithm is that 
it 1) selects the data most likely to be the first cluster centre 
and then 2) deletes all the data located around the first cluster 
centre that affects the radius definition. Finally, the process is 
repeated until all the data fall within the radius of the cluster 
centre [40].

3.3 � Support vector machine model

The support vector machine (SVM) model is a generalized 
linear classifier that performs binary classification of data 
with a supervised learning method. Its theory is to establish a 
hyperplane to divide a dataset into different categories [41]. 
The SVM uses a hinge-loss function to calculate the empirical 
risk and adds a regularization term to the solution system to 
optimize the structural risk, and then determines the optimal 
hyperplane by optimizing the boundary. The support vector is 
determined as the training point closest to the optimal plane. 
SVM is widely used in geotechnical engineering, such as for 
landslide calculation, because it is the most accurate and pre-
cise modelling technique [42].

4 � Thermal conductivity databases

The data used in this paper comes from 40 types of Canadian 
field soil [43–45]. Among them, 22 species are fine-grained 
soil (sand content < 40%) and 18 are coarse-grained soil 

(sand content > 40%). The measurements were carried out 
on moderately compacted samples at room temperature, and 
over a full range of degree of saturation ranging from dry-
ness to full saturation, a total of 240 test data. The physical 
properties of the 40 Canadian soils are shown in Table 1. 
Their moisture content, dry density, clay content, powder 
content, sand content and quartz content were used as input 
parameters for the predictive model, with soil thermal con-
ductivity as the output parameter. Table 2 lists the boundary 
values of the input and output parameters of the predictive 
model. In addition, the input and output parameters of all 
models are normalized to make them range between 0 and 
1. The normalization equation is [10]:

where xmax and xmin are the maximum and minimum values 
of the variable x, respectively, xnorm is the normalized value.

5 � Establishment and performance testing 
of the intelligent calculation model

5.1 � Establishment of the intelligent calculation 
model

The ANN, ANFIS and SVM were used to establish an 
intelligent calculation model for predicting soil thermal 
conductivity. According to the analysis of the factors 
affecting the thermal conductivity of soil (Sect. 2), the 
input parameters for all calculation models were water 
content, dry density, clay content, powder content, sand 
content and quartz content, with the output parameter 
being soil thermal conductivity. In this paper, the Bayesian 
regularization algorithm was used to train the developed 
neural network calculation model. An ANN based on the 
Bayesian regularization algorithm is a mathematical calcu-
lation process that uses ridge regression to convert nonlin-
ear regression into a statistical problem [30]. This method 
is better than other backpropagation methods because the 

(1)xnorm =
x − xmin

xmax − xmin

Table 2   The boundary values of 
the input and output parameters 
of the predictive model

Parameter Name Minimum value Maximum value

Moisture content, w (%) 0 75
Dry density, γd (kgm−3) 520 2790

Input parameters Clay content, c (%) 0 42
Silt content, si (%) 0 83.4
Sand content, sa (%) 0 100
Quartz content, qc (%) 17 100

Output parameter Thermal conductivity, λ (Wm−1 
K−1)

0.1 3.2
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verification process does not need to use cross-validation 
technology, which can save calculation time. The data was 
divided into two parts: 70% for training and 30% for test-
ing. The training part uses the data to update the weights 
of neurons, while model verification uses the test data. 
The number of hidden layer neurons in the ANN model 
increases from 1, and the optimal number of hidden layers 
and hidden layer neurons is obtained through training. We 
tried different activation functions during training, such 
as sigmoid, tanh and Relu, and achieved the best perfor-
mance with the sigmoid activation function. The number 
of neural network training periods was 1000. We used the 
following standard procedures to model the artificial lift 
network [12, 46]:

(1)	 The input and output parameters are normalized so that 
they range between 0 and 1.

(2)	 By taking Nk inputs, the sigmoid activation function of 
each node in the hidden layer can be calculated as:

where Hk, wx,ji, and bx,j are the predicted value, 
weighting factor, and bias factor at the jth hidden node, 
respectively.

(3)	 Calculation of the output layer nodes of the ANN is as 
follows:

where wy,j is the weighting factor for the jth hidden node 
and by is the bias factor in the output layer.

(4)	 Inverse normalization of output data:

The ANFIS model uses a Gaussian membership function 
and subtractive clustering technology with an influence range 
of 0.7 for training. The SVM model is constructed by a cubic 
polynomial kernel function, the regularization constant c of  
the selection box constraint is 0.112, and the ε parameter of  
the SVM model is 0.0111. Figure 2 compares measurements 
of soil thermal conductivity with estimates of the intelligent  
calculation model (training set).

