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Abstract
Nowadays, nanorefrigerants have been focused across the globe to improve the heat transfer characteristics of cooling units. 
Incorporating high thermal conductivity nanoparticles to the conventional refrigerants presented broad facts such as increased 
heat transfer coefficients, improved pool boiling inside closed cycles, enhanced COP, reduced compressor energy consump-
tion of domestic refrigerators, and enhanced heat transfer rate during the two-phase flow of fluids. The present article focused 
on comprehensive experimental and numerical research reports of nanorefrigerants and nanolubricants. The heat and mass 
transfer and thermophysical characters such as viscous behavior, thermal conductivity, specific heat, and density have been 
discussed for various facts like flow condensation of fluids, evaporation, refrigerants pool boiling, and other related processes. 
The results showed that the volume concentration, diameter, and length of particles have a significant and crucial impact on 
the heat transfer rate and characteristics of pure refrigerants. Based on the available reports, it can say that the application of 
nanoparticles in pure refrigerants may enhance its features by about 50 – 60%. Further, the proposed correlations available 
in the literature for nanorefrigerants have been well discussed.

Nomenclature
A  Area  (m2)
CP  Specific heat (J/kg K)
d  Diameter (mm)
FHT  Nanoparticles impact factor
f  Friction factor
Fr  Froude number
g  Gram
h  Heat transfer coefficient (W/m2 K)
I  Electric current (A)
G  Mass flux (kg/m2 s)
Rp  Maximum roughness peak height (µm)
M  Molecular mass (kg/k mole)
Nu  Nusselt number
Pr  Prandtl number
q’  Heat flux (kW/m2)
Re  Raynolds number
T  Temperature (°C)
V  Voltage (V)
We  Webber number

x  Vapor quality
Xtt  Martinelli number

Greek letter
Δ  Difference
λ  Thermal conductivity (W/m K)
�  Density (kg/m3)
µ  Viscosity (Pa s)
�  Mass fraction (%

Subscript
avg  Average
cr  Critical (thermodynamic critical point)
i  Inlet
o  Outlet
r  Refrigerant
n  Nanoparticles
nr  Nanorefrigerant
o  Oil
w  Water
wall  Wall temperature
t  Time
sat  Saturated
sup  Superheated
vol  Volume
gas  Gaseous state
nm  Nano meter
m  Meter
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p  Particles
Ɩ  Liquid
L  Litre

Abbreviations
Ag  Silver
Al2O3  Alumina oxide
ASHRAE  American society of heating, refrigeration and 

air conditioning engineers
CFC  Chlorofluorocarbon
CFD  Computational fluid dynamics
COF  Coefficient of friction
COP  Coefficient of performance
CuO  Copper oxide
EU  European union
F  Friction factor
GWP  Global warming potential
HC  Hydrocarbon
HCFC  Hydrochlorofluorocarbon
HFC  Hydro fluorocarbon
HTC  Heat transfer coefficient
HVAC  Heat ventilation and air conditioning
K  Kelvin
LPG  Liquid petroleum gas
MAC  Mobile air conditioning
MgO  Magnesium oxide
MO  Mineral oil
MWCNT  Multi wall carbon nano tubes
NH3  Ammonia
NPs  Nanoparticles
ODP  Ozone depletion potential
PAG  Poly alkylene glycol
POE  Polyester
SAE  Society of automotive engineers
SDBS  Sodium dodecylbenzenesulfonate
SiO2  Silica oxide
TiO2  Titanium oxide
UV  Ultraviolet
ZnO  Zinc oxide
ZrO2  Zirconium oxide

1 Introduction

Refrigerants are commonly used in commercial, industrial, 
and automotive industries for cooling and heating cycles. 
Chlorofluorocarbons (CFCs) have been widely used in cool-
ing systems over the past few decades. However, CFC series 
fluids have been forbidden because of their toxic nature, 
which destroys the ozone protection of the earth. HFC series 
fluids like R134a have been successfully established and 
affected in automobile cooling systems for the past decade 
to fill the void created by the phase-out of CFCs. However, 

global warming problems have been addressed in the last 
two decades, and the Kyoto Protocol has moved to regulate 
greenhouse gases, including hydrofluorocarbons (HFCs) [1]. 
Table 1 elaborates the qualities of different fluids used in air 
conditioners, refrigerators, and chillers. As a result, HFC 
chain refrigerants had to be replaced as quickly as possible 
by environmentally friendly refrigerants. The replacement 
of HFC/134a was actively sought until this refrigerant was 
prohibited by the EU F-Gases Regulation and the MAC 
Directive. From 2011, the usage of HFC refrigerants in order 
to protect the atmosphere was banned from all automotive 
cooling systems of newly produced vehicles [2].

In particular, the MAC Directive also proscribed fluori-
nated greenhouse gases with a GWP greater than 150. The 
HFC refrigerants have been replaced with distinct kinds 
of refrigerants (such as R600a and R290 etc.), which have 
similar thermal properties, but GWP is low compared to 
HFC. Table 2 shows the different alternatives of HFC series 
refrigerants which are commonly used in air conditioners 
and refrigerators.

Maxwell [3] synthesized a nanofluid by dispersing small 
diameter particles (nanoparticles) in pure fluids to experi-
ence improved thermophysical characteristics. Nowadays, 
nanofluids have become a well efficient and suitable candi-
date in various disciplines and sectors such as pharmaceu-
ticals [4, 5], automotive sector [6–8], atomic power [9, 10], 
lubrications of moving parts [11, 12], impinging technology 
[13, 14], micro-channels [15–17], heat transfer systems for 
electronic industries [18, 19], natural sources [20–22], cold 
storage and cooling sectors [23–28], combustion field [29, 
30].

Nanorefrigerants and nanolubricants are proposed by dis-
persing the nanoparticles in a refrigerant and lubricant base. 
The three crucial merits of nanoparticles application in the 
coolants are as below [31]:

a) The nanoparticles increase the solubility rate within the 
coolant and the lubricant.

b) It boosts the thermophysical aspects and heat flow rate 
of the primary fluid.

c) The addition of nanoparticles in pure lubricant decreases 
the friction and wear/tear rate in compressors and other 
moving parts.

Nanorefrigerant studies have shown that the dispersion 
of nanoparticles into refrigerants will enhance the refriger-
ant heat transfer rate [32–34]. Nowadays, nanorefrigerant/
nanolubricant plays a vital role in improving the heat transfer 
characteristics and energy efficiency of domestic or indus-
trial refrigerators and air conditioners. Thus, employing a 
variety of nanoparticles with conventional working refrig-
erants is considered an outstanding fundamental reason to 
utilize nanorefrigerants in refrigeration and air conditioning 
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components. For the better enhancement in the performance 
of refrigerator and air conditioning components, nanoparti-
cles with higher thermal conductivities have been used by 
researchers and scholars. The nanoparticles enhance the effi-
ciency of cooling components by strengthening the internal 
thermophysical aspects [35, 36], like thermal property or 
conductivity and vapor quality of the selected fluid [37–40]. 

The thermal property (a thermal property known as thermal 
conductivity) of proposed nanorefrigerants provides a better 
result than the base refrigerant [41]. Most commonly, the 
improvement in thermophysical properties such as thermal 
property or conductivity, vapour quality, and dynamic viscos-
ity is more responsible for enhancing any closed cycles such 
as air conditioners and refrigerators [42]. Many researchers 

Table 1  The property characteristics of different refrigerants

Refrigerant Name Molecular Mass
(g/mol)

Boiling point
(°C)

Freezing point
(°C)

Specific volume
(m3/kg)

R-11 Trichlorofluoromethane1 137.37 74.9 -168 0.001804
R-12 Dichlorodifluoromethane2 120.91 -21.8 -252 0.001792
R-13 Monochlorotrifluoro-

methane
104.46 -114.6 -294 0.001729

R-13B1 Bromotrifluoromethane 148.91 -72 -270 0.001342
R-14 Tetrafluoromethane (Carbon tetrafluoride) 88.00 -198.2 -299 0.001598
R-22 Difluoromonochloromethane3 86.46 -41.3 -256 0.001904
R-40 Chloromethane (Methyl Chloride) 50.48 -10.7 -144 0.002834
R-113 Trichlorotrifluoroethane4) 187.39 118 -31 0.001735
R-114 1,2-dichloro-1,1,2,2-tetrafluoroethane 170.92 38.4 -137 0.001717
R-115 Chloropentafluoroethane 154.47 -38.0 -149 0.001629
R-134a Tetrafluoroethane6) 102.03 -15 -142 0.00181
R-140a Trichloroethane 133.04 165 – –
R-142b 1-chloro-1,1-difluoroethane 100.50 14 -204 0.002297
R-170 Ethane 30.097 -127 -278 0.005182
R-218 Octafluoropropane 188 -36.4 – –
R-290 Propane 44.09 -44 -309.8 0.004545
RC-318 Octafluorocyclobutane 200.04 22 -43 0.001611
R-500 Dichlorodifluoromethane 99.31 -28 -254 0.002016
R-600 n-Butane 58.12 31.2 -217 0.004382
R-600a Isobutane (2-Methyl propane) 58.12 10.8 -229 0.004526
R-611 Methyl formate 60.05 89 -146 0.002865
R-717 Ammonia 17.02 -28 -107.9 0.004245
R-744 Carbon dioxide 44.01 -109.4 -70 0.002135
R-764 Sulfur Dioxide 64.06 14.0 -104 0.00191
R-1150 Ethylene 28.05 -155 -272 0.00437
R-1270 Propylene 42.08 -54 -301 0.004495

