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Abstract
A domestic cookie baking process was modeled using nonlinear forward and inverse models to predict surface temperature,
moisture content and browning index that describe the baking quality of the end product. The baking processes were carried out at
different oven temperatures (160, 180, 200 °C) and the changes in surface temperature, moisture content and browning index
were determined to construct the identification models namely nonlinear polynomial models (PLN) and nonlinear artificial-
neural network (ANN) model. The parameters of the artificial models were optimized using least-squares estimation and
Levenberg-Marquardt optimization, respectively. The predicted baking characteristics in both forward and inverse phases were
in good agreement with the measured ones even for the browning index which was difficult to model because of the its
nonminimum-phase dynamics. The application results indicated that the developed intelligient models were very accurate,
having low root mean-squared errors, the ANN model approximated the desired values better than the PLN models for all the
state variables. Thus, the designed ANN models are applicable for the automatized industrial and domestic oven designs of the
future.
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1 Introduction

Baking process can be considered as a simultaneous heat and
mass transfer process where physical changes and highly
complex chemical reactions occur in the food product.
Convective ovens are widely used for domestic baking pur-
poses and also in the food industry. In a convective oven, heat
is transferred to the bakingmaterial by convection, conduction
and radiation, and simultaneously the moisture in the food
diffuses toward the surfaces, then it is removed from the sur-
face by convection [1]. During baking, foodmaterials undergo

changes in structure, taste, size, moisture content and color. It
is known that surface color is the first property affecting con-
sumer appreciation on baked products. The color of the sur-
face becomes an important factor in determining the accept-
ability of the product and directly affects the intention of the
purchase [2]. Browning index is a useful variable that is de-
fined to express the color change on the surface resulting from
caramelization and Maillard reactions [3]. Few researchers
modeled the browning of different sweet baked products. [4]
proposed a kinetic model in order to predict lightness variation
during cracker baking, [5] analyzed the effects of water activ-
ity and temperature on browning kinetics of biscuit baking,
and [6] suggested a kinetic model for both browning index
and acrylamide formation during baking process of cookies in
different type domestic ovens. The Maillard reaction is impor-
tant for development of surface color and flavor, but may also
be related to the formation of toxic compounds such as acryl-
amide [2]. Acrylamide is defined as a potential carcinogenic,
reprotoxic and neurotoxic contaminant for humans and usual-
ly formed during the heat treatment of starch-rich foods at
temperatures above 120 °C in the presence of asparagine [7].
The Maillard reaction, which is the main pathway for
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acrylamide formation in foods, depends on temperature, pH,
moisture content, the presence of metallic cations and the type
of sugar. In particular, the reaction is accelerated at medium
moisture level and at high temperature [8]. [9] stated that there
is a strong relationship between the development of surface
color of baked products and acrylamide formation.
Accordingly, it is thought that the moisture content and tem-
perature, as well as the browning on the product surface dur-
ing the baking process might be useful in predicting acrylam-
ide formation. Therefore, the moisture content, surface tem-
perature and browning index were chosen as the state vari-
ables in this study.

So far, various conventional methods such as analytical
method, numerical methods with finite difference and finite
element simulations, and regression methods have been wide-
ly used for the modeling of baking processes which are prin-
cipally heat and mass transfer problems. However, it is diffi-
cult to use a standard partial differential equation or model to
accurately describe the baking operation because of the com-
plicated thermo-physical properties of foods and uncertainties
during processing. Hence, an artificial intelligent model is an
alternative and promising tool to overcome these problems
and it is widely utilized in nonlinear function approximation
[10–13].

