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Abstract
In recent years, extensive research efforts have been devoted to flow boiling heat transfer mechanisms in macro and mini-
channels. However, it is still difficult to predict the flow boiling heat transfer coefficient with satisfactory accuracy. In this study,
support vector regression (SVR) models have been constructed using a respectable experimental database (767 samples) from the
literature to predict the heat transfer coefficient of R11 in mini-channels for subcooled (324 samples) and saturated (443 samples)
boiling regions. The prediction performance of the SVR-based models have been evaluated based on the statistical parameters.
SVR-based models have been found to exhibit an average absolute relative error (AARE) of 1.7% and correlation coefficient (R)
of 0.9996 for subcooled boiling, while for saturated boiling the values of AARE and R are 1.6% and 0.9993, respectively. Also,
the developed SVR-based models have been compared with the well-known existing correlations. The superior prediction perfor-
mance of SVR-based models has been observed with the lowest value of AARE and the highest value of correlation coefficient (R).
Furthermore, parametric effects of mass flux, vapor quality, heat flux and pressure on the flow boiling heat transfer coefficient have
also been investigated and the SVR-based models have been found to agree well with the experimental results.

Nomenclature
Bo Boiling number
C Cost function
Co Convective number
Cp Specific heat, J/kg.K
Dh Hydraulic diameter, m
f (x) Regression function
G Mass flux, kg/m2.s
h Heat transfer coefficient, kW/m2.K
hlg Enthalpy of vaporization, J/kg
k Thermal conductivity, W/m.K
K(xi,xj) Kernel function
L Dual form of the Lagrangian function
P Fluid pressure, kPa
Pe Peclet number
Pr Prandtl number
Q2

ext Leave-one-out cross validation for the test set

Q2
Loo Leave-one-out cross validation for the training set

R Correlation coefficient
Re Reynolds number
S Suppression factor
T temperature, K
q heat flux density, W/m2

xi Input vector
Xtt Lockhart-Martinelli parameter
yi Output vector

Subscripts
l Liquid phase
nb Nucleate boiling
sat Saturated
tp Two-phase
v Vapor phase
w Wall

Greek symbols
Γ Surface development parameter
σ Width parameter of RBF kernel
ε Loss function
γ Regularization parameter
λ and λ* Lagrange multipliers
ϕ(xi) High dimensional mapping feature function for

input vector x
K Thermal conductivity, W/m.K

* Sadaf Zaidi
s.zaidi.ke@amu.ac.in; sadaf63in@yahoo.com

1 Department of Chemical Engineering, Z.H. College of Engineering
and Technology, Aligarh Muslim University, Aligarh, UP 202002,
India

Heat and Mass Transfer (2019) 55:151–164
https://doi.org/10.1007/s00231-018-2459-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00231-018-2459-3&domain=pdf
mailto:s.zaidi.ke@amu.ac.in
mailto:sadaf63in@yahoo.com


μ Kinematic viscosity, kg/m.s
ρ Density, kg/m3

σ Surface tension, N/m
Abbreviations
AARE Average absolute relative error
ANN Artificial neural network
MRE Mean relative error
RBF Radial basis function
SVM Support vector machines
SVR Support vector regression
SRM Structural risk minimization
RMSE Root mean square error
SD Standard deviation

1 Introduction

Trichlorofluoromethane, R11 was supposed to be the first
widely used refrigerant as low-pressure centrifugal chillers.
R-11 is a non-corrosive, non-toxic, and non-flammable refrig-
erant. Its low operating pressures and relatively high compres-
sor displacement require the use of a centrifugal compressor.
Selection of refrigerant based on initial and operating costs,
system design, size, safety, reliability, serviceability etc. is
important for applications such as microprocessor cooling,
cooling of high power electronic equipment, compact heat
exchangers, and even compact fuel cells. Even though its
use has been discontinued in recent days due to its high ozone
depleting potential but enormous amount of experimental data
is available in literature that help to understand the mechanism
of flow boiling in mini-channels. In the present work, a part of
this data has been used to assess the applicability of SVR to

predict the heat transfer coefficient in mini-channels for both
the subcooled as well as the nucleate boiling regions. Future
work would entail the use of data on eco-friendly refrigerants
to develop more robust soft computing models. Based on the
hydraulic diameter, the flow channels have been grouped into
the conventional macro-channels, micro-channels and mini-
channels as follows [1–4]:

& Conventional channels: Dh ≥ 3 mm
& Mini-channels: 3 mm ≥Dh > 200 μm
& Micro-channels: 200 μm ≥Dh > 10 μm

Flow boiling heat transfer in mini-channels has attracted
the interest of many researchers. The use of mini and micro-
channels with suitable fluid could provide high heat transfer;
reduce the cost of material and save space. It has been found
from the literature that the flow boiling is governed by both
nucleate boiling and forced convective heat transfer mecha-
nisms. The heat transfer coefficient in nucleate boiling regime
is mainly dependent upon heat flux and mass velocity and
vapor quality has negligible effect on heat transfer coefficient
while in the forced convection boiling dominant regime, the
heat transfer coefficient has been found to be dependent on
mass velocity and vapor quality, and is less sensitive to heat
flux [5]. Furthermore, the forced convection boiling region is
usually related to the annular flow pattern, and the nucleate
boiling region with the bubbly and slug flow patterns [6, 7].
So, mass velocity, vapor quality, and heat flux, and flow pat-
tern help in recognizing the dominant heat transfer mechanism
in a micro-channel/mini-channel.

A good design of heat transfer equipment requires accurate
prediction of flow boiling heat transfer coefficient, as this

Fig. 1 The representation of
SVM for regression problem
using ε-insensitive loss function
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Table 1 Flow boiling heat transfer correlations

Authors Correlations Fluids/Parameters Range

Chen [34] htp = S. hnb + F. hsp

F ¼ 2:35
1

X tt
þ 0:213

� �0:736

if 1=X tt > 0:1

1 1 if 1=X tt ≤0:1

8<
:

S ¼ 1= 1þ 2:53*10−6Re1:17l

� �
Xtt

1−X
X

� �0:9 ρl
ρg

� �0:5 μl
μg

� �0:1
Re ¼ 1−xð ÞGtpDh

μl

hnb¼0:00122
k0:79l C0:45

p;l ρ0:49l

σ0:5μ0:29
l h0:24lg ρ0:24g

� �
ΔT0:24

sat ΔP0:75
sat

Vertical flow; water, methanol, cyclohexane,
pentane, benzene;

P: 1–34.8 bar
q: 6.2–2400 Kw/m2

x: 0.01–0.71

Gungor &Winterton [35] htp = (SS2 + FF2)hsp
Where,
hsp ¼ 0:023 Re0:8l Pr0:4l kl=Dh

Re1 ¼ 1−xð ÞGtpDh
μl

Pr1 ¼ Cpμl
Kl

S = 1 + 3000Bo0.86

F ¼ 1:12 X
1−X

� �0:75 ρl
ρg

� �0:41
S2 ¼ Frlo

0:1−2Frloð Þ if horizontal Frlo < 0:05
1 otherwise

�
Bo = q/(Gtp ∙ hlg)

Frlo
G2

tp

gDρ2l

Vertical and horizontal flow; R-11, R-12, R-22,
R-113, R-114, ethylene glycol and water;

D: 2.95–32 mm
m: 67–61,518 kg/m2 s
P: 0.08–202.6 bar
q: 1.1–2280 kW/m2

x: 0–1

Kandlikar [36] htp ¼ larger htp;nb
htp;cb

n
htp, nb = [0.6683Co−0.2f(Frlo) + 1058.0Bo

0.7Ff](1 − x)0.8hlo
htp, cb = [1.136Co−0.9f(Frlo) + 667.2Bo

0.7Ff](1 − x)0.8hlo

f Frloð Þ ¼ 1 for Frlo≥0:04
25Frloð Þ0:3 for Frlo < 0:4

�

Co ¼ 1−X
X

� �0:8 ρg
ρl

� �0:5
hlo ¼ f =8ð ÞReloPrl kl=Dð Þ

1þ12:7 f =8ð Þ12 Pr
2
3
l −1

� � for 104≤Relo5*106

f = (0.79 lnRelo − 1.64)−2

Vertical and horizontal flow; water, R-11, R-12,
R- 114, nitrogen, neon;