Table 2  Relevant information on R-134a and potential R-134a alternatives

Refrigerant Composition Average Molar 
Mass (g/mole)

Dew Point (°C) Critical 
Temperature (°C)

GWP ASHRAE 
Classification

R-134a R-134a(100) 102.0 -26.1 101.1 1300 Al
R0513A R-134a/R-1234yf (44/56) 108.4 -29.2 96.5 573 Al
R-450A R-134a/R-1234ze(E) (42/58) 108.7 -22.8 105.6 546 Al
R-515A R-1234ze(E)/R-227ea (88/12) 108.7 -19.0 108.7 402 Al
R-1234yf R-1234yf (100) 114.0 -29.5 94.7  < 1 A2L
R1234ze(E) R-1234ze(E) (100) 114.0 -19.0 109.4  < 1 A2L
R-600a R-600a (100) 58.1 -11.7 134.7 3 A3

1509Heat and Mass Transfer (2022) 58:1507–1531



1 3

reported that nanolubricants improve the tribological and 
rheological properties inside the compressor and rotary 
components used in refrigeration cycles [43–46]. Further, 
different factors such as size, shape, design dimensions, nan-
oparticles fraction, temperature aggregation, and surfactant 
usage also affect the performance of the closed two-phase 
system, as reported through many publications [47, 48]. 
These all mentioned factors affect the characteristics of the 
vapour compression cycle, whether it is domestic or indus-
trial. A large study has been published on the application of 
nanofluids in different sectors, including transport, domestic 
and industrial [49–51], heat ventilation and air conditioning 
(HVAC) systems [52, 53], automotive air-conditioning cycles 
[54, 55], electronics [56], heat pump, heat exchangers, energy 
conversion systems, phase change materials, chemical, ther-
mal processes, chillers in nuclear industries, and electrical 
applications [57], aerospace stations, transport systems [58], 
fluidic systems, and bio- engineering applications [59–62].

The objective of this review article is to discuss the role 
of developed nanorefrigerants (refrigerants using nanopar-
ticles) and nanolubricants (lubricants using nanoparticles) 
inside the cooling channels, heat pumping components, heat 
exchangers, and pool boiling systems. At the initial stage, the 
study focuses on the preparation method of nanorefrigerants 
and nanolubricants. The second target is to discuss the role 
of different nanoparticles in domestic refrigerators, air con-
ditioners, refrigeration compressors [63, 64], and other parts 
of closed-cycle such as condensation and boiling [65–69]. 
The study of the flow boiling heat transfer using nanorefrig-
erants is a significant area of research as many publication 
reports are available. Still, flow condensation has fewer ref-
erences available in the literature.

2  Review reports available in the literature

The review reports on nanorefrigerants and nanolubricants 
have been published by several authors. Saidur et al. [70] 
published a review article explaining nanoparticles impact 
in conventional refrigerants and compressor lubricating oils. 
The author concluded that R134a with mineral oil and  TiO2 
nanoparticles works safely and efficiently in the domestic 
refrigerating machine. Celen et al. [71] reviewed the flow 
properties of nanorefrigerants inside refrigeration appliances 
and air conditioners. The author clarified the influence of 
nanoparticle characteristics such as particle size and shaped 
on refrigerant pressure drop and heat transfer coefficient 
compared to conventional or pure refrigerants.

Further, the studies on thermophysical characteristics of 
nanorefrigerants and nanolubricants, pool boiling heat trans-
fer, and usage of nanorefrigerants in domestic refrigerators 
and air conditioners were elaborated. In a review report of 
Alawi et al. [72], the influence of different nanorefrigerants 

and nanolubricants on heat transfer aspect and refrigerator 
compressor energy consumption focused. The applications 
of nanorefrigerants to specific appliances such as domes-
tic refrigerating machines, heat pipes, and air conditioners 
were reviewed. The author highlighted that pool boiling heat 
transfer might improve or deteriorate through the usage of 
nanoparticles. Redhwan et al. [73] published a review report 
that mentioned that heat transfer coefficient augmentation 
purely depends upon the fractions and size of nanoparti-
cles. The author suggested the usage of CFCs, HCFCs, and 
HFCs refrigerants with distinct metal/metal oxide nanopar-
ticles to observe the heat transfer coefficient in heat transfer 
appliances. Azmi et al. [74] reviewed a study focused on 
nanorefrigerant and nanolubricant effect on energy saving 
of refrigeration and air conditioning appliances. One of 
their primary results is using R152a/ZnO nanorefrigerant, 
which saves 21% compressor energy compared to R152a. 
Yang et al. [75] focused on the cooling and heating process 
using nanoparticles dispersed in conventional refrigerants 
and lubricants in another review article. The heat transfer 
properties of nanorefrigerants and nanolubricants, ther-
mophysical characteristics of synthesized nanolubricant, 
and nanorefrigerants (R113/CuO and R141b/Al2O3) have 
been reviewed. Yildiz et al. [141] published a review report 
focused on experimental investigations on nanorefrigerants 
and nanolubricants performance of refrigeration systems, 
flow condensation, and pool boiling process. The author 
reported an improved heat transfer rate using small diam-
eter nanoparticles.

Further, the report concluded various factors affecting the 
performance of nanorefrigerant, such as long-term stability. 
In a recent review of Vamshi et al. [142], various nanore-
frigerants and nanolubricants influence thermophysical char-
acters, heat, mass flow rate, and pumping power of refrig-
eration system considered. The correlations developed to 
calculate thermal characters such as thermal conductivity, 
density and viscosity have been reported.

3  Synthesis of nanolubricant 
and nanorefrigerant

Generally, two categories of synthesis approaches are 
the step direct method, and the other is the step indirect 
method used in the synthesis of nanofluids. Nanorefriger-
ant is also a kind of nanofluid and prepared based onthe 
same approaches. In general, nanorefrigerant is prepared 
by mixing the nanoparticles either in a refrigerant or 
through the lubricant. It depends upon the phase-type of 
the refrigerant. Usually, many refrigerants (such as R134a, 
R152a, R600a, R290, etc.) used in domestic refrigeration 
components are vapor under atmospheric conditions. In 
such cases, the nanolubricants are synthesized by mixing 
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technique, and further nanolubricant is appended with 
refrigerant to make a blend (refrigerant/nanolubricant) 
called nanorefrigerant. In other cases, the refrigerant (such 
as R113, R141b, etc.), which is usually used in the indus-
trial sector for chiller plants, are in the liquid phase on 
atmospheric conditions, so the nanoparticles can directly 
be dissolved in the refrigerant to make a blend (refrigerant/
nanoparticles) called nanorefrigerant. Citing an example, 
Lin et al. [76] defend a nanorefrigerant synthesis report 
on mixing  TiO2 nanoparticles in host refrigerant R141b. 
The primary fact of the study is that the selected refrig-
erant HCFC – 141b did not append with nanolubricant 
earlier to the process because of the unstable state of the 
fluid in the liquid state. On the other hand, to examine 
the structural effects, shape, size, and other characteris-
tics of nanoparticles, many methods are available such as 
x-ray approach, energy diffusion x-ray spectroscope, trans-
mission electron microscopy approach, vibration sample 
magnetometer, thermal test, UV spectroscopy, scanning 
electron microscopy and dynamic light scattering [77]. 
The stability examination of prepared nanolubricant is a 
significant parameter and would be followed before injec-
tion into the test rig [78]. For example, Yang et al. [79] 
synthesized a nanorefrigerant by dispersing MWCNT into 
R141b. The blend was prepared under a 30-min process 
of ultrasonication. After that, a visual method using spec-
troscopy was used to analyse the stability of the prepared 
nanorefrigerant.

Many reports state that the stability of nanofluid is a 
crucial parameter before injecting it into a working cycle. 
The most vital point is that the inspection of nanofluid 
stability must be of long tenure (average of 1 month). 
The result showed that the nanorefrigerant transparency 
increases concerning increment in the period (shown 
in Fig. 1). According to a study by Heris et al. [80], the 
prepared nanorefrigerant stability was better after 24 h 
from the synthesis process. The author also declared that 
density finding during the selected period is a easy tech-
nique to examine the mixing stability. In a study by Yang 
et al. [81], the ultrasonication process of half an hour and 
mechanical agitation process was used to prepare a stable 
nanofluid. The ZnO nanoparticles dispersed into a SAE50 
lubricant.

In comparison with conventional methods of nanofluid 
synthesis, a post-treatment technique was proposed to 
enhance the mixing stability of nanorefrigerant. In some 
cases, very hard aggregates are present inside the nanore-
frigerant, which is birthed in the synthesis process of dry 
particles. It is harder to fracture these aggregates through 
chemical and physical methods. The complex aggregates at 
the bottom were pulled out directly using the post-treatment 
technique [82, 83].