Artificial neural networks (ANN) are one of the popular
machine learning methods that provide the empirical solution
to the problems from a set of experimental data, and are capa-
ble of handling complex systems such as baking processes
with nonlinearities and interactions between decision vari-
ables [14]. In literature, linear and nonlinear identification
methods are developed for modeling of the industrial process-
es where polynomial models, artificial neural-networks, fuzzy
logic systems, extreme learning machines, support vector ma-
chines and etc. are often used for nonlinear modeling [15, 16].
Since the physico-chemical changes during the baking pro-
cess are not completely identified, the ANN modeling is an
appropriate model to relate the oven conditions with quality
attributes without requiring prior knowledge on the mecha-
nisms involved in the process [17]. Thus, the machine learn-
ing methos can eliminate the inflexibility of the baking pro-
cesses which are complex operations, especially when baking
a different type of product in a given oven or baking a given
product in a different type of oven [7]. Artificial intelligence
modeling has been successfully applied to the heat and mass
transfer problems such as predicting heat transfer coefficients
in end-over-end processing of cans [18], predicting of porosity
during air-drying of some fruits [19], modeling and control of
a food extrusion process [20], dynamic modeling of retort
processing [21], modeling and optimization of flat bread bak-
ing [17], modeling of the hardening process for Swiss-type
cheese [22], modeling of the heat and mass transfer during
drying of mango and cassava [23], predicting the moisture
content during grain drying process [24] and modeling and

predicting the moisture content, antioxidant capacity and an-
thocyanin of mahaleb puree [15].

In the present paper, discrete-time nonlinear input-output
identification models which are nonlinear polynomial models
(PLN) and nonlinear artificial-neural network (ANN) model
proposed and designed for the modeling of a domestic cookie
baking process in forward and inverse phases. For this pur-
pose, cookies were baked at three different oven temperatures
in a conventional domestic oven and the samples were taken
out at certain time intervals to determine the moisture content
and browning index. Furthermore, the time-temperature his-
tory at the top surface of the cookies was obtained during the
whole baking period. Then, the artificial models are optimized
in off-line sense using least-squares estimation and
Levenberg-Marquardt optimization. Consequently, in order
to show the modeling accuracies, root-mean squared error
(RMSE) criterion is used to test and compare the designed
models.

2 Materials and methods

2.1 Materials

The cookies were prepared by mixing 500 g of ready dry
cookie mixture (Dr. Oetker), 50 g of homogenized eggs and
175 g of vegetable margarine. The ready cookie mixture was
composed of wheat flour, sugar, baking powder and starch.
All the commercial ingredients were brought together for
∼10 min by hand kneading to obtain the cookie dough.
Then, the cookie dough was rolled into a layer of 1 cm thick-
ness by a roller, and cut by a circular aluminum cookie cutter
with a diameter of 5 cm. The initial moisture content of the
cookie dough was 19–20%.

2.2 Baking tests

Baking experiments were carried out in a domestic convec-
tional oven (Grundig GEBM 13000X) having 53 L cooking
chamber. The prepared dough was placed on the enameled
steel tray with a total of 3 pieces and the tray was placed in
the middle compartment of the oven. Baking experiments
were performed at three different temperatures of 160, 180
and 200 °C and natural convection conditions with upper
and lower resistances on. The total baking time was set to
40 min for all oven temperatures and the baking processes
were completed in 2 min periods. As the opening of the oven
door to sampling had a negative effect on the baking process,
the same amount of cookies was prepared using fresh dough
for each time interval and successive baking test was per-
formed. Thus, the baking conditions were kept constant by
providing the same oven load in each baking process. For all
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the tests, the oven was preheated until reaching the constant
preset temperature.

2.3 Temperature measurement

Surface temperature of the cookies was measured using K-
type thermocouple (wire diameter: 1.5 mm) and recorded with
a data logger (Testo, 176-T4) every 1 min during the baking
tests. The thermocouple was positioned at the top surface of
the cookie and fixed to the edge of the tray with the help of a
fire resistant sticky tape.

2.4 Moisture content

The moisture content of the cookies were determined using an
infrared moisture analyzer (Shimadzu, MOC 63u, Japan) at
130 °C and the results were validated by the standard oven
method. The samples were crushed into small pieces using a
ceramic mortar before the measurements.