(2)
Hk = sigmoid

(
N∑

i=1

wx,jiNk + bx,j

)

,

where sigmoid =

(
1

1 + exp(−x)

)

(3)Yn =

M∑

j=1

wy,jHk + by

(4)Y = Yn
[
xmax − xmin

]
+ xmin

Fig. 2   Comparison of measurements of soil thermal conductivity 
with estimates of the training parts of the ANN (a); ANFIS (b) and 
SVM (c)

▸
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It can be seen from Fig. 2 that each intelligent calculation 
model accurately calculates the thermal conductivity of soil 
based on the training dataset. There were linear correlations 
between the predicted and measured results (Fig. 2). The best 
training effect was exhibited by the ANN model (R2 = 0.9614), 
followed by the SVM model (R2 = 0.9551), while the ANFIS 
model performed worst (R2 = 0.9212). The slopes of the linear 
equations fitted to the ANN, ANFIS and SVM models are 
0.9786, 0.8475 and 0.9551, respectively. Hence, the fits to the 
ANN and SVM cases are close to perfect (y = x). This shows 
that the deviations between the measured values and those 
predicted by the ANN and SVM are small.

5.2 � Performance test of prediction model

The correlation coefficient (R2), root mean square error 
(RMSE), average absolute error (MAE) and variance account 
for (VAF) were used to test the performance of the calcula-
tion models. An important indicator of correlation between 
the calculated and measured values is the correlation coef-
ficient R2. Three important indicators of the model, RMSE, 
MAE and VAF, were used to quantify the numerical differ-
ences between the calculated and measured values [47–49]. 
Their equations are:

where M is the number of parameters evaluated by the same 
regression process, N is the sample number, y0 is the meas-
ured value, yp is the predicted value, and var represents the 
variance. If VAF = 100% and RMSE = 0, the model is per-
fect. Table 3 shows the performance index values of each 
predictive model. Figure 3 compares the predicted and meas-
ured values of soil thermal conductivity λ.

(5)
RMSE =

�����
�

N∑

i=1

(y0 − yp)
2

N −M

(6)MAE =
1

N

N∑

i=1

|||
y0 − yp

|||

(7)VAF =

[

1 −
var(y0 − yp)

var(y0)

]

× 100

It can be seen from Table 3 and Fig. 3 that each model has 
high accuracy in predicting the soil thermal conductivity λ. 
The ANN model performs best, second is the SVM model, 
while the ANFIS model has the lowest accuracy. It can be 
seen from Fig. 3b that the predicted values deviate greatly 
from the measured values and the data present a relatively 
large spread. The slopes of the linear equations fitted to the 
ANN, ANFIS and SVM models are 0.9452, 0.8197 and 
0.9594, respectively, indicating that the fits of the ANN and 
SVM models to data are closest to the y = x line.

The function of a sample index comparison of predicted 
and measured values is shown in Fig. 4. It can be seen from 
Fig. 4 that the ANN and SVM calculated values are in good 
agreement with the measured values, while they deviate 
obviously from the predicted values of the ANFIS model. 
In order to analyse the error between the predicted and meas-
ured values, the error distributions of the predictive models 
are shown in Fig. 5. It can be seen from Fig. 5 that in the 
training and testing datasets, the error distribution of each 
model is mainly concentrated between − 0.3 (Wm−1 K−1) 
and 0.3 (Wm−1 K−1). The calculation errors of each model 
are very small; the error of the ANN model is the smallest; 
next is the SVM model and then the ANFIS model. How-
ever, it can be seen from Table 4 that the SVM model per-
forms best in terms of RMSE (0.1333 Wm−1 K−1), while the 
RMSEs of the ANN and ANFIS models are 0.1338 (Wm−1 
K−1) and 0.2105 (Wm−1 K−1), respectively when applied 
to the test dataset. The above analysis shows that the ANN 
model has the best performance. The results show that the 
weights and deviations of the ANN model based on Bayes-
ian regularization improve its performance. The ANFIS and 
SVM models also predict the thermal conductivity of soil 
well.