Bo: 0:03*10−4–46.5 *10−4

D: 4–32 mm
G: 13–8179 kg/m2 s
P: 0.4–64.2 bar
q: 0.3–2280 kW/m2

x: 0.001–0.987

Lazarek & Black [37] htp ¼ 30 Re0:857lo Bo0:714 kl
Dh

Relo ¼ GtpDh
μl

Bo ¼ q= Gtp∙hlg
� �

; x :< 0−0:60

R113
Bo: 2.3*10−4–76* 10−4

D: 3.1 mm
G: 125–750 kg/m2 s
Re: 860–5500
P: 1.3–4.1 bar
q:14–380 kW/m2

Lee & Mudawar [38] htp = 3.856 X0.267 hl for 0 ≤ x ≤ 0.05
htp ¼ 436:48 Bo0:522We0:351l X0:665 hl for 0:05 < x≤0:55
htp = Max (108.6X1.665hg, hg) for 0.055 < x ≤ 1

Water, R134a
D: 0.35 mm
G:127–654 kg/m2 s
P: 1.44–6.6 bar
q: 159–938 kw/m2

Liu & Winterton [39] h2tp ¼ Shnbð Þ2 þ Fhsp
� �2

F ¼ 0:35 1þ xPrl
ρl
ρg

� �h i
S ¼ 1

1þ0:055F0:1Re0:16ð Þ
hsp ¼ 0:023 Re0:8l Pr0:4l kl=Dh

D: 2.95–32.0 mm
G: 12.4–8179.3 kg/m2 s
Re: 568:9–8.75*105

q: 0.35–2620 kW/m2

Pr: 0.0023–0.895
x: 0–0.948
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parameter is responsible for the surface area and thereby the
weight and cost of the equipment. A number of correlations in
the literature can be found for the prediction of flow boiling
heat transfer coefficient [8–11]. But these correlations have
some limitations for their range of applicability under different
operating conditions. Olayiwola and Ghiaasiaan [12, 13] have
also applied and tried to predict the flow boiling heat transfer
coefficient with the several existing correlations using the
dataset available in the literature [14–16]. They have found
that the performance of each correlation is different for a dif-
ferent dataset, and none of the correlations could provide an
accurate prediction of all the three datasets. In the recent past,
support vector machines (SVMs) have been adapted for re-
gression. Support vector regression (SVR), a data-driven
modeling technique is able to map causal factors and conse-
quent outcomes from the observed patterns (experimental da-
ta), without deep knowledge of the complex physical process
and this modeling technique is now becoming popular among
engineers. Moreover, it offers a lot of advantages over the
traditional existing techniques like artificial neural networks
(ANN) in the sense that SVM gives a unique, optimal and
global solution for the quadratic programming problem, and
only two parameters need to be selected: upper bound and
kernel parameter. This is because of the structural risk mini-
mization (SRM) principle of SVM which provides good gen-
eralization performance. Two more advantages of SVMs are
that they have a simple geometric interpretation and give a
sparse solution. SVMs find use in many applications such as

in predicting the thermal-hydraulic performance of compact
heat exchangers [17], prediction of circulation rate in
thermosiphon reboilers [18], streamflow forecasting [19],
landslide prediction [20], time series prediction [21], pharma-
ceutical data analysis [22], prediction of heavy metal removal
efficiency from waste water [23, 24] etc. Its excellent predic-
tion performance to many real world problems has motivated
the authors to apply SVR for the modeling of both saturated
and subcooled boiling of R11 in mini-channels. To the best of
the authors’ knowledge, there is no published literature avail-
able on the application of support vector regression (SVR) for
modeling of flow boiling processes in mini-channels. It is for
the first time that SVR has been applied to predict the heat
transfer coefficient of R11 in mini-channels.

In this study, SVR-based models have been developed and
validated for both subcooled and saturated boiling with the
experimental data available from the literature of boiling flow
using the refrigerant R-11 [14]. Furthermore, the results ob-
tained from the developed SVR-basedmodels have been com-
pared with those obtained from several existing correlations.
The SVR-based models have shown a high degree of agree-
ment with the experimental results.

2 Abridged theory of SVR-based modeling

SVM theory in detail can be well understood from various
works in the literature [25–28]. SVR-based models do not suffer

Table 1 (continued)

Authors Correlations Fluids/Parameters Range

hnb = 55PR
0.12(−0.4343 ln PR)

−0.55q0.67

Shah [40] h = 230Bo0.67hlo Vertical and horizontal flow; water, R-11, R-12,
R-22, R-113, cyclohexane;