2.5 Browning index

The surface color measurements of the cookie samples were
carried out with 3NHColorimeter NR-200 (Chinese), and CIE
L∗,a∗ and b∗ values were detected with 4 parallel readings at
each cookie. The browning index (BI value) was calculated as

BI ¼
100� a*t þ 1:79L*t

5:645L*t þ a*t −3:012b
*
t

−0:31

 !" #

0:17
; ð1Þ

where, a*t , b
*
t and L*t are the color values at a definite time (t)

of baking [25].

3 Artificial modeling of cookie baking process

The modeling of the cookie baking process is achieved in
terms of forward and inverse phases. Forward modeling
means that the designed models predicts the future output
values of the systemwith respect to system inputs. The cookie
baking process is assumed that it has time input and three
outputs surface temperature, moisture content and browning
index. Therefore, in the forward models, the inputs are the
functions of the time, however the output is the state variable
of the cooking baking process. Forward models can be written
as follows.

bxk ¼ f forward k; k−1; ; k−nð Þ; ð2Þ

where bx kð Þ is the predicted output state variable, fforward(.) is
the designed nonlinear artificial model, k is the time variable, n
is the delay of the time variable. By doing so the future values
of the variable can be predicted at any time instant. In case of
different, initial conditions and temperatures, another input
variables can be added as the inputs of the model.

On the other hand, inverse modeling accepts the state var-
iables as in functional form, however the time variable is pre-
dicted to corresponding inputs. Inverse model can be func-
tioned as follows.

bk ¼ f inverse xk ; xk−1; ; xk−nð Þ; ð3Þ

where bk is the predicted time variable, finverse(.) is the designed
nonlinear inverse model, xk is the state variable, n is the delay
of the state variable. By using the inverse models, any future
values of the time variable can be predicted at any desired
value of the states. Similarly here, the initial condition and
temperature are assumed same, if not, they can be also added
as one of the input parameters in the nonlinear regressor
models.

3.1 Polynomial Regressor model

The nonlinear polynomial regressor model (PLN) is designed
for forward modeling as follows.

bx ¼ bθ0 þ ∑m
j¼1
bθi; j k− jð Þi ð4Þ

where the bx is the approximated state output, bθi; j is the
parameter or weighting factors of the inputs. The n represents
the order of the polynomial, m is the largest delay of the
inputs. bx can be any state of the cookie baking process. For
instance, when the m = n = 2, then model becomes as

bx ¼ bθ0 þ bθ1k þ bθ2 k−1ð Þ þ bθ3 k−2ð Þ þ bθ4k2 þ bθ5 k−1ð Þ2 þ bθ6 k−2ð Þ2
ð5Þ

where θij indices are simplified to prevent misunderstand-
ing. The inverse polynomial regressor model is designed as

bk ¼ bθ0 þ ∑n
i¼1∑

m
j¼1
bθi; j xk− j� �i ð6Þ

where thebk is the approximated time output, bθi; j is the pa-
rameters. The bθ parameters are estimated using the least-
squares estimation which is explained later.

3.2 Artificial neural-network

In this section, the state variables or the outputs of the cookie
baking process are modeled as in nonlinear static function
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using artificial neural networks (ANN). So that each state has
been represented as a function of previous states with one
neural-network model. The state vector is considered as di-
rectly output of the neural-networks as follows.

bxk ¼ ANN k; k−1; ; k−nð Þ; forward modelð Þbk ¼ ANN xk ; xk−1; ; xk−nð Þ; inverse modelð Þ ð7Þ

The bxk are approximated or predicted outputs for the for-
ward model that is one of the temperature, moisture content
and browning index, respectively. The k, k − 1, , k − n are the

time indices. The bk is the predicted time variable for the in-
verse model. The designed artificial neural networks are inde-
pendent models for each state.