4  The role of nanorefrigerant 
and nanolubricants within the heat 
transfer cycle

4.1  Effect of CuO nanoparticles

Behabadiet al. [84] published a well-defined experimental 
report on flow condensation heat mass transfer properties of 
HCR600a/lubricant/CuO blend flowing inside horizontally 
dimensioned smooth copper pipe. Three fluids (HCR600a, 
HCR600a/polyester oil blend, and HCR600a/lubricant/
CuO nanorefrigerant) were synthesized with distinct CuO 
fractions of 0.5, 1, and 1.5 wt. % and tested within a hori-
zontal smooth tube test section. Several parameters such as 
mass velocities (range 154.7 to 265.3 kg/m2s), vapor qual-
ity (within 10–80%), heat fluxes (range 17 to 20 kW/m2), 
and condenser pressures (range 0.51 to 0.62 MPa) were 
selected to observe the effect on HTC. The study reported 
83% heat transfer rate enhancement at 1.5 wt.% particles 
fraction compared to the base fluid of R600a (shown in 
Fig. 2). Sanukrishna et al. [85] studied the influence of CuO-
based nanolubricant inside a cooling cycle in performance 
improvement. A poly-alkylene/CuO nano-refrigerant was 
tested inside a designed experimental rig. Results showed 
that the application of 0.1 vol. % fraction of copper oxide 
particles enhanced the efficiency of the domestic refrigera-
tor, like COP, Freezing capacity, and power consumption. 
The heat transfer rate at the freezer and air-cooled condenser 
was also enhanced.

Further, the thermophysical property (such as thermal 
conductivity) of poly alkylene lubricant using CuO parti-
cles observed a 12.67% increment compared to base lubri-
cant. Tashtoush et al. [86] proposed a study and modeled a 

Fig. 1  Transparency status of synthesized nanorefrigerant [79]
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flow boiling inside an ejector-based refrigeration cycle using 
distinct nanorefrigerant, namely the mixtures of  Al2O3 and 
CuO nanoparticles with R134a, R22, R141b,  NH3, R123, 
R290, R600, and R152a. The reaction of particle diameter, 
shape, mass, and temperature was tested on the HTC and 
performance. The study focused on resisting the migration of 
nanoparticles to the vapor phase of refrigerants. The author 
published a hypothesis that indicated a good validation with 
the available facts, with an approximate deviation of 10%. 
Further, the enhancement in the HTC of both R123 and 
R134a was found upto 7% (Fig. 3).

Similarly, another experimental research by Sun et al. [87] 
considered distinct nanoparticles with refrigerant R141b 
(copper/R141b, copper oxide/R141b, alumina/R141b, and 
alumina oxide/R141b) target pool boiling heat flow study 
during a horizontal pipe. The author declared copper/R141b 
as a better-performed nanorefrigerant. Various variables 
including nanoparticles fractions of 0.10, 0.20, and 0.30 wt. 
%, the mass flux of 120, 210, and 330 kg/m2s and vapor 
class from 0.3 to 0.8 tested to collect the heat transfer per-
formance inside the tube. The HTC increased using inves-
tigated variables, specifically a particle's weight fraction. 
Finally, Cu/R141b at mass velocity or flux of 120 kg/m2s 
using 0.3 wt.% particles fraction observed the highest HTC 
of 49% compared to other selected blends (graphical data 
shown in Fig. 4).

Some other experimental studies targeted flow condensa-
tion of cooling processes, such as Sheikholeslami et al. [88], 
to experimentally define the heat flow rate and frictional 
pressure reductions of R600a/POE/CuO nano-refrigerant 
condensation inside a tube. It reported that the presence of 
nanoparticles during condensation observed a destructive 
result as an increment in the friction pressure drop.

Kaushik et al. [143] experimentally observed the effect 
of varying concentrations (1.2 to 1.5 wt.%) of CuO nano-
particles inside the R134a based vapor compressed cycle. 
They found that the overall performance coefficient using 
nanorefrigerant is better than pure refrigerant. Yalmiz [144] 
mixed Cu (II) oxide and Cu/Ag hybrid nanoparticles mixed 
in R134a flowing inside a refrigerating unit. The author 
studied various characteristics such as friction coefficient, 
energy consumption, and performance coefficient. The 
results showed that using Cu/Ag and CuO nanorefrigerant, 
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Fig. 2  Heat transfer coefficients for pure R600a and synthesized R600a/
CuO [84]

Fig. 3  Heat transfer coefficient 
results at 0.5 wt. % fraction of 
CuO nanoparticle [86]
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significant improvements in COP about 20.8% and 15.7%, 
respectively, were observed.

4.2  Effect of  SiO2

Silicon oxide nanoparticles are a classic variety of nano-
material. However, the studies related to the usage of  SiO2 
particles in refrigeration and air conditioning systems are 
not much widely available in the literature. Krishna et al. 
[89] study the character of silicon dioxide particles on heat 
transfer improvement and lubricant tribology properties 
inside a heat and mass transfer closed cycle. The blend of 
R134a/poly-alkylene/SiO2 was synthesized to define the 
heat transfer characteristics using different variables such 
as particle fraction, vapor quality, mass velocities, and heat 
flux. The author reported a maximum outcome of 163% for 
the HTC with a 0.4% nanoparticle fraction. It was noticed 
in various reports that a minor increment in pressure drop 

is common using nanorefrigerant instead of base refriger-
ant. In another work targeting thermal characteristics and 
heat transfer efficiency, Nawi et al. [90] used silica particles 
and hydrofluoro-ether based Newtonian nanorefrigerant to 
study flow boiling in a smooth horizontal pipe. The ideal 
volume fraction 0.02 vol. % of  SiO2 helped increase thermal 
conductivity by about 27% and an increment in refrigerant 
viscous behavior and boiling HTC. The author also reported 
that the rise in selected nanorefrigerant temperature reduced 
fluid conductivity and dynamic viscosity.

4.3  Effect of  TiO2

Bi et al. [91] examined a study related to the domestic VCR 
cycle using R600a/TiO2 nanofluid. Two parameters, cool-
ing capacity, and compressor work, investigated experimen-
tally. Considering  TiO2 fractions of 0.10 g/L and 0.50 g/L 
in R600a, the compressor work retained about 5.90% and 

Fig. 4  Heat transfer coefficients of nano-refrigerants at a mass flux of 120 kg/m2s [87]
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9.56%, respectively. Further, an outstanding variable, namely 
freezing velocity of R600a/TiO2 system, also expressed a 
good outcome compared to the conventional R600a based 
refrigerator. The author found similar outcomes when 
R134a/TiO2 nanorefrigerant was used in the same refrigera-
tor. Thus, the use of nanorefrigerant in domestic refrigera-
tors as working fluid is discussed as a suitable candidate for 
better improvements in performance.

Jiang et al. [92] designed a well small-scale  NH3 – water 
absorption refrigeration cycle to study the blend of  TiO2/
SDBS. Synthesized nanofluids with distinct mass concentra-
tions of  TiO2 nanoparticles of 0.1, 0.3, and 0.5 wt.% were 
employed, and the highest increased value of COP, about 
27%, was observed with 0.5 wt. % of titanium particles using 
0.02 wt. % fraction of selected surfactant.

Jatinder et al. [78] published a research report explaining 
a domestic refrigeration system's thermal conductivity and 
good performance. The author considered three candidates 
 (TiO2, R600a, and MO) to contrast with primary refrig-
erant LPG. Refrigerant R600a mass fraction of 40 g and 
 TiO2 fraction of 0.2 g/L were reported as optimum values 
of the whole study. Results showed a significant reduction 
in compressor work, compressor discharge temperature, and 
cooling time. Moreover, an increment of 62.54% in the coef-
ficient of performance was reported.

4.4  Effect of  Al2O3

Aktas et al. [93] investigated COP, compressor power, and 
evaporator heat rate concerned to compressor discharge 
and freezer temperatures, using five distinct synthesized 
nanorefrigerants containing aluminum oxide nanoparticles. 
The five various refrigerants (name: R134a, R430a, R12, 
R436a, R600a) were utilized to synthesize the selected 
nanorefrigerant. The author proposed a good enthalpy cal-
culation approach rooted in nanofluid density. The results 
discussed as the highest value of COP was achieved with 
R600a/Al2O3 blend. With this, refrigerants R12 and R134a 
showed the lowest value of compressor energy compared 
to others. Mahbubul et al. [94] experimentally determine 
the effect of thermal conductivity, viscosity, and density on 
COP of the cooling cycle.  Al2O3 with a volume fraction of 
5% mixed in R134a is considered to make the nanorefriger-
ant. At a temperature of 308 K, thermophysical properties 
such as density, λ, and µ of the synthesized nanorefrigerant 
enhanced about 27.50%, 10.9%, and 13.6%, respectively 
(shown in Fig. 5). Also, the improved thermal property of 
the selected nanorefrigerant increased the performance coef-
ficient of the cycle by about 15%, while density and specific 
heat improved by 3.1% and 2.5%, respectively.