5.3 � Robustness analysis of forecasting model

When using AI models for complex geotechnical engineer-
ing prediction, the Monte Carlo method is often used to 
analyse the robustness of the model by varying the model 
parameters [50]. Figure 6 shows the basic principle of the 
Monte Carlo method used to show the variability of param-
eters. It reproduces the output result multiple times by ran-
domly varying the input parameters [51]. These random 

Table 3   Predictive model 
performance indicators

Model symbol Data set R2 RMSE(Wm−1 K−1) MAE(Wm−1 K−1) VAF(%)

ANN Training 0.9614 0.1032 0.0858 96.88
Testing 0.9535 0.1338 0.0952 95.25

ANFIS Training 0.9212 0.1773 0.1389 91.21
Testing 0.8932 0.2105 0.1393 88.97

SVM Training 0.9551 0.1263 0.1055 95.12
Testing 0.9469 0.1333 0.0958 95.41
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Fig. 3   Comparison of measured values and those calculated by the 
testing part of the ANN (a); ANFIS (b) and SVM (c)
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fluctuations propagate to the output solution, supplying 
different values of output quantities, and from them it is 
possible to quantitatively evaluate their probability density 
function.

The Monte Carlo method is widely used to evaluate the 
robustness of computational models because it can deal with 
irregular functions or complex models, especially ANNs. In 
this paper, the Monte Carlo method is used to propagate the 
input variability to the output. In order to study the robust-
ness of the predictive models in calculating soil thermal 
conductivity λ, the results were statistically analysed. The 
optimal number of Monte Carlo simulation iteration was 
derived from the following equation [52]:

where m is the number of Monte Carlo iterations and S is 
the actual random variable considered. The optimal value 
of m represents the minimum number of iterations which is 
increased doesn't change any more the results. To evaluate 
the robustness of the models, 70% of the training data were 
randomly combined as a new input dataset, and 300 Monte 
Carlo simulations were generated. We then calculated the 
deviations between the calculated values of each model and 
the measured values. Each AI calculation model supplied 
300 values of R2, RMSE and MAE, so their average and vari-
ance and distribution can be calculated.

These probability distributions are shown in Fig. 7 
while Table 4 show the percentiles of the distributions. 
Again it is confirmed that the SVM model presents the 
best robustness, followed by the ANN and ANFIS models.

6 � Predictive model performance evaluation

At present, the predictions of soil thermal conductivity is 
mainly based on theoretical and empirical models. Many 
parameters and requirements are involved in theoretical 
models of soil thermal conductivity, making them com-
plicated. Empirical models calculate soil thermal conduc-
tivity, in a simpler way, so this method is commonly used 
in engineering design. In this paper the Johansen, Cote 
and Lu models are chosen and their results compared with 
those of the described AI models. The Johansen model [9] 
is an empirical relationship model based on the definition 
of normalized thermal conductivity. It can calculate the 
thermal conductivity of frozen and unfrozen soil as shown:

(8)f =
1

m

m∑

j=1

Sj

Fig. 4   Thermal conductivity of soil in function of sample index for 
the training part of ANN (a); ANFIS (b) and SVM (c); for the testing 
part of ANN (d); ANFIS (e) and SVM (f)

▸

Fig. 4   (continued)
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where λsat and λdry are the thermal conductivities of saturated 
and dry soil, respectively, and Ke is the normalized thermal 
conductivity of the soil. When the soil saturation Sr > 0.05, 
Ke for coarse soils is given by:

When Sr > 0.1, Ke again for coarse soils is:

Johansen improved the thermal conductivity model of 
De Vries [53] and proposed the following equation for 
dry soils:

where ρd is the dry density. In the calculation of the thermal 
conductivity of saturated soils, the following equation pro-
posed by Sass [54] is widely used:

where λwater and λsolid are the thermal conductivities of water 
and soil solid particles, respectively, and n is porosity.

(9)� = (�sat − �dry)Ke + �dry

(10)Ke = 0.7 log Sr + 1

(11)Ke = log Sr + 1

(12)�dry =
0.137 �d + 64.7

2650 − 0.947 �d

(13)�sat = �n
water

�1−n
solidFig. 5   Error distribution of measured − predicted thermal conductiv-

ity for (a) training data and (b) testing data (with a resolution of 0.2)

Table 4   Statistics of Monte Carlo simulation results

Criteria Model D25 D50 D75 Mean

ANN 0.8926 0.9512 0.9723 0.9132
R2 ANFIS 0.8731 0.8951 0.9056 0.8761

SVM 0.9362 0.9459 0.9552 0.9449
ANN 0.0838 0.1338 0.2518 0.1898

RMSE ANFIS 0.1935 0.2105 0.2405 0.2285
SVM 0.1093 0.1333 0.1623 0.1373
ANN 0.0432 0.0952 0.1832 0.1322

MAE ANFIS 0.1234 0.1394 0.1614 0.1464
SVM 0.0839 0.0959 0.1109 0.0989

Fig. 6   Schematic diagram of 
Monte Carlo method basic 
principle
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The Cote model is based on the normalized thermal con-
ductivity calculation model proposed by Cote and Konrad 
[8] according to Johansen [9], who established a generalized 
normalized prediction model:

where Ke is the normalized thermal conductivity of the soil. 
Afterwards, the equations for Ke and λdry have been modi-
fied as follows:

where κ is an empirical parameter used to express the influ-
ence of soil type and freezing state on Ke, and χ and η are 
parameters that describe the influence of the type and shape 
of granular soil on the thermal conductivity of dry soil.

