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Abstract
The present study aims at predicting and optimizing exergetic efficiency of TiO2-Al2O3/water nanofluid at different Reynolds
numbers, volume fractions and twisted ratios using Artificial Neural Networks (ANN) and experimental data. Central Composite
Design (CCD) and cascade Radial Basis Function (RBF) were used to display the significant levels of the analyzed factors on the
exergetic efficiency. The size of TiO2-Al2O3/water nanocomposite was 20–70 nm. The parameters of ANN model were adapted
by a training algorithm of radial basis function (RBF) with a wide range of experimental data set. Total mean square error and
correlation coefficient were used to evaluate the results which the best result was obtained from double layer perceptron neural
network with 30 neurons in which total Mean Square Error(MSE) and correlation coefficient (R2) were equal to 0.002 and 0.999,
respectively. This indicated successful prediction of the network. Moreover, the proposed equation for predicting exergetic
efficiency was extremely successful. According to the optimal curves, the optimum designing parameters of double pipe heat
exchanger with inner twisted tape and nanofluid under the constrains of exergetic efficiency 0.937 are found to be Reynolds
number 2500, twisted ratio 2.5 and volume fraction(v/v%) 0.05.
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1 Introduction

Energy saving is very important in the design, construction
and operation of industrial heat exchangers. Exergy analy-
sis is the relatively recent method to identify the location of
maximum exergy destruction so that necessary action can
be taken to increase the performance of the thermal system.
Many researchers have attempted to increase the effective
contact surface area with fluid to improve the heat transfer
rate and to reduce the entropy generation. Therefore, energy
saving is very important in the design, construction and
operation of the heat exchangers [1, 2]. The second law of

thermodynamics targets energy balance. Exergy is the max-
imum useful work under the given environmental condi-
tion. It depends on the state of the system under consider-
ation and state of environment. Inefficiencies in the process
and place of inefficiencies can be very well identified using
exergy analysis and thus, an exact place of improvement
can be selected for overall improvement. Traditionally,
thermodynamic analysis based on first law represents utili-
zation of energy only. It does not provide any idea about
losses and place of losses. Thus, application of exergy anal-
ysis has widely adopted in place of first law analysis. Based
on the exergy analysis, various systems can be compared
for thermodynamic inefficiencies. The performance of the
system can be improved by identifying the area of maxi-
mum exergy destruction and modifying the design/
parameters to enhance the exergy efficiency [2]. Exergy
analysis only suggests the area of maximum exergy de-
struction which can be modified. But along with exergy
analysis, cost of modification and payback period is also
essential. The overall cost of the system increases with in-
crease in the exergetic efficiency. Thus, increase in the
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economic cost of the system is followed by improvement in
performance of the system. Thermo-economic analysis
combines thermodynamic and economic analysis called
exergy-economic analysis [2, 3].

Bhuvaet et al. [4] have tried to save energy by increasing
the heat transfer coefficients in the cold and warm fluid sides
in the heat exchangers. Twisted tapes are best passive tech-
niques in literature. The effects of simple twisted tape and
without twist insert on both working fluids flowing through
the heat exchanger on exergy analysis parameter like effec-
tiveness, entropy generation rate, entropy generation number
and exergy loss are discussed and the effect of energy analysis
parameter like overall heat transfer coefficient is also studied.

Maddah et al. [5] investigated heat transfer efficiency of
water/iron oxide nanofluid in a double pipe heat exchanger
equipped with a typical twisted tape experimentally.
Experiments were conducted under the laminar and turbulent
flow for Reynolds numbers in the range of 1000 to 6000 and
the concentration of nanofluid was 0.01, 0.02 and 0.03 wt%.
In order to model and predict the heat transfer efficiency, an
artificial neural network was used. The temperature of the hot
fluid (nanofluid), the temperature of the cold fluid (water),
mass flow rate of hot fluid (nanofluid), mass flow rate of cold
fluid (water), the concentration of nanofluid and twist ratio
were input data in artificial neural network and heat transfer
was output or target. Implementation of various structures of
neural network with different number of neurons in the middle
layer showed that 1–10-6 arrangement with the correlation
coefficient 0.99181 and normal root mean square error
0.001621 is suggested as a desirable arrangement. In total,
comparing the predicted results in this study with other studies
and also the statistical measures shows the efficiency of arti-
ficial neural network.

Aghayari et al. [6] studied the effect of simultaneous
use of nanofluids and perforated twisted tapes. In this
work, the performance of water / iron oxide nanofluid in
a double pipe heat exchanger with perforated twisted
tapes is investigated under turbulent flow regime. The
results showed that the addition of nanoparticles increases
the heat transfer and the Nusselt number. Also, reducing
the twist ratio (H/D = 2.5) of perforated twisted tape and
using the nanofluid increase this value.