Eid et al. [95] fabricated a refrigerator to target the study 
of the heat flow behavior of nucleate evaporation using 

refrigerant R141b and  Al2O3 particles. The designed sys-
tem contained a well-covered evaporator cabin with a steel 
material horizontal in the shape of around surface, a cooling 
unit, a condenser, and a control switchboard.

The author considered  Al2O3 nanoparticles with distinct 
fractions of 0.001%, 0.005%, 0.01%, 0.03%, 0.05%, and 0.1% 
with pure fluid R141b. The results showed that a maximum 
HTC of about 124% was achieved using a 0.05% fraction of 
 Al2O3 (Fig. 6). Further, the author observed that HTC achieved 
an increment only up to a volume fraction of 0.05%, and after 
that, a reduction was collected up to 0.1% volume fraction. The 
author reports this interesting matter is that employing more 
nanoparticles may resist the heat transfer as a layer deposited 

Fig. 5  Thermal conductivity of pure R134a vs. R134a/Al2O3 nanore-
frigerant as a function of temperature [94]

Fig. 6  The enhancement ratio vs. heat flux and surface roughness at 
distinct normalized pressures using  Al2O3 particles [95]
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above the heating surface. The author also drew a correlation 
based on 165 experimental tests performed in his study:

I refer to electric current, V as voltage, and δT is tempera-
ture variation. Further, it validated with the work of Cooper's 
proposed correlation [96]:

The literature shows very few studies on air conditioning 
cycles compared to domestic refrigerators. Considering  Al2O3 
nanoparticles at fractions of 0.1, 0.2, 0.3, 0.5, and 1 wt%, Hady 
et al. [97] performed a thermal energy characteristics test on 
an  H2O chilled cooling unit.  Al2O3/H2O nanofluid was syn-
thesized and used inside the cooling coil of the system. The 
author reported that the usage of  Al2O3 nanoparticles signifi-
cantly enhanced the cooling capacity of the air conditioner 
unit. For instance, the highest value of COP, about 17%, was 
achieved with 1 wt.% applied mass fraction.

4.5  Effect of multiwall carbon nanotubes (MWCNTs)

MWCNTs, referred to as multiwall carbon nanotubes, have 
high thermal conductivity compared to other metal oxide 
nanoparticles, making them a suitable candidate for efficient 
nanorefrigerant. According to a literature survey, MWCNTs 
based nanorefrigerant shows tremendous improvements in 
thermal property and flow boiling HTC compared to pure 
refrigerants [98].

Yang et al. [99] performed experimental research to study 
flow heat transfer properties of MWCNT/R141b nanorefrig-
erant, using distinct weight conc.of 0.10, 0.20 and 0.30 wt. 
%, Nusselt number, and Re number inside a channeled pipe. 
The report significantly received a heat transfer boost using 
MWCNTs in pure refrigerant, along with Nu number enlarge-
ment. The highest increment of the Nu number was reported 
by 41%. Also, the author observed an increment in fluid vis-
cosity and pressure drop with the addition of nanoparticles 
and surfactants. The author proposed a correlation for flow 
boiling of a single-phase forced convection HTC. The range 
of Reynolds number was mentioned of approximately from 
9000 to 15000.

Rel refer as Reynold number, Prl known as Prandtl 
number for liquids only, � known as particle fraction, λl 
represents as thermal conductivity for liquids, and d is the 
diameter. The above correlation achieved through modified 
well-known correlation developed by Winterton [100]:

(1)h =
4(IV)

πd2δT

(2)q0.67(55)

[

p

pcr

](0.12−0.2logRp)
[

−log
p

pcr

]−0.55

M−0.5

(3)h = Re0.7
l
Pr−1.22

l
(1 + �)

0.23
�l

d

S is the sheltering factor, h refers as heat transfer coeffi-
cient (HTC), E represents strength factor for two-phase flow, 
hpool defines the pool boiling HTC, q known as heat velocity, 
x is vapor grade, P and Pσ stands for fluid normal stress/pres-
sure and critical stress, M stands for molar mass, ρl stands 
for density for pure liquid and ρv refers as the density of 
vapors. Two correlations given by Jung and Radermacher 
in 1991 for flow boiling heat transfer phenomena have been 
written as below:

Xtt stands for Martinelli number, g is gravitational accel-
eration, ρg refers as density for the gaseous state, μl and 
μgas are the dynamic viscosities for pure liquid and gaseous 
states, respectively. Fr represents Froude number, and G is 
the mass velocity.

In a similar study performed by Lin et al. [101], the 
author published a report representing the outcomes of 
employing MWCNTs in R141b using the surfactant SDBS 
(sodium dodecylbenzene sulfonate). The application of nan-
oparticles in R141b efficiently improved the thermophysical 
properties, as reported by the author. The refrigerant R141b 
is a well suitable fluid with low GWP and ODP values for 
the refrigeration unit. Further, Kumar et al. [102] experimen-
tally studied heat transfer characteristics of MWCNT/H2O 
blend inside a tubular heat exchanging design. MWCNTs 
were distributed in the blend of  H2O and ethylene glycol 
(ratio of 70:30). In terms of results, the observed convective 
HTC was increased about 160% using 0.45 vol.% fraction 
of multi-walled CNT at temperature range 40 °C. Also, an 
increment of 19.37% was achieved for the thermal prop-
erty of the MWCNT/H2O-ethylene glycol blend. Moreover, 
the study mentioned that a small reduction in the Reynolds 
number at entire temperatures with a minor increment in the 
friction was observed. Finally, at a higher velocity and tem-
perature range, the optimum value of 0.15% of multi-walled 
CNT addition worked better.

Peng et al. [103] practically conducted research to see 
the outcome of CNTs in R113/oil-based nucleate pool boil-
ing design. The study considered different weight fractions 
of 0 to 30 wt.% for CNTs. The author used four kinds of 

(4)S =
1

(1 + 0.55E0.1Re0.16
l

)

(5)Xtt =

(

1 − x

x

)0.9
(

�gas

�l

)0.5(
�l

�gas

)0.7

(6)h = 3.9Fr0.24
l

(

x

1 − x

)0.64
(

�l

�v

)0.4

(7)Frl =
G

�2
l
gd
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carbon nanotubes which were categorized via different 
outer diameters range 15 to 80 nm and distinct length range 
within 1.4 to10 μm. The results showed the most remark-
able improvement of 61% for nucleate pool boiling HTC 
by reducing the outer nanotube diameter and increasing the 
particle length. The author formulated a new equation for 
nucleate pool boiling HTC by conducting approximately 300 
experimental tests. The heat flux (range:10 to 80 kW/m2) 
and the saturated pressure was 0.10 MPa. The author used 
the correlation given by Rohsenow in 1952 for heat transfer 
of the nucleate boiling flow [104]:

qnucleate represents the boiling heat flux, Csf stands for 
hypothetical constant, Tsat stands for saturated temperature 
and subjects to a combination of surface and fluid, n is also 
hypothetical constant.

Sun et al. [105] conducted an experimental work inside 
a pipe by the usage of two blends of multi-walled CNT-
carboxylic acid /R141b and MWCNT- hydroxide /R141b. 
Different variables such as thermal conductivity, mass flux, 
particle fraction, viscosity, and vapor quality at inlet condi-
tions were studied to focus on the outcomes of boiling HTC 
and the effect factor. The author declared that the maximum 
improvement about 23.5% for synthesized multi-walled CNT 
– carboxylic acid/R141b nanofluid and 15.17% for multi-
walled CNT-hydroxide/R-141b using 0.175% of particle 
concentration, mass flow of 120 kg/m2/s1 and vapor quality 

(8)qnucleate = �lhfg

[

g(�l − �v)

�

]0.5[cpl(Ts − Tsat)

csf hfgPr
n
l

]

range of 0.5 (graphical data shown in Fig. 7). The author 
used the below-mentioned method to find out the flow boil-
ing HTC:

qexp representsexperimental heat flux ranges from 5 – 25 kW/
m2.

Peng et al. [61] did a study on nucleate boiling heat flow 
rate using pure metallic copper nanoparticles inside R113/
ester oil blend. The author reported an excellent heat transfer 
improvement using Cu nanoparticles and also proposed a 
correlation of HTC of nucleate heat boiling phenomena by 
93% in accordance with the entire available practical record.

Choi et  al. [148] investigated the performance of 
MWCNT particles in the R134a refrigerator. The author 
reported that power consumption of compressor was reduced 
by about 17% using nanorefrigerant compared to a refriger-
ant with which the COP of the refrigerator improved around 
28%.

4.6  Other Nanoparticles

Maheshwary et al. [106] investigated the ZnO particles 
shape effect on heat flow and thermophysical character of 
R134a flowing inside an air-conditioning and refrigeration 
cycle. The study considered the cubic and spherical shape 
of particles. The outcomes reported a significant growth in 
thermal conductivity of nano-refrigerant, about 42.5% for 
cubic and 25.26% for spherical shape, respectively (Fig. 8). 