The ANNs are basically inspired by the neuron models and
learned by human learning mechanisms that are used for non-
linear function mapping. Therefore, according to function ap-
proximation theorem of neural networks, by using the enough
number of neurons and hidden layers, any linear and nonlinear
function can be approximated. A one hidden layer, multi-input
multi-output artificial neural network with H number of neu-
ron is shown in Fig. 1. In implicit form, the ANN model in
Fig. 1 can be formulated as

y ¼ wT
0ϕ w1xþ b1ð Þ ð8Þ

where the wi, i = 0, 1 parameter matrices and the b1 parameter
vector are to be optimized for regression. Thewo andw1 are the
output-layer and input-layer weighting matrices, respectively.
The b1 is hidden layer bias values. The bias values were used
to prevent the sleeping of the neurons. The ϕ(.) is an activation
function of a neuron in a layer. In this paper, sigmoid function,

ϕ xð Þ ¼ 1

1þ e −xð Þ ð9Þ

was used as an activation function of the neurons. They were
optimized by Levenberg-Marquardt (LM) optimization in off-
line sense. The LM optimization is a nonlinear least-squares
and gradient-based method and one of the fastest optimization
methods which is given in detail [26].

It is important to notice that two models are designed and
applied for the modeling of the cookie baking process. A linear
auto-regressive with exogenous (ARX) model and nonlinear
support vector machine (SVM) could be designed. The linear
ARX model is not employed since the data are nonlinear and
have nonminimum phase dynamics. In addition, from our pre-
vious study [15], we have seen that ANN model is preferable
compared to the SVM model for the less number of data.

3.3 Optimization of nonlinear models

The parameters of the nonlinear regressor models can be
trained in off-line sense. They are constructed as casual
models and the parameters are conventionally estimated using
linear and nonlinear least-squares methods.

3.3.1 Least-squares estimation of polynomial models

Though the polynomial models are nonlinear, they are in
linear-in-parameters form. Therefore, for off-line sense,
least-squares estimation method can be used to optimize its

parameters. Assume that a model output is calculated as by kð Þ
¼ ϕ kð ÞTbθ where ϕ(k) is the regressor matrix and bθ is the
parameter vector. Then using least-squares estimation as

bθ ¼ ϕTϕ
� �−1

ϕT y ð10Þ

where y is the system output to optimize model parameters
and also ϕ is the regressor matrix that is found using training
inputs from the system. The least-squares optimization is one
of the optimal unbiased estimators for linear estimation
problems.

b

f(.)

f(.)

f(.)

f(.)

1
Fig. 1 General one hidden-layer
ANNmodel with multi inputs and
multi outputs: forward modeling
(x:time, y1:temperature,
y2:moisture, y3:browning index),
inverse modeling (x1:temperature,
x2:moisture, x3:browning index
(see case1–3) and y1: time)
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3.3.2 Levenberg-Marquardt optimization of neural-networks

The parameters of the designed neural-networks are trained or
optimized using well-known conventional Levenberg-
Marquardt optimization. It is a gradient-based off-line optimi-
zation method. Instead of applying true inverse Hessian ma-
trix, LM employees the approximate Hessian approach. Its
parameter adaptation is given as follows.

bθ k þ 1ð Þ ¼ bθ kð Þ þ 1

JT kð ÞJ kð Þ þ μIM�M
JT kð Þe kð Þ ð11Þ

where bθ kð Þ is the complete parameter vector, e(k) is the iden-
tification error vector, J(k) is the Jacobian matrix of the output
with respect to each parameter, μ is the regularization param-
eter of the LM method to guarantee the batch error perfor-
mance. I is an identity matrix in the dimension of parameter
vector.