D: 1.1–27.1 mm
G: 10–11,071 kg/m2 s
Pr: 0.004–0.8
q: 0.2–1250 kW/m2

x: 0–0.95

Warrier et al. [41] htp = [1 + 6Bo1/16 − 5.3(1 − 855Bo)x0.65]hsp
………Saturated boiling
htp = [1 + 6Bo1/16 + 290(1 − 855Bo)Sc4.15]hsp
………Subcooled boiling
hsp ¼ 0:023 Re0:8l Pr0:4l kl=Dh

x : 0.03 − 0.5

FC-84
0.00027 ≤Bo≤0:00089
0.03 ≤ x ≤ 0.55
D: 0.75 mm
G: 557–1600 kg/ s m2

q: 59.9 kW/m2

Piasecka [42] h = 22.5 Γ(PeBo)0.64We0.46k/Dh

…………..Saturated boiling
h = 52 Γ−4(PelBo)

0.53We0.12k/Dh

…………..Subcooled boiling

FC-72
0.14 ≤ x ≤ 0.48
0.028 < Γ < 0.032
Saturated boiling
FC-72, R-123, R-11
411 ≤Rel ≤ 4730
0 <Γ < 0.032
Subcooled boiling
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from over-fitting problems i.e. high accuracy for training dataset
and low for test dataset (unseen) as they are based on the SRM
principle which always guarantees a unique, global and optimal
solution. SVR-based models do not rely on the amount of data.
Even with a fewer amount of data, they can give a good predic-
tion. However, the only disadvantage of using SVR technique is
that it requires optimization of the model and kernel parameters
to give excellent prediction with higher accuracy i.e. SVR-based
parameter needs to be optimized via some optimization

techniques like grid search methodology with 10-fold cross-val-
idation, genetic algorithm (GA), particle swarm optimization
(PSO), differential evolution (DE) etc.

In ε-SVR regression, a function is fitted so as to correctly
predict the outputs yi for a new set of independent input variables,
xi. Training dataset for a typical regression problem is as follows:

x1; y1ð Þ… x1; y1ð Þf g⊂X�R ð1Þ
where x denotes the space of the input patterns.

Table 2 Optimal parameters for the SVR-based model for predicting the subcooled flow boiling heat transfer coefficient

Model C γ = 1/2σ2 ε Kernel type Type of loss function Number of
support vectors

Number of
training points

Heat transfer coefficient, h 32,600 0.029 0.01 RBF ε - insensitive 145 259

Fig. 2 a Training course curve for
predicting the subcooled flow
boiling heat transfer coefficient,
h. b Test course curve for
predicting the subcooled flow
boiling heat transfer coefficient, h
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The regression function in the feature space can be estimated
as:

f x;wð Þ ¼ w●∅ xð Þ þ bð Þ ð2Þ
where, f is termed as feature function and w●ϕ(x) as the dot
product in the high dimensional feature space, F. SVR first maps
the input data into high dimensional feature space with a non-
linear mapping function.

The regularized risk function is minimized to compute the
coefficients as given below:

R fð Þ ¼ 1

2
w2
		 		þ C

1

N
∑N

i¼1Lϵ y; f x;wð Þð Þ ð3Þ

where, the first term of this equation is the model flatness and
the second term represents the empirical or training error and
is calculated by ε-insensitive loss function as proposed by
Vapnik [29] given as:

Lε
�
y; f x;wð Þ ¼ 0 if y− f x;wð Þj j≤ε

y− f x;wð Þj j−ε otherwise

�
ð4Þ

The regularization parameter C is a trade-off between the
empirical or training error and flatness of the model. Slack
variables ξ and ξ* are introduced to measure the deviation
larger than ε as demonstrated in Fig. 1 and the expression
for SVR can be mathematically given using Eq. (5):

Minimize
1

2
w2
		 		þ C ∑N

i¼1ξi þ ξ*i

Subject to yi−w●∅ xð Þ−b≤εþ ξið Þ
w●∅ xð Þ þ b−yið Þ≤εþ ξ*i

ξi; ξ
*
i ≥0

ð5Þ

Transforming Eq. (5) into the dual form using Lagrange
multipliers, λ and λ* and the final form is given as:

f x;λi;λ
*
i

� � ¼ ∑Nsv
i¼1 λi−λ*

i

� �
∅ xið Þ●∅ x j

� �� �þ b ð6Þ

The solution of Eq. (6) gives the values of the Lagrange
multipliers, λ and λ*. But, only those input vectors, xi with
non-zero coefficients of λ and λ* are the support vectors (SVs).