(9)hpool = 55(Pr)0.12
(

−lgPr
)−0.55

M−0.5q0.66
exp

Fig. 7  Heat transfer coefficient variations of the particle at distinct fractions using MWCNT/R141b nanorefrigerant [61]
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Also, an increment in dynamic viscosity and heat capacity 
decrement was observed. Peng et al. [107] used diamond 
nanoparticles and published an experimental report. The 
author synthesized an R113/diamond/VG68 nanorefriger-
ant to notice the heat transfer properties of nucleate boil-
ing. The outcomes showed an improved HTC of 63.5% 
compared to the base refrigerant. Some researchers studied 
the effect of nanoparticles employing inside heat transfer 
systems appended with renewable energy sources such as 
solar energy. For example, Ghafurian et al. [108] published 
a research report representing the influence of carbon-based 
nano-size particles on fluid evaporating rate enhancements 
inside solar connected generator type cycle.

Citing a few examples of the efficient results of heat 
exchange rate and thermal augment using nanorefrigerants 
inside solar-driven systems, Kumaresan et al. [102] used a 
blend of multi-walled carbon nanotubes in an  H2O-ethylene 
glycol mixture. The nanoparticle diameter ranges 30–50 nm 
in 10–20 μm in long with 0.45% fraction was used. In terms 
of results, a 19.36% increase was received in thermal con-
ductivity. Eid et al. [109] dispersed  Al2O3 particles having 
40 nm size and 0.001–0.10 vol. % in pure R141b fluid. The 
result showed a 124% improvement in the pool boiling HTC. 
Finally, most of the studies related to MWCNT, CuO, and 
 Al2O3 based nanofluids are the most efficient and suitable 
for practical applicability. Karthick et al. [145] studied the 
performance and exergy characters of the refrigerating unit 
using various nanoparticles ZnO,  TiO2, and  Al2O3 with 
R600a. The author mentioned 14.6% COP enhancement and 
7.5% improvement in exergy efficiency using nanorefriger-
ants. Sarrafzadeh et al. [146] published a thermodynamic 
and energy analysis study of R134a/Al2O3 refrigerators. The 

author mixed 0.05, 0.1, and 0.3 vol. % fractions of alumina 
particles in refrigerator one by one and found 2.69% reduc-
tions in compressor power at 0.1%  Al2O3 and 20% increment 
in an evaporator temperature gradient. Deokar et al. [147] 
investigated the heat transfer coefficient and pressure drop 
characters of flow boiling inside a smooth tube using R410a 
with ZnO and gamma-alumina nanoparticles. The author 
declared that thermal conductivity and viscosity have higher 
values using NPs in R410a and lower pressure drops. The 
overall heat transfer coefficient also had higher values in the 
case of nanorefrigerant (Table 3).

A new caste of nanofluid has been developed called io 
– nanofluids. These high thermal behavior nanofluids should 
be considered for application in HVAC&R systems [110].

5  Numerical reports on nanorefrigerants/
nanolubricants

According to the literature survey, few numerical reports 
represent nanorefrigerant performance of refrigeration 
and air conditioning cycles (Table 4 and 5). Helvaci and 
Khan [111] did a numerical investigation and studied the 
heat flow rate and entropy inception of selected refrigerants 
using  Al2O3, CuO, silica oxide,and MgO nanoparticles. The 
selected particles were utilized in pure HFE7000 (lubricant). 
The study considered particles fraction of 0 – 6 Vol. %, and 
the fluid flow was laminar flow. The author reported the 
study as 2D and stable state inside around pipe. The heat flux 
throughout the test was constant (1000 W/m2) and subjected 
to an upper surface of the tube. The work used an FVSF. The 
study resulted in the entropy inception ratio showing reduc-
tion with an increment in applied particles volume fraction 
(Fig. 9).

Further, MgO-based nanorefrigerant showed the least 
entropy inception ratio compared to other nanorefrigerants. 
The author proposed some equations for Nu number and 
frictional factor of selected nanorefrigerants using NRA.

For Nu number:

For friction factor:

(9)
Al2O3 − HFE7000 ∶ Nuave = 0.576(RePr)0.28(1 + �)

3.016

(10)
CuO − HFE7000 ∶ Nuave = 0.591(RePr)0.278(1 + �)

2.658

(11)
MgO − HFE7000 ∶ Nuave = 0.571(RePr)0.281(1 + �)

3.143

(12)
SiO2 − HFE7000 ∶ Nuave = 0.567(RePr)0.282(1 + �)

2.737

(13)Al2O3 − HFE7000 ∶ f = 48.492Re0−0.984(1 + �)
0.033

Fig. 8  Thermal conductivity of 134a using spherical and cubic shaped 
ZnO nanoparticles [106]
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Alawi et al. [112] conducted a numerical study to under-
stand the reaction of alumina/R141b nanorefrigerant on 
heat flow performance inside a high-temperature concen-
tric annulus cylinder using the CFD approach. The study 
involved the MG and Brinkman models in approximating the 
influence of thermal conductivity and dynamic viscosity of 
selected nanorefrigerant. The alumina/R141b nanorefriger-
ant achieved the most significant improvement in heat flow 
rate compared to other particles. The author reported phys-
ics behind this achievement is that alumina particles have 
the largest thermal conductivity compared to other particles. 
Also, the report represented that the maximum heat flow rate 
achieved at a high range of particles fraction and smaller 
particle diameters (20 nm) received the most remarkable 
heat exchange rate compared to large ones (30 nm). The 
study also reported that the heat flow rate of the selected 
nanorefrigerant improved by increasing the ΔT of the cyl-
inders, as per increment in Rayleigh number.

In their other report, Mahbubul et al. [113] published a 
simulation report on heat flow rate and pressure drop of syn-
thesized alumina/R134a nanorefrigerants. The authors con-
sidered nanoparticle fractions in a range of 1 vol. % to 5 vol. 
%, at constant velocity (5 m/s) and a uniform mass velocity 
(100 kg/m2s). The study was conducted on temperature vari-
ations from 300 to 325 K to count the effect of change in 
temperature on the thermal conductivity of selected nanore-
frigerants. The results showed that thermal conductivity and 
pressure drop of R134a refrigerant increases by increasing 
particles volume fractions. A method developed by Peng 
et al. [33] was used to define the flow boiling HTC and the 
equationis mentioned as below: (Eq. 17):

Here, hnr known as flow boiling HTC of nanorefrigerant 
and hr refers to flow boiling HTC of pure refrigerant.  FHT 
represents a nanoparticle impact factor, and it can be calcu-
lated through the below-mentioned equation:

where � is nanoparticle volume concentration, x refers as 
vapor quality of fluid, G is mass velocity, �p and �r known 
as the thermal conductivity of nanoparticles and refrigerant, 
respectively, 

(

�Cp

)

p
 known as multiplication of density and 

(14)CuO − HFE7000 ∶ f = 48.197Re−0.984(1 + �)
0.899

(15)SiO2 − HFE7000 ∶ f = 48.696Re−0.984(1 + �)
0.401

(16)MgO − HFE7000 ∶ f = 48.056Re−0.983(1 + �)
0.398

(17)h
nr
= F

HT
⋅ h

r

(18)

FHT = exp

{

�

[

0.8
�p

�r
− 39.94

(

�Cp

)

p

(�Cp)r,l

− 0.028G − 733.26x(1 − x)

]}
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heat capacity of the particles and (�Cp)r,l refers to the density 
multiplication of pure liquid refrigerant. At a temperature 
range of 300 K and nanomaterial fraction of 1.0 vol. %, the 
outcomes showed that λ improved only up to 4%, the lowest 
of other temperature ranges (Fig. 10).

Peng et al. [114] did a well-simulated work on the pool 
boiling heat flow rate of selected nanorefrigerants. The study 
considered the reaction of heating on particle movements 
through both physical testing and numerical testing. The 
author noticed that the movement of particles migration 
mechanism from a liquid state to vapor state in nanorefrig-
erants boiling is categorized into various activities such as 
bubble migration from the heating surface, bubble capturing 

the nanoparticles, movement of particles and bubbles in a 
liquid state. The study concluded that the nanoparticle frac-
tion during liquid state changes with respect to tenure, which 
leads to the compact bubble motion, and the movement of 
particles changes with respect to time.

Turgut [115] reported a numerical study that represents 
applications of R134a/Al2O3 nanorefrigerant inside a well-
designed shell and tube-type evaporator. The study consid-
ered various objectives for optimization such as the diameter 
of the shell, baffle spacing, nanoparticle fraction, particles 
diameter, number of pipes, number of pipe passes, length of 
pipe, fabrication cost, and cost of the condenser. The author 
concluded that the heat transfer rate greatly improved via 
appending  Al2O3 nanoparticles into pure R134a refrigerant. 
Also, the maximum overall HTC was increased by about 
18%, and the total value of the heat exchanger device was 
reduced by 5% using alumina particles in R134a.

In another well-designed study, Alawi et al. [116] con-
ducted a heat exchange study of copper oxide/R134a nanore-
frigerants using simulation. The authors considered particles 
fraction and temperature in a range from 1 – 5% and 300 
– 320 K, respectively. The study results that nanoparticle 
fraction and temperatures have efficient impacts over ther-
mophysical properties of the selected nanorefrigerants. The 
results found that the fluid's viscosity increases with the 
increment in nanoparticle fraction. On the other hand, vis-
cous behavior and density of fluid reduce with the increment 
in temperature. It was also found that the thermal conduc-
tivity of nanorefrigerant was improved by about 10% and 
8.13% for 1 vol. % and 5 vol. %, respectively.