3.4 Performance criterion and data preprocessing

In order to test the model performance, testing inputs are used
to find the regressor matrix for testing part. Then, using esti-

mated bθ parameters, testing approximation outputs can be
estimated. To see the performance of the model compared to
system outputs, root-mean squared error criterion (RMSE) can
be used as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

k¼1 be kð Þ
��� ���2

r
ð12Þ

where N is the total number of the data and be kð Þ ¼ y kð Þ−by kð Þ
is the identification error of kth index. The input-output
dataset is normalized to small scales for the forward and in-
verse modeling since neural-networks do not work with large
values. The normalization of a x(k) variable between [−β, β] is
performed as

x kð Þ ¼ 2β
x kð Þ−xmin
xmax−xmin

−β; ð13Þ

where β is the normalization scale. xmin and xmax are the min-
imum and maximum values of the x variable. Normalization
process is performed before applying the inputs to the nonlin-
ear models. Therefore, the predictions are obtained in normal-
ized scale. In order to calculate the RMSE performances and
show the prediction results in real space, the predictions are
denormalized to the original scale as

bx kð Þ ¼ x kð Þ þ β
� � xmax−xmin

2β

� 	
þ xmin: ð14Þ

In this study, the dataset is first normalized to [−1, 1]
interval.

4 Computational results and discussion

The baking is a complex process resulting in a number of
physical, chemical and biochemical changes such as volume
expansion, water evaporation, formation of a porous structure,
denaturation of the protein, gelatinization of starch, crust for-
mation and browning reaction [27]. In particular, the brow-
ning degree is very important to define the acceptance of the
baked foods by the consumer as well as the flavor of the final
product. It can also be used to determine the degree of com-
pletion of the baking process, since the color development
takes place substantially in the final stages of the baking [5].
A wide range of quality changes during baking and potential
interactions between the process parameters (i.e. time, temper-
ature, air velocity, relative humidity) make difficult to control
the operation by the user. From this point of view, the product
quality can be estimated by artificial modeling without a priori
putting forward hypotheses on the underlying physico-
chemical mechanisms involved.

From the experimental cookie baking process, the state
variables, which are temperature, moisture content and brow-
ning index, were measured in time and the collected data from
the experiments are shown in Fig. 2 (a), (b) and (c), respec-
tively. The state variables dynamically change when the
heating is continued and the baking process was ended in
two-minute periods. It is seen in Fig. 2(c) that the browning
index has nonlinear and nonminimum phase dynamics.
Practically nonminimum phase dynamics mean that even
though the input variable is increased and applied in the right
direction, the observed output first goes to the inverse direc-
tion then comes back to the right direction. This property
makes difficult to model a nonlinear process. In the following
subsections, the forward and inverse modeling results are
demonstrated and performance results are given using
MATLAB environment. For completeness of the identifica-
tion models, the measured data is used for modeling where
60% of dataset is used for training and 40% of dataset is used
for testing the models. Even though both models are applied
for modeling, due to the better modeling results of ANN, its
identification results are plotted in the figures.

4.1 Forward modeling of baking process

Figure 3 shows the artificial neural-network based forward
modeling of the cookie baking process. The predicted surface
temperature profile of the cookies identified at different oven
temperatures is seen in Fig. 3(a). Known from the Fig. 3(a)
that the behavior of the surface temperature has a nonlinear
behavior with oscillations. The ANN model approximates
well the surface temperature at low oven temperatures in early
stages of baking. Besides, much oscillations were observed at
the high surface temperatures, so the ANN model did not
catch the all oscillating behavior. Therefore, the RMSE
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performances were obtained relatively large compared to oth-
er forward modeling results where its RMSE performances
can be seen in Table 1.

The forwardmoisture content modeling results are illustrat-
ed in Fig. 3(b) at different oven temperatures. The moisture
change has a nonlinear behavior with relatively easy charac-
teristics. It has a similar behavior with exponential decay. The
oven temperature changes the speed of the decay function.
The decline in the tangent of the surface temperature between
10 and 15 min directly affects the change in moisture content.
Therefore, there exist large errors in the approximations.