As the dimensions in the input space increase, the com-
putation in the feature space becomes cumbersome which
is called as the curse of dimensionality. So, to avoid this,
kernel functions are employed [30]. Kernel functions
transform the input space data into a linear representation
in the high dimensional feature space, thereby facilitating
all the computations to be carried out implicitly in the
input space instead of in the feature space [31, 32]. This
is called the kernel trick and the kernel function has the
following form:

K xi; x j
� � ¼ ∅ xið Þ●∅ x j

� �� � ð7Þ

Moreover, a kernel function must satisfy the Mercer’s con-
dition i.e. it should be symmetric, and positive semi-definite

Table 3 SVR-based evaluation indices based on statistical parameters
for subcooled boiling

Model Evaluation Indices
for Subcooled Boiling

Train data Test data

AARE (%) 0.81 1.71

R 0.99993 0.9996

RMSE 0.0109 0.0244

SD 1.8953 2.1585

MRE 0.0081 0.0168

Q2
LOO (Train data), Q2

ext (Test data) 0.9998 0.9992

Fig. 3 SVR simulation for
predicting the subcooled flow
boiling heat transfer coefficient, h
using optimal parameters
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[33]. The most commonly used kernel function is the
Gaussian radial basis function (RBF) defined below:

K xi; x j
� � ¼ exp −

xi−x j
		 		2

2σ2

 !
ð8Þ

where, σ denotes the width of the RBF and

γ ¼ 1

2σ2
ð9Þ

Thus, the basic SVR function carries the following form:

f x;λi;λ
*
i

� � ¼ ∑Nsv
i¼1 λi−λ*

i

� �
K xi; x j
� �þ b ð10Þ

Karush-Kuhn-Tucker (KKT) conditions are used to com-
pute the parameter, b, where the product between dual vari-
ables and constraints vanishes at the optimal solution.

3 Correlations for the flow boiling heat
transfer

For evaluating the heat transfer coefficient in micro and mini-
channels, eight different correlations given in literature have

been selected. Table 1 presents these selected correlations
along with their respective range of applicability.

3.1 SVR-based modeling procedure

The steps involved in the development of the SVR- based
model are [43, 44]:

& Collection of data as independent and dependent variables
& Data preprocessing (normalization and scaling of data)
& Dividing the whole dataset into training and test dataset

using simple random sampling technique (SRS)
& Selection of the appropriate kernel
& Optimizing the model parameters (C, ε) and kernel param-

eter (γ) with grid search methodology and k-fold cross-
validation.

& Model training with the optimum value of the model and
kernel parameters (C,ε, γ).

& Evaluation of model performance in terms of statistical
parameters such as average absolute relative error
(AARE), root mean square error (RMSE), standard devi-
ation (SD), mean relative error (MRE), leave-one-out

Fig. 4 Comparison of SVR-based
with the various correlations for
predicting the subcooled flow
boiling heat transfer coefficient, h

Table 4 Comparison of SVR-
based model with the existing
subcooled correlations using test
dataset

Correlations AARE (%) R SD Total error (%) RMSE

SVR 1.71 0.9996 2.1585 ±4 0.0244

Gungor & Winterton [35] 62.3 0.4449 2.6156 ±92 3.4537

Liu & Winterton [39] 127.17 0.4847 2.4341 ±367 0.5239

Warrier [41] 137.69 0.0703 2.7234 ±560 0.6978

Shah [40] 170.2 0.13995 2.302 ±564 0.6541

Lazark & Black [37] 72.31 0.1049 0.3004 ±95 10.1096

Piasecka [42] 32.7 0.43797 37.46 ±67 9.9876
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cross-validation on training dataset (Q2
Loo ) and leave-one-

out cross-validation on test dataset (Q2
ext ).

4 Results and discussions

The flow boiling heat transfer coefficient for R-11 has been
examined in a smooth copper tube with an inner diameter of

1.95 mm by Bao et al. [14]. They have performed the experi-
ment over a wide range of parameters with heat flux ranging
from 5 to 200 kW/m2; mass flux from 50 to 1800 kg/m2 s,
vapor qualities from 0 to 0.9, and system pressures from 0.2 to
0.5 MPa. Experiments performed by Bao et al. [14] have cov-
ered the whole saturated and subcooled boiling flow regime.