Fig. 9  Entropy generation of synthesized nanofluids (at Re = 800) [111]

Fig. 10  Thermal conductivity ratio of nanofluid as a function of tem-
perature [33]
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Zohud et al. [117] performed a well-defined numerical 
study that focused on seeing the impact of selected nanore-
frigerants on heat flow properties inside a round pipe using 
a constant heat flux. The study considered four kinds of 
nanorefrigerants such as ZnO/R1270, CuO/R1270,  Al2O3/
R1270, and  SiO2/R1270. The author used ANSYS fluent for 
simulation and compared the outcomes of nanorefrigerants 
with those of base refrigerant. The Re number ranged from 
20000 – 100000, and the fluid flow pattern was turbulent. 
The particle's volume fraction is considered within 0 to 5 
percent. The author proposed two equations for the aver-
age Nu number and frictional factor of selected nanofluids 
flow inside the round pipe with turbulent flow. The diameter 
particle is fixed at 30 nm. In terms of outcomes, the author 
observed an enhancement in convective heat exchange coef-
ficient with the increment in Re number and the nanoparti-
cles fraction. The correlations are mentioned below:

Ajayi et al. [118] investigated a simulation study related 
to copper/R134a and copper/R600a nanorefrigerants flowing 
inside an expansion valve (capillary) of domestic VCR cycle 
using the computational domain. The results received from 
the simulation demonstrated that only R134a and R600a 
have more isotherms. It indicates that refrigerants can pre-
vent heat transfer very quickly. Furthermore, adding a 0.10% 
fraction of selected particles can improve the thermophysical 
behavior such as thermal conductivity, specific heat, density, 
and viscosity of the pure fluid.

Coumaressin and Palaniradja [119] conducted a thermal 
energy study of a domestic refrigerator based on R134a/cop-
per oxide nanorefrigerant, both experimental and numeri-
cal. The particle's volume fraction, diameter, and heat flux 
are considered in a range as 0 – 1%, 10 – 70 nm, and 10 
– 40 kW/m2, respectively. The author concluded that the 
evaporating HTC improves with the increment in particles 
fraction up to 0.5% and then reduces for all the values of 
heat velocity.

Hernandez et al. [120] numerically investigated the ther-
mal performance of the refrigeration cycle through different 
nanorefrigerants using a 2D approach in ANSYS. The author 
studied the heat transfer behavior of R113/CuO, R123/
CuO, and R134a/CuO nanofluids with a nanoparticle frac-
tion range from 1 to 5 vol. %. Two methods are available to 
incorporate the 2D process. Firstly, the Lagrangian–Eulerian 
approach is implemented when the particle volume concen-
tration is less than 10%. Second, the Eulerian approach is 
used when nanoparticle volume fractions are higher. In his 
published report, Akhbari et al. [121] write that the nano-
particles dispersed in nanofluids are in considerable amounts 

(19)Nuavg = 0.027Re0.792Pr0.475(1 + �)
−0.308

(20)f = 0.38Re−0.266

even for small volume concentrations. Thus, due to the high 
computational price, the Lagrangian–Eulerian method is not 
recommended. It concluded that all ofthe selected nanore-
frigerants give improved HTC with a significant increase 
in nanoparticle volume fraction (Fig. 11). Sidik and Alawi 
[122] numerically investigated the thermal characteristics 
of selected nanorefrigerants (R141b/SiO2, R141b/ZnO, 
R141b/CuO, and R141b/Al2O3) using ANSYS fluent. The 
study considered a computational domain consisting of an 
evaporator annulus. The author demonstrates the results on 
the average Nu number of selected various nanorefrigerants 
versus Re number (Fig. 12).

Kosmadakis and Neofytou [123] published a numerical 
report using various nanoparticles, including CuO, Cu, and 
 Al2O3 with refrigerants R134a and R1234yf. The collected 
results explain that with distinct particle fractions (range 

Fig. 11  Heat transfer coefficient of nanorefrigerant at 0.5 m/s veloci-
ties at inlet [121]

Fig. 12  Different nanorefrigerant effects on average Nu number [122]

1522 Heat and Mass Transfer (2022) 58:1507–1531



1 3

Ta
bl

e 
4 

 S
um

m
ar

y 
of

 n
um

er
ic

al
 st

ud
ie

s o
n 

na
no

re
fr

ig
er

an
ts

 a
nd

 n
an

ol
ub

ric
an

ts

A
ut

ho
rs

N
an

or
ef

rig
er

an
t/N

an
ol

ub
ric

an
t

Ty
pe

 o
f s

tu
dy

Ev
al

ua
tio

n
Re

m
ar

ks

H
el

va
ci

 a
nd

 K
ha

n 
[1

11
]

A
l 2O

3, 
C

uO
,  S

iO
2,

 a
nd

 
M

gO
 +

 H
FE

70
00

En
tro

py
 ra

te
Th

e 
stu

dy
 re

su
lte

d 
th

at
 th

e 
en

tro
py

 
in

ce
pt

io
n 

ra
tio

 sh
ow

s r
ed

uc
tio

n 
w

ith
 a

n 
in

cr
em

en
t i

n 
ap

pl
ie

d 
pa

rti
cl

es
 v

ol
um

e 
fr

ac
tio

n

Th
e 

en
tro

py
 p

er
fo

rm
an

ce
 o

f t
he

 
sy

ste
m

 u
si

ng
 d

iff
er

en
t s

ha
pe

s a
nd

 
si

ze
s i

s n
ot

 st
ud

ie
d

A
la

w
i e

t a
l. 

[1
12

]
A

l 2O
3, 

Zn
O

, C
uO

,  S
iO

2/R
14

1b
H

ea
t fl

ow
 p

er
fo

rm
an

ce
A

l 2O
3/R

14
1b

 n
an

or
ef

rig
er

an
t 

ac
hi

ev
ed

 th
e 

gr
ea

te
st 

im
pr

ov
em

en
t 

in
 h

ea
t fl

ow
 ra

te
 c

om
pa

re
d 

to
 o

th
er

 
pa

rti
cl

es

Th
e 

he
at

 tr
an

sf
er

 p
er

fo
rm

an
ce

 o
f 

se
le

ct
ed

 n
an

or
ef

rig
er

an
ts

 c
ou

ld
 a

ls
o 

ha
ve

 b
ee

n 
stu

di
ed

 fo
r r

ec
ta

ng
ul

ar
 

ge
om

et
ry

M
ah

bu
bu

l e
t a

l. 
[1

13
]

A
lu

m
in

a/
R

13
4a

H
ea

t t
ra

ns
fe

r p
ro

pe
rti

es
Th

er
m

al
 c

on
du

ct
iv

ity
 a

nd
 p

re
ss

ur
e 

dr
op

 o
f R

13
4a

 re
fr

ig
er

an
t i

nc
re

as
es

 
by

 th
e 

in
cr

ea
se

s o
f p

ar
tic

le
s 

vo
lu

m
e 

fr
ac

tio
ns

Th
e 

th
er

m
op

hy
si

ca
l p

ro
pe

rti
es

 a
re

 n
ot

 
stu

di
ed

 a
t d

iff
er

en
t m

as
s fl

ux
 a

nd
 

he
at

 fl
ux

 ra
te

Pe
ng

 e
t a

l. 
[1

14
]

–-
M

ig
ra

tio
n 

of
 n

an
op

ar
tic

le
s i

n 
po

ol
 

bo
ili

ng
 o

f n
an

or
ef

rig
er

an
t

Th
e 

stu
dy

 c
on

cl
ud

ed
 th

at
 

na
no

pa
rti

cl
e 

fr
ac

tio
n 

du
rin

g 
liq

ui
d 

st
at

e 
ch

an
ge

s f
or

 te
nu

re
, w

hi
ch

 
le

ad
s t

o 
th

e 
co

m
pa

ct
 b

ub
bl

e 
m

ot
io

n,
 a

nd
 th

e 
m

ov
em

en
t o

f 
pa

rti
cl

es
 c

ha
ng

es
 w

ith
 re

sp
ec

t t
o 

tim
e

Th
e 

stu
dy

 n
ot

 c
on

du
ct

ed
 fo

r 
na

no
pa

rti
cl

es
 sh

ap
e

Tu
rg

ut
 [1

15
]

R
13

4a
/A

l 2O
3

Sh
el

l a
nd

 tu
be

 e
va

po
ra

to
r

Th
e 

m
ax

im
um

 o
ve

ra
ll 

H
TC

 w
as

 
in

cr
ea

se
d 

by
 a

bo
ut

 1
8%

, a
nd

 th
e 

to
ta

l v
al

ue
 o

f t
he

 h
ea

t e
xc

ha
ng

er
 

de
vi

ce
 w

as
 re

du
ce

d 
by

 a
bo

ut
 5

%
 

us
in

g 
al

um
in

a 
pa

rti
cl

es
 in

 R
13

4a

Th
e 

H
TC

 o
f R

13
4a

 b
as

ed
 sh

el
l 

an
d 

tu
be

 e
va

po
ra

to
r f

or
 m

ul
tip

le
 

na
no

pa
rti

cl
es

 fo
r c

om
pa

ris
on

 is
 n

ot
 

stu
di

ed

A
la

w
i e

t a
l. 