Figure 3(c) presents the forward modeling of the browning
index at different oven temperatures. From modeling point of
view, the nonlinear and nonminimum phase behavior of the
data set is the most difficult to approximate for approximation
models. As seen from the results, the modeling of browning
index is much accurate at low oven temperature. However, it
is not so good at high oven temperatures. The high oven tem-
perature causes oscillating and more nonlinear behavior of the

baking dynamics. In fact, this results are very important for the
standardization of the baked cookies. The last columns of
Table 1 shows the RMSE performance of the designedmodels
for browning index.

In the design of neural-networks, the number of the neu-
rons and training epoch are very important for a qualified
model. To define optimal number of the neurons, validation
set of the data is required. Since it is known that using much
number of the neurons and too much training of the neural-
network are not good for the generalization performance of
the neural-networks. For our experiments, it is evidently seen
that the difficulty of the data brings a relevant number of the
hidden-layer neurons. For the modeling of the surface temper-
ature, the best number of the neurons are found as 9 for the
best modeling performance. There exist small oscillations on
the data that needs a few neurons to solve it. But, for the
modeling of the moisture content, its behavior is very smooth
and monotone decreasing. Therefore, there is determined that
3 neurons are the best number of the network for such a good
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Fig. 2 Measured data from experiments: a surface temperature, b moisture, c browning index
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performance. The last data, browning index, is the relatively
difficult data due to its nonlinear and nonminumum phase
dynamics. Therefore, to solve this inverse dynamics, there is
determined that 30 neurons are needed in the neural-network.
With these number of the neurons, accurate results are obtain-
ed which are seen in the application results in Fig. 3.

4.2 Inverse modeling of cookie baking process

Remember that the modeling of a nonlinear process pro-
vides to user a functional relationship or computational

model between inputs and outputs. Therefore, we had
time inputs to predict the surface temperature, moisture
content and browning index as the outputs in the forward
modeling. In this section, inverse modeling can be de-
scribed as the prediction of required time for baking with
respect to desired moisture content and browning index. It
means that construction of a computational nonlinear
model imitate inverse functional of the cookie baking pro-
cess. The inverse model directly calculates the required
time for the given or preferred cookie properties. This
property will help to automatize and standardize the
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Fig. 3 Forward modeling results using ANN: a surface temperature, b moisture, c browning index

Table 1 RMSE performances of
forward modeling Surface Temperature Moisture Content Browning Index

Oven
Temp.

160➦C 180➦C 200➦C 160➦C 180➦C 200➦C 160➦C 180➦C 200➦C

PLN 1.9736 3.340 3.358 0.148 0.201 0.082 2.697 1.817 3.473

ANN 0.827 1.353 1.144 0.059 0.091 0.048 0.143 0.562 0.858
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domestic and industrial ovens which is the main goal of
this paper. The behavior of the collected input-output data
is more suitable for forward modeling since the real-time
system integrates the outputs via a differential equation
with time dependency. But inverse modeling forces to
model its inverse behavior. Therefore, the inverse model-
ing is not an easy task compared to the forward modeling.

For the polynomial modeling, after several modeling
experiments, the best regressor function is determined as

ϕ(k) = [1 x(k − 1) x(k − 1)2 x(k − 1)3]T. For the neural-
network design, 30 neurons are employed in the hidden-
layer. To improve the inverse modeling performances, a
feature extraction layer is used for the inputs. Three cases
are considered for inverse modeling. In those cases, the
moisture content and browning index are considered as
the preferable properties of the cookies after baking pro-
cess. Therefore, surface temperature is not used as the
input of the inverse models.
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Fig. 4 Case 1: Inverse modeling results using ANN: preferredmoisture content predicts baking time for different oven temperatures: a 160 °C, b 180 °C,
c 200 °C

Table 2 RMSE performances of
inverse modeling Case 1 Case 2 Case 3

Oven
Temp.