In this work, a comparative study of the existing correla-
tions for flow boiling heat transfer in micro/mini-channels has
been done. Furthermore, SVR-based models have been devel-
oped for predicting the flow boiling heat transfer coefficient in

Fig. 5 a Training course curve for
predicting the saturated flow
boiling heat transfer coefficient,
h. b Test course curve for
predicting the saturated flow
boiling heat transfer coefficient, h

Table 5 Optimal parameters for the SVR-based model for predicting the saturated flow boiling heat transfer coefficient

Model C γ =1/2σ2 ε Kernel type Type of loss function Number of
support vectors

Number of
training points

Heat transfer coefficient, h 500 0.0528 0.0418 RBF ε - insensitive 58 354
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mini-channels for saturated and subcooled boiling, using the
same dataset available from the published literature [14].

An SVR-implementation known as “ε-SVR” in the soft-
ware LIBSVM library [45] on MATLAB platform has been
used to develop the SVR-based models. A comparison of the
performance of the SVR-based models with the existing cor-
relations has been carried out based on statistical parameters
such as average absolute relative error (AARE), correlation
coefficient (R) etc. Moreover, the SVR-based models have
been used to predict the effect of various independent vari-
ables on the flow boiling heat transfer coefficient and compar-
ison has been made with experimental data.

4.1 Support vector regression-based model
for subcooled flow boiling heat transfer

The whole dataset of 324 samples for subcooled boiling has
been divided into the training dataset and the test dataset with
simple random sampling (SRS) technique, as 80% (259 data
points) and 20% (65 data points), respectively.

In the present work, the RBF kernel has been utilized as it
requires only one parameter to be adjusted and has been found
to give a good generalization performance than the other ker-
nels [27]. Grid search methodology with 10-fold cross-valida-
tion has been used to obtain the optimal values of the SVR-
based model and kernel parameters (C, ε, and γ) by varying
these parameters in a wide range of: C [25, 215], γ [2–15, 22]
and ε [2–15, 24] on the training dataset. In this process the
whole dataset has been partitioned into 10 equal parts.
Thereafter, 9 parts have been used to develop the model for
a fixed set of these parameters (C, ε and γ) and each time the
remaining one part has been utilized for validation (testing).
The optimal parameters have been those which give the low-
est mean squared error (MSE) [44, 46].

The value of regularization parameter C should not be too
large as it can over-fit the data. On the other hand a small value
of C increases the training error resulting in under-fitting and
the model does not properly fit the learning data. A large value
of epsilon ε encloses a small number of support vectors (SVs)
and thus results in more flat estimates (a low accuracy but
simple model). On the other hand a small value of ε has more
data points lying outside the tube giving a large number of
SVs. The kernel parameter gamma,γ in case of RBF kernel, is
the inverse of standard deviation, which basically measures
the similarity between two points. A small value of gamma
means a large variance i.e. the chances of over-fitting increase.
While a large value of gamma signifies a small variance
resulting in under-fitting of the function [47]. Keeping these
points in mind, the optimization procedure has been carried
out. Table 2 gives the obtained optimal values of the SVR-
based model parameters.

After obtaining the optimal values of the SVR parameters,
training and test course curves for subcooled boiling have
been constructed using training and test datasets as shown in
Figs. 2a and b respectively.

Fig. 6 SVR simulation for
predicting the saturated flow
boiling heat transfer coefficient, h
using optimal parameters for
training dataset and test dataset

Table 6 SVR-based model evaluation based on statistical parameters
for saturated boiling

Model Evaluation Indices For
Saturated Boiling

Train data Test data

AARE (%) 1.27 1.58

R 0.9997 0.9993

RMSE 0.0171 0.0243

SD 0.2066 0.2375

MRE 0.0126 0.0161

Q2
LOO (Train data), Q2

ext (Test data) 0.99989 0.99868
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Figure 3 shows that the predicted values of the subcooled
flow boiling heat transfer coefficient, h for the training data as
well as the test data lie close to the ideal fit line and all the
predicted data points lie within a total error of ±4%. Table 3
exhibits the model evaluation parameters of the SVR-based
model for both the training data as well as the test data during
subcooled boiling. The obtained values of model evaluation
parameters for the training data and test data reveal a high
accuracy with excellent prediction performance of the SVR-
based model.