[1
16

]
C

uO
 +

 R
13

4a
H

ea
t t

ra
ns

fe
r

It 
fo

un
d 

th
at

 th
e 

th
er

m
al

 c
on

du
ct

iv
ity

 
of

 n
an

or
ef

rig
er

an
t i

m
pr

ov
ed

 b
y 

ab
ou

t 1
0%

 a
nd

 8
.1

3%
 fo

r 1
 v

ol
. %

 
an

d 
5 

vo
l. 

%
, r

es
pe

ct
iv

el
y

Th
er

m
al

 c
on

du
ct

iv
ity

 o
f C

uO
/R

13
4a

 
na

no
flu

id
 n

ot
 st

ud
ie

d 
at

 d
iff

er
en

t 
pa

rti
cl

e 
sh

ap
es

 a
nd

 si
ze

Zo
hu

d 
et

 a
l. 

[1
17

]
Zn

O
/R

12
70

, C
uO

/R
12

70
,  A

l 2O
3/

R
12

70
 a

nd
  S

iO
2/R

12
70

H
ea

t fl
ow

pr
op

er
tie

si
ns

id
e 

a 
ro

un
dp

ip
e

Th
e 

au
th

or
 o

bs
er

ve
d 

an
 e

nh
an

ce
m

en
t 

in
 c

on
ve

ct
iv

e 
he

at
 e

xc
ha

ng
e 

co
effi

ci
en

t w
ith

 th
e 

Re
 n

um
be

r 
an

d 
th

e 
na

no
pa

rti
cl

es
 fr

ac
tio

n 
in

cr
em

en
t

Th
e 

co
nv

ec
tiv

e 
H

TC
 n

ot
 st

ud
ie

d 
fo

r 
va

rio
us

 h
ea

t fl
ux

 ra
ng

e

A
ja

yi
 e

t a
l. 

[1
18

]
C

u/
R

13
4a

 a
nd

 C
u/

R
60

0a
Fl

ow
-th

ro
ug

h 
ca

pi
lla

ry
 tu

be
A

dd
in

g 
a 

0.
10

%
 fr

ac
tio

n 
of

 
se

le
ct

ed
 p

ar
tic

le
s c

an
 im

pr
ov

e 
th

e 
th

er
m

op
hy

si
ca

l b
eh

av
io

r s
uc

h 
as

 
vi

sc
os

ity
, t

he
rm

al
 c

on
du

ct
iv

ity
, 

sp
ec

ifi
c 

he
at

, d
en

si
ty

, a
nd

 o
f t

he
 

pu
re

 fl
ui

d

Th
e 

eff
ec

t o
f g

eo
m

et
ry

 p
ar

am
et

er
s 

an
d 

op
er

at
in

g 
co

nd
iti

on
s s

uc
h 

as
 

ca
pi

lla
ry

 le
ng

th
, d

ia
m

et
er

, a
nd

 c
oi

l 
di

am
et

er
 a

re
 n

ot
 st

ud
ie

d

1523Heat and Mass Transfer (2022) 58:1507–1531



1 3

from 0 to 5 wt. %), the HTC raised to 6%, specifically dur-
ing both condensation and boiling phase. Further, an incre-
ment in performance coefficient of about 6%, a drop in 
pump energy consumption, and 3.5% enrichment in pressure 
drop also significant results. Zarei et al. [149] published a 
research report which elaborates the pool boiling heat trans-
fer coefficient of nanorefrigerant using ANN (artificial neu-
ral network) models available in the literature. The author 
studied various parameters such as heat flux, particles size, 
volume fractions of nanoparticles, thermal conductivity, and 
saturation pressure of flow boiling using nanorefrigerant. 
The study declared that the observed ANN having 19 hid-
den neurons could model a nanorefrigerant pool boiling heat 
transfer coefficient (Tables 4 and 5).

6  Effect of nanorefrigerant on power 
consumption

The dispersion of nanoparticles in pure refrigerants and 
lubricants significantly enhances the heat transfer rate and 
tribology characteristics, which delivers better system sta-
bility, which assists in power consumption saving [124]. 
Table 6 shows the power consumption of pure refrigerant 
R134a and R134a/TiO2 nanorefrigerant.

The use of nanolubricant inside a compressor crank has 
reduced the wearing, enhanced thermal dissipation, and bet-
ter lubrication characteristics, ultimately lowering the com-
pressor energy use [125]. Shengshan and Lin [126] fabri-
cated a vapor compression refrigeration cycle and studied 
R134a/TiO2 mixture at varying  TiO2 concentrations. The 
results showed that selected nanorefrigerant at 10 mg/L 
fractions normally and energetically work inside the cycle 
with low energy consumption compared to the pure refrig-
erant. In another theoretical study, Aktas et al. [127] mixed 
 Al2O3 nanoparticles with varying pure refrigerants, namely 
R12, R134a, R430a, R600a, and R436a, and received the 
highest increment on performance coefficient and reduc-
tions in power consumption when applied R600a/Al2O3 
nanorefrigerant. Kumar et al. [128] used ZnO particles at 
varying concentrations inside the R290/R600a based vapor 
compression unit and received a significant saving on the 
power consumption of about 7.48%. In another report by 
Kumar et al. [129], the ZnO particles at distinct fractions 
mixed in LPG refrigerant, and the results reported 10% 
reductions in compressor power consumption. Jwo et al. 
[130] experimentally investigate the performance coef-
ficient and power consumption of the refrigeration cycle 
using 0.05 wt%, 0.10 wt%, and 0.20 wt%  Al2O3 nanoparti-
cles with R134a fluid. The results showed 2.4% reductions 
in pumping power consumptions and a 4.4% increment in 
performance coefficient. Kumar et al. [130] experimented 
on a domestic vapor compression-based refrigeration unit Ta
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to study  Al2O3 particles using varying refrigerants, namely, 
R12, R22, R600, R600a, and R134a. The author evaluated 
that the power consumption of about 11.5% was reduced 
using a 0.06% mass fraction of  Al2O3 with base refrigerants. 
Kumar and Elansezhian [131] studied ZnO nanoparticles 
inside an R152a based vapor compression cooling unit. The 
author mixed varying ZnO fractions (0.1, 0.3 and 0.5 Vol. %) 
with R152a. The results showed that the applications of ZnO 
nanoparticles reduced the pumping power consumption by 
about 21%. Subramani et al. [132] investigated the effect of 
 TiO2 nanoparticles on R134a dependent vapor compression 
cooling rig and reported 15.4% less energy consumption 
using 0.3 g/L  TiO2 fractions. In a similar report of Kumar 
et al. [133], about 7% reductions in compressor energy were 
observed using CuO nanoparticles in LPG-based domestic 
refrigerating unit. Senthil et al. [134] mixed hybrid nanopar-
ticles CuO/Al2O3 in R600a refrigerant and studied various 
parameters of refrigerating test rig. The study reported 24% 
reductions in compressor power utilization using proposed 
nanorefrigerant compared to base refrigerant R600a. Joshi 
et al. [135] studied the effect of alumina oxide nanoparti-
cles inside a refrigerating machine using R134a and R600a 
refrigerants with mineral oil and polyester oil lubricant. The 

highest reduction in compressor power, about 31.85%, was 
reported at 0.1 wt. % fraction of  Al2O3 particles used with 
200 g of R600a/mineral oil blend. Nair et al. [136] tested 
 Al2O3 nanoparticles inside an R134a refrigerating unit. They 
reported maximum savings of about 6.1% on compressor 
energy utilization at saturation temperature of 307.15 K. 
Sabareesh et al. [137] studied varying fractions of  TiO2 
nanoparticles in an R134a refrigeration system and reported 
11% reductions in compressor work using 0.01 vol. % frac-
tion of  TiO2 with mineral oil as a lubricant.