160➦C 180➦C 200➦C 160➦C 180➦C 200➦C 160➦C 180➦C 200➦C

PLN 0.705 0.944 1.182 3.764 3.062 2.190 0.215 0.643 0.894

ANN 0.085 0.129 0.498 2.285 0.310 0.210 0.018 0.010 0.02
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Case 1: Preferred moisture predicts baking time

The inverse model is constructed again using polynomial
model and artificial neural networks. The input of the nonlin-
ear models are used preferred moisture content of the cookies.
Then, the required time duration for the given moisture con-
tent is predicted using nonlinear models. Consider that the
x2(k) (preferred moisture) and in order to improve the inverse
model performance, the input is passed through a feature se-

lection layer given as x2 kð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1x2 kð Þp

sin 2x2 kð Þð Þ
 �
then fea-

tures are used as the inputs of the nonlinear models. Figure 4
shows the artificial neural-networks based inverse identifica-
tion results for the moisture content. Due to the moisture char-
acteristics, the inverse model can accurately be designed and
time output is predicted with very small errors at different
temperatures. Table 2 presents the corresponding RMSE re-
sults. At low oven temperature, very small errors of time

predictions are obtained. At the highest oven temperature,
0.495 min of prediction error is obtained.

Case 2: Preferred browning index predicts baking time

Consider in this case that the x3(k) (preferred browning
index) and the inverse modeling performance of the nonlinear
models are enhanced using the feature selection layer given as

x3 kð Þ2 e−0:1x3 kð Þ sin 0:5x3 kð Þð Þ
h i

. Then these features are used

as the inputs of the nonlinear inverse models. Figure 5 shows
the artificial neural-networks based inverse identification re-
sults and the RMSE performances are given in Table 2. We
know that the browning index has nonminimum phase dy-
namics, therefore forward modeling results have relatively
large prediction errors when oven temperature is increased.
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Fig. 5 Case 2: Inverse modeling results using ANN: preferred browning index predicts baking time for different oven temperatures: a 160 °C, b 180 °C,
c 200 °C
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For the inverse modeling, the time prediction errors are also
relatively large; however in this case, when the oven temper-
ature increases the modeling performance is increased and the
prediction errors are decreased.

Case 3: Preferredmoisture and browning index together pre-
dicts baking time

In the last case, the inverse models are constructed based on
the moisture content and browning index. To visualize the
results, both inputs and output are plotted in the three dimen-
sional plot seen in Fig. 6. The feature extraction layer is de-

signed as x3 kð Þ2e−0:2x1 kð Þ sin 0:5x2 kð Þð Þ
h i

where x2(k): pre-

ferred moisture content and x3(k): preferred browning index.
The obtained inverse models predicts required time accurately
for all the oven temperatures. The RMSE performance results
are given in Table 2. The models can produce time predictions
according to correlated moisture and browning index values.
However, if there is applied low moisture content and low
browning index values as the inputs of the inverse models,

the inverse models can not produce true time predictions,
since these input values are physically not occur together.

5 Conclusion

In this paper, surface temperature, moisture and browning
index of cookies are assumed as the state variables and used
for the modeling by machine learning based nonlinear poly-
nomial (PLN) and artificial-neural network (ANN) models in
forward and inverse phases. For the both phases, the ANN
model approximated the desired values better than the PLN
models for all the state variables. The best number of the
neurons were found as 9, 3 and 30 for the surface temperature,
moisture content and browning index, respectively. Three dif-
ferent cases were considered for inverse modeling which di-
rectly calculates the required time for the preferred moisture
content and browning index. The computational results
showed that the proposed ANN model predicted well the se-
lected quality characteristics of the cookie for the inverse
phase which might give a more useful information to the
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Fig. 6 Case 3: Inverse modeling results using ANN: preferred moisture content and browning index together predicts baking time for different oven
temperatures: a 160 °C, b 180 °C, c 200 °C

Heat Mass Transfer (2020) 56:2045–20552054



operator and would help to standardize the products.
Therefore, the designed ANN models can be embedded to
the automatized industrial and domestic ovens in the future.
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