4.1.1 Comparative analysis of SVR-based model
with the existing correlations for subcooled flow boiling heat
transfer

There are some common correlations available in the liter-
ature, which can be applied to both subcooled and saturated
boiling like Gungor & Winterton [35], Liu & Winterton
[39], Warrier [41], Shah [40], Lazark & Black [37] and
Piasecka [42]. A comparison has been made of the predic-
tion performances of the SVR-based model with the
existing correlations for the subcooled flow. Figure 4 gives
the superior prediction performance of the SVR-based mod-
el. Table 4 exhibits the relevant model evaluation parame-
ters for the SVR-basedmodel and the correlations on the test
dataset. The obtained results in Table 4 and Fig. 4 reveal that
most of the correlations did not predict the flow boiling heat
transfer coefficient very well, as opposed to the SVR-based
model, which may again be attributed to the fact that they
have been developed based on the empirical risk minimiza-
tion (ERM) principle while the SVR-based model has been
developed on the SRM principle. The SRM principle of
SVR optimizes the generalization accuracy over the empir-
ical error as well as the capacity of the machines or the

flatness of the model, while the ERM principle only mini-
mizes the empirical error and does not take into account the
model flatness. This results in overtraining i.e. high accura-
cy for training dataset and low for test dataset (unseen) giv-
ing poor generalization performance [25, 29]. The SVR-
based model gives the highest prediction accuracy followed
by Piasecka [42] and Gungor and Winterton [33].

4.2 Support vector regression-based model
for saturated flow boiling heat transfer

SVR-based model has also been developed for saturated
boiling using the data from the literature [14]. Again, the
whole dataset of saturated boiling with 443 samples has
been partitioned into the training dataset and test dataset
as 80% (354 data points) and 20% (89 data points), respec-
tively. A similar procedure has been carried out for
obtaining the optimal values of the SVR-based parameters
(C, ε, and γ). The finally obtained optimal values of the
model parameters are given in Table 5. It has been ob-
served that with 354 training data points, 58 SVs have been
obtained. The lesser the number of SVs, the more sparse is
the solution obtained.

After optimizing the SVR parameters, training and test
course curves for saturated boiling have been constructed
using training and test dataset as shown in Figs. 5a and b
respectively.

The model output for the training and test dataset, be-
tween the experimental values of heat transfer coefficient
h and those predicted by the SVR-based model, have been
shown in Fig. 6. It is evident that both the predicted values
for the training dataset as well as the test dataset lie close to
the ideal fit line. Moreover, all the predicted data points lie
within a total error of ±6%. Table 6 exhibits the model

Fig. 7 Comparison of SVR-based
with the various correlations for
predicting the heat transfer
coefficient, h during saturated
boiling
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evaluation parameters of the SVR-based model for both the
training data as well as the test data. The close proximity to
each other of the model evaluation parameters between the
training dataset and test dataset testify to the excellent pre-
diction performance of the SVR-based model and also to its
high generalizability.

4.2.1 Comparison of the SVR-based model with the existing
correlations for saturated flow boiling heat transfer

Prediction performance of the SVR-based model has been
compared with the existing saturated boiling correlations over
an ideal fit line shown in Fig. 7. Table 7 exhibits the relevant
model evaluation parameters for the SVR-based model and
the correlations on the test dataset. The obtained results in
Table 7 and Fig. 7 reveal that most of the correlations under-
predict the flow boiling heat transfer coefficient. However,
Gungor & Winterton [35], in particular, predicted the

experimental data with reasonable accuracy. The relatively
poor performance of these correlations to predict the experi-
mental data very well may be attributed to the fact that they are
not general and have been developed for different flow con-
ditions with different ranges. It can be easily surmised that the
SVR-based model is an immensely improved model in com-
parison to the existing correlations.

4.3 Parametric effects on flow boiling heat transfer
coefficient

In the this section, the effect of the various independent
variables viz. vapor quality (x), mass flux (G), system pres-
sure (P), and heat flux (q), on flow boiling heat transfer
coefficient (h) predicted by the SVR-based models are
discussed in the light of the experimental results and the
existing theory.