7  Effect of nanorefrigerant on cooling 
capacity

Based on earlier reports, the nanorefrigerant enhanced the 
cooling capacity (time required to reach the desired tem-
perature) of the compression refrigeration system. Ahmed 
et al. [97] used  Al2O3 nanoparticles in a domestic vapor 
compression-based air conditioner unit and reported a 
significant enhancement in the cooling capacity of the 
air conditioner unit. The elapsed time required to cool the 

Table 5  Summary of numerical methods used in previous numerical studies

Authors Numerical method Numerical models

Thermal Conductivity Viscosity Other

Helvaci and Khan [111] The second-order 
upwind, SIMPLE 
algorithm

Hamilton and
Crosser

Einstein NA

Alawi et al. [112] FEM Maxwell–Garnetts
(MG)

Brinkman NA

Mahbubul et al. [113] NA Sitprasert et al. [150] Brinkman NA
Peng et al. [114] NA NA Brinkman Cole and Rosenhow [151] used to 

calculate the departure diameter of 
the bubble

Turgut [115] NA NA NA Shell HTC calculated through model 
given by Kern [152]

Alawi et al. [116] NA Koo and Kleinstreuer Tiwari and Das NA
Zohud et al. [117] SIMPLE algorithm Vajjha and Das Brinkman NA
Ajayi et al. [118] NA NA Brinkman NA
Coumaressin and Palaniradja [119] NA Maxwell – Eucken Einstein NA
Hernandez et al. [120] NA NA NA k – epsilon (turbulent model)
Akhbari et al. [121] VOF model NA Chon et al. [153] NA
Sidik and Alawi [122] NA NA NA NA

Table 6  Power consumption of 
pure R134a and R134a/TiO2 
nanorefrigerant [124]

TiO2 mass fraction (%) 0 (Pure R134a) 0.06  TiO2 0.1  TiO2 0.1 
(50 days 
later)

Power consumption (kWh/day) 1.077 0.849 0.796 0.8
Power saving (%) –- 21.2 26.1 25.7
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air was reduced using alumina nanorefrigerant compared 
to pure fluid. The experimental results reveal that nanore-
frigerant, due to its improved heat transfer coefficient, 
enhances the cooling rate of the refrigerating unit. Bi 
et al. [91] reported evaporation temperature performance 
of the R600a/TiO2 refrigeration system. The evaporation 
temperature is enhanced using nanorefrigerant, leading 
to a lower compartment temperature than the pure refrig-
erant. Figures 13 and 14 shows the graphical trend of 
evaporation and evaporator compartment temperatures, 
respectively.

Senthil et al. [134] mixed hybrid nanoparticles CuO/
Al2O3 in R600a refrigerant and studied various param-
eters of refrigerating test rig. The study reported the high-
est increased cooling capacity of 200 watts using 0.4 g/L 

nanorefrigerant blends, which is improved from 160 to 200 
watts. Joshi et al. [135] studied the effect of alumina oxide 
nanoparticles inside a refrigerating machine using R134a 
and R600a refrigerants with mineral oil and polyester oil 
lubricant. The reductions in the pull-down time about 23% 
using 0.1 wt. % fraction of  Al2O3 particles in 200 g mass of 
R600a/mineral oil blend was reported. Soliman et al. [138] 
mixed varying fractions of  Al2O3 nanoparticles with R143a 
refrigerant and studied various parameters such as perfor-
mance coefficient and freezing capacity to compare the 
performance of nanorefrigerant and refrigerant. The results 
showed that the time was reduced using a 0.1% fraction of 
nanorefrigerant and this reduction in time increases the cool-
ing capacity of the unit. Kundan and Singh [139] studied 
 Al2O3 nanoparticles in the R134a cooling cycle and reported 
that the cooling capacity of the refrigerating unit had been 
improved at an atmospheric temperature of 21 °C. Pico et al. 
[140] mixed diamond nanoparticles at 0.1 and 0.5 Vol. % 
fractions in R410a refrigerant to study the performance char-
acteristics of the refrigerating machine. The author reported 
that the cooling capacity of the cooling unit was improved 
using diamond nanolubricant. The highest cooling capac-
ity, about 7%, was enhanced using a 0.5% mass fraction of 
diamond nanoparticles.

8  Conclusions

The present paper targeted research reports available in the 
literature on experimental and numerical studies related 
to nanorefrigerants and nanolubricants. The experimental 
studies in nanorefrigerants and nanolubricants are avail-
able in a wide range, but the numerical investigation in this 
area shows a significant gap in the literature. Although, the 
numerical studies available related to nanorefrigerants per-
formance in refrigeration and HVAC systems are well dis-
cussed and help to understand the physics behind the com-
munication of nanoparticles with conventional fluid.

Most of the experimental studies focused on the perfor-
mance enhancement of domestic refrigerators and air con-
ditioners and pool boiling heat transfer rate of nanorefriger-
ants. The author noted that few studies had investigated the 
flow condensation heat transfer characteristics of nanore-
frigerants. The conclusions derived through the available 
research reports have mentioned as below:

1) Applying various nanoparticles in conventional refrig-
erants and lubricating oil enhanced the coefficient of 
performance (COP), freezing rate, and cooling capac-
ity. As a result, it reduced the energy consumption of 
domestic vapor compression refrigerators. Furthermore, 
the tribology properties such as friction coefficient and 
wear rate of refrigerator compressor were also enhanced Fig. 14  Evaporator cabin temperatures of R600a and R600a/TiO2 [91]

Fig. 13  Evaporation temperatures of R600a and R600a/TiO2 [91]
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using nanolubricants. Therefore, nanolubricants are a 
suitable method to minimize the electricity crisis in the 
HVAC and cooling industries.

2) The behavior of nanoparticles boosts the HTC of pool 
boiling and flow condensation of refrigerants. The size 
and shape of particles have a crucial role in the enhanced 
heat transfer rate of nanorefrigerants. Some studies rec-
ommended the usage of small size particles as they 
showed large improvements in the heat transfer coeffi-
cient of refrigerants. It also observed that the various var-
iables such as mass velocity, heat flux, and vapor quality 
are highly responsible for influencing the heat transfer 
rate of pool boiling and flow condensation phenomena.

3) In general, the addition of nanoparticles in lubricating 
oil enhanced the tribology characteristics of the refrig-
eration compressor, which further reduced its energy 
consumption. However, a few researchers reported 
increased compressor work due to a rise in fluid pressure 
drop if the volume fraction of nanoparticles in refrig-
erant were more than an optimum amount. Hence, to 
maximize the efficiency of the compressor and overall 
COP of the refrigeration unit, there is a further need to 
work on the optimum volume fraction of nanoparticles.

4) Nanorefrigerant reduced the time required to reach the 
desired cooling temperature of the compression refriger-
ation system. Nanorefrigerant is a superior heat transfer 
capability candidate that augments the flow condensa-
tion and boiling heat transfer coefficient in the refrigerat-
ing cycle. As a result, the freezing or cooling capacity of 
the VCR system gets enhanced.

5) In terms of numerical reports, most of the studies are 
available under the single-phase simulation method. 
Under this approach, the synthesized nanorefrigerant 
assumed a special and similar fluid. As a result, the pool 
boiling and convective heat transfer coefficients increase 
rapidly at higher nanoparticle volume concentrations in 
most studies.

6) The mass of nanoparticles in the liquid state decrease 
with time following pool boiling of nanorefrigerants, 
resulting in altering bubble movements and nanoparticle 
transport characteristics.

7) Lastly, it concluded that applying nanorefrigerants 
and nanolubricants inside heating and cooling systems 
improves performance. Therefore, nanorefrigerant had 
proved as a suitable candidate for improved efficiency 
of refrigeration and air conditioning systems.

9  Challenges and future prospective

Nanorefrigerant proved as a suitable candidate in the sec-
tor of refrigeration and air conditioning components due 
to its better heat transfer properties. However, the detailed 

literature available on the application of nanorefrigerant 
and nanolubricant in domestic and industrial refrigeration 
appliances still demands more numerical and experimental 
investigations. The below mentioned are some challenges 
and future demands to expand the study of nanorefrigerant 
in cooling and heating units:

1) The blending of low boiling point refrigerants like 
R134a, R600a, R32, etc., with nanoparticles on atmos-
pheric conditions, is a challenging concern. Therefore, 
more research needs to synthesize a low boiling point 
refrigerant-based nanorefrigerant without using any 
lubricant or oil.

2) Nowadays, industries are using natural refrigerants like 
 NH3 and  CO2 to decline environmental concerns. How-
ever, no literature study is available on natural refrigerant-
based nanorefrigerant. Moreover, the investigation related 
to the usage of metal and metal oxide particles with natural 
refrigeration fluids such as ammonia  (NH3) is a challeng-
ing issue due to the toxic nature of ammonia fluid, and 
accordingly, further research is needed.

3) Most investigations on pool boiling heat transfer using 
nanoparticles have been performed on industrial refrig-
erants such as R113 and R141b. However, more experi-
mental studies on boiling heat transfer coefficient of 
refrigerants having low GWP and ODP values such as 
R600a, R290, R1234yf, R1234ze using nanoparticles 
are required.

4) Research is needed to explore some crucial character-
istics, such as the dielectric aspect and surface tension 
of nanorefrigerants. Also, a new series hybrid nanofluid 
needs to use inside the cooling units to understand the 
effect of composite nanoparticles on heat transfer rate.

5) The use of high thermal conductivity nanoparticles 
such as graphite, gold, and diamond particles with pure 
refrigerants and lubricants shows a lack of study. It 
needs broad research to understand the physics behind 
the heat transfer efficiency of nanorefrigerants.

6) The studies related to flow condensation of nanorefriger-
ants inside the heat exchangers are not much available 
and demand additional investigations to recognize the 
heat transfer characteristics of nanorefrigerants on the 
condensation of cooling appliances. The flow regimes 
of nanorefrigerant during condensation inside the 
tube need to investigate, which is not observed by any 
researcher yet.

7) The researchers need to explore more analytical and 
numerical studies in nano refrigeration to understand 
the physics behind the improved heat transfer coefficient.
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