The model proposed by Lu et al. [55] was established on 
the base of a large number of thermal conductivity tests on 
12 natural soils with different properties under various mois-
ture contents. By fitting to the test data, a simpler thermal 
conductivity and porosity model of dry soils was obtained. 
Based on the normalized thermal conductivity model pro-
posed by Johansen, the following empirical equation is 
proposed:

where a and b are parameters related to dry soil. It is recom-
mended to take a = 0.56 and b = 0.51, respectively; α reflects 
the influence of soil type on the Kersten variable (0.96 and 
0.27 for coarse-grained and fine-grained soils, respectively).

In the present paper the AI model results are compared 
with the λ values predicted by the Johansen, Cote, and Lu 
models, as shown in Fig. 8. The relative values are shown  
in Table 5. Figure 8 shows that the ANN, ANFIS and SVM  
models predict the thermal conductivity of the soils much bet-
ter than the Johansen, Cote and Lu models. Even if with λ < 1 
Wm−1 K−1, the results of the Cote, Lu and Johansen models 
present small deviations from the experimental values, when 
λ > 1 Wm−1 K−1, the predicted values are significantly lower 
than the measured ones, indicating that the prediction accu-
racy is low. Also Table 4 demonstrates that the performances 
of the empirical relationship models are significantly lower 
than those of the ANN, ANFIS and SVM models.

Again it is confirmed that the ANN model has the highest 
prediction accuracy, followed by SVM and ANFIS, while the 
empirical relationship models have lower accuracy. For the 
prediction of soil thermal conductivity, the ANN or SVM 
models are recommended.

(14)� = (�sat − �dry)Ke + �dry

(15)Ke=
�Sr

1 + (� − 1)Sr

(16)�dry=�(10
−�n)

(17)
�=

[
�n
water

�1−n
solid

− (b − an)
]
exp[�(1 − S�−1.33

r
)] + (b − an)

Fig. 7   Monte Carlo simulation test parameter probability distribution of 
(a) R2; (b) RMSE and (c) MAE 
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7 � Conclusions

This paper explored the prediction of soil thermal conduc-
tivity using ANN, ANFIS and SVM models. The following 
conclusions can be drawn:

(1)	 The factors influencing soil thermal conductivity were 
determined to be usesd as input parameters for predic-
tive models. The most relevant are moisture content, 
dry density, clay content, powder content, sand content 
and quartz content.

(2)	 ANN, ANFIS and SVM models were tested to predict 
soil thermal conductivity, evaluating their R2, RMSE, 
MAE and VAF. The results show that the three predic-
tive models give results with high accuracy. Among 
them, the ANN model was most accurate, with R2 = 
0.9535, RMSE = 0.1338, MAE = 0.0952 and VAF = 
95.25%. The predictive accuracy of the SVM model 
was slightly lower, with R2 = 0.9469, RMSE = 0.1333, 
MAE = 0.0958 and VAF = 95.41%. The ANFIS model 
performed worst, with R2 = 0.8932, RMSE = 0.2105, 
MAE = 0.1393 and VAF = 88.97%. The robustness of 
the prediction models was analysed using Monte Carlo 
simulation and the SVM model was found to be the best 
performant.

(3)	 The prediction results of these three models were com-
pared with those of traditional empirical relationship 
models and found to be significantly higher. The tradi-
tional models are only based on moisture content, dry 
density and soil type. So their estimates greatly deviate 
from measured values, making them less suited to be 
used in engineering design.

Fig. 8   Comparison of the forecasting models and the empirical rela-
tionship models (a) ANN, (b) ANFIS and (c) SVM
▸

Table 5   Performance comparison of the intelligent computing and 
empirical relationship models

Model R2 RMSE(Wm−1 
K−1)

MAE(Wm−1 
K−1)

VAF(%)

ANN 0.9535 0.1338 0.0952 95.25
ANFIS 0.8932 0.2105 0.1393 88.97
SVM 0.9469 0.1333 0.0958 95.41
Johansen 

model
0.6464 0.4251 0.3631 75.05

Cote model 0.7744 0.3841 0.2805 78.34
Lu model 0.6432 0.4075 0.3335 71.49
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