Table 7 Comparison of the SVR-
based model with the existing
saturated boiling correlations over
test dataset

Correlations AARE (%) R SD Total error (%) RMSE

SVR 1.58 0.9993 0.2375 ±6 0.0243

Chen [34] 85.02 0.6037 0.1986 ±96 10.3478

Gungor & Winterton [35] 15.23 0.9062 0.2396 ±40 0.2050

Liu & Winterton [39] 41.95 0.7136 0.2362 ±73 0.9896

Kandlikar [36] 63.28 0.3485 0.2328 ±91 4.0841

Shah [40] 40.95 0.7869 0.2362 ±69 0.9724

Lee & Mudawar [38] 85.42 0.0630 0.2362 ±93 29.1852

Lazark & Black [37] 90.47 0.9172 0.1866 ±98 10.5046

Warrier [41] 62.65 0.6757 0.1338 ±79 2.5858

Piasecka [42] 63.00 0.5651 1.4551 ±83 37.57

Fig. 8 A plot of experimental and
predicted heat transfer coefficient,
h of R11 versus vapor quality, x at
various mass flux (422 kPa inlet
pressure; 58 kW/m2 heat flux)

Heat Mass Transfer (2019) 55:151–164 161



4.3.1 The effect of mass flux and vapor quality on the flow
boiling heat transfer coefficient

Figure 8 shows the experimentally determined heat transfer
coefficient plotted against quality as a function of mass flux,
at constant heat flux and system pressure. Quality, x within
0 ≤ x ≤ 1 corresponds to the saturated boiling while x < 0
falls under the subcooled boiling region. Vapor quality, x
for saturated region varies between 0.001 and 0.84, while
heat transfer coefficient ranges from 4.35 up to 15.5 kW/
m2.K. It is clear from the Fig. 8 that the heat transfer coef-
ficient is independent of the mass flux and the vapor quality.
This can be attributed to the fact that the heat transfer is
dominated by nucleate boiling. Further, it has also been

observed that the predicted curve follows the same trend
as that of the experimental results.

4.3.2 The effect of heat flux on the flow boiling heat transfer
coefficient

Figure 9 shows the experimental and predicted trend of heat
transfer coefficient at a mass flux of 446.4 kg/m2.s at different
values of heat flux. It has been observed that the heat flux, q,
has a significant effect on heat transfer coefficient i.e. heat
transfer coefficient increases with increasing the heat flux.
The higher the heat flux, the higher the heat transfer coeffi-
cient [48]. The prediction performance of the SVR-based

Fig. 9 A plot of the experimental
and the predicted heat transfer
coefficient, h of R11 versus vapor
quality, x for different heat fluxes
(460 kPa inlet pressure; 446 kg/
m2.s mass flux)

Fig. 10 A plot of the
experimental and the predicted
heat transfer coefficient, h of R11
versus vapor quality, x, at
different pressures (heat flux is
120 kW/m2 and the mass flux is
446 kg/m2.s)
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models has been found to be in good agreement with the
experimental results as is evident from Fig. 9.

4.3.3 The effect of system pressure on the flow boiling heat
transfer coefficient

The obtained experimental results in Fig. 10 have revealed that
the heat transfer coefficient increases with increasing pressure.
An increase in pressure causes variation in fluid properties such
as decreasing surface tension and liquid-to-gas density (ρl/ρg)
which aids in the increase of the number of active nucleation
sites [49]. It is, therefore, evident that the heat transfer coefficient
in the nucleate boiling region is mainly affected by heat flux and
pressure and is less sensitive to mass flux and vapor quality. It
can be observed from Fig. 10 that the SVR-based models have
faithfully predicted the experimental trends.

Thus, it can be confidently stated that the developed SVR-
based models accurately depict the effect of the independent
parameters like mass flux, vapor quality, heat flux and pres-
sure on the flow boiling heat transfer coefficient of R11. This
accuracy of the SVR-based models is attributed to SRM. That
optimizes the generalization accuracy around the empirical
error and the model flatness or the capacity of SVM.

5 Conclusions

In this paper, the application of SVR for the prediction of the
flow boiling heat transfer coefficient of R11 in mini-channels
has been presented. It has been found that the SVR prediction
results are consistent with the experimental data. The simula-
tion results have been compared with the well-established
correlations found in the literature. It has been seen that the
SVR-based models are far superior in performance to these
correlations. Among the existing correlations, the predictions
of heat transfer coefficient by Gungor and Winterton [35] and
Piasecka [42] are the most accurate. The SVR-based models
were also tested for analyzing the effects of mass flux, vapor
quality, heat flux and pressure on the flow boiling heat transfer
coefficient in the subcooled boiling and the saturated boiling
regions. It was found that the SVR-based model faithfully and
accurately followed the same trend as depicted by the exper-
imental data with respect to all the independent parameters
such as mass flux, vapor quality, heat flux, and pressure, with
high accuracy. This high accuracy can be attributed to the
structural risk minimization (SRM) principle on which SVR
is based.
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