Maddah et al. [7] proposed new model to predict nanofluid
thermal conductivity based on Artificial Neural Network. A
two-layer perceptron feed forward neural network and back
propagation Levenberg-Marquardt (BP-LM) training algo-
rithm were used to predict the thermal conductivity of the
nanofluid. The results show that ANN modeling is capable
of predicting nanofluid thermal conductivity with good preci-
sion. The use of nanotechnology improves the heat transfer
fluid and the cost is exorbitant.

Paisarn Naphon [8] has investigated experimentally and
theoretically the entropy generation, exergy loss of a

horizontal concentric micro-fin tube heat exchanger with a
central finite difference method.

Yilmaz et al. [9] have studied double pipe heat exchanger
based on second-law based analysis and evaluated the effect
of entropy, exergy, entropy generation minimization and en-
tropy generation number.

Ebrur and Bicer [10] have studied the effect of heat transfer
rates, friction factor and exergy loss of various swirl genera-
tors having circular holes at different number and diameter on
double pipe heat exchanger. The results show that heat transfer
rates increase with decrease in diameter and with increase in
number of holes on the swirl generators. Moreover, the dimen-
sionless exergy loss and NTU increases with the increase in
number of holes number and the decrease in diameter of hole.

Zhao et al. [11] introduced a novel viscosity prediction
approach using artificial neural networks (ANN) as an alter-
native to the model-based viscosity prediction approach to
estimate nanofluids viscosity. Radial basis function (RBF)
neural networks was utilized to form viscosity prediction ar-
chitectures. Alumina (Al2O3)-water nanofluids were used to
test the effectiveness of the proposed method. The results
showed that RBF neural network model had a reasonable
agreement in predicting experimental data.

Li et al. [12] studied heat transfer enhancement and entropy
generation of Al2O3-water nanofluids laminar convective
flow in the micro-channels with flow control devices. The
results revealed that the relative fanning frictional factor f/f0
of the micro-channel with rectangle and protrusion devices are
much larger and smaller than others, respectively. As the
nanofluids concentration increases, f/f0 increases accordingly.
The micro-channels with cylinder and v-groove profiles have
better heat transfer performance; especially at larger Re cases,
while, the microchannel with the protrusion devices is better
from an entropy generation minimization perspective.
Furthermore, the variation of the relative entropy generation
S1/S10 are influenced by not only the change of Nu/Nu0 and
f/f0, but also the physical parameters of working substances.

Ji et al. [13] investigated the entropy generation analysis of
fully turbulent convective heat transfer to nanofluids in a cir-
cular tube numerically using the Reynolds Averaged Navier–
Stokes (RANS) model. To confirm the validity of the numer-
ical approach, the results have been compared with empirical
correlations and analytical formula. According to the results,
the intersection points of total entropy generation for water
and four nanofluids are observed, when the entropy genera-
tion decreases before the intersection and increases after the
intersection as the particle concentration increases.

In this work, Central Composite Design (CCD) and cas-
cade Radial Basis Function (RBF) were used to estimate the
exergetic efficiency of double pipe heat exchangers. The in-
puts include Reynolds number, volume fraction (v/v) and
twisted ratio(y/w). The exergetic efficiency of nanofluid is
considered as output. Central Composite Design requires 20
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experiments followed byANOVA, F-test, and residue analysis
to model the batch experimental system. In the present study,
the experimental data are obtained by designing an ANN,
which this is the novelty of this study.

2 Experimental

2.1 Experimental apparatus and method

The experimental investigation of heat transfer characteristic
of nanofluid was carried out using the experimental apparatus
as shown in Fig. 1. It mainly consists of a test section, receiv-
ing tanks in which working fluids are stored, heating and
cooling system, flow meter, control and ball valve, pressure
measurement system and data acquisition system. The work-
ing fluids were circulated through the loop by using variable
speed pumps of suitable capacity. The test section is of
1200 mm length with counter flow path within horizontal
double pipe heat exchanger in which hot nanofluid was ap-
plied inside the tube while cooling water was directed through
the annulus. The inside pipe is made of a soft copper tube with
the inner diameter of 6 mm, outer diameter of 8 mm and
thickness of 1 mm while the outside pipe is of steel tube with
the inner diameter of 14 mm,outer diameter of 16 mm m and

thickness of 1 mm. To measure the inlet and outlet tempera-
ture of the nanofluid and cold water at the inlet and outlet of
the test section, 4 J-type thermocouples with precision 0.1 °C
were used. This kind of thermocouple is used because of its
high accuracy and resistance. All thermocouples were cali-
brated before fixing them. All four evaluated temperature
probes were connected to the data logger sets. A 6 kW (kW)
electronic heater and a thermostat installed on it were used to
maintain the temperature of the nanofluid. During the test, the
mass flow rate and the inlet and outlet temperatures of the
nanofluid and cold water were measured. The temperature of
inlet water was 20 ± 0.1 °C and the flow rate of the water was
kept constant at 500 l/h.To measure the pressure drop across
the test section, differential pressure transmitter was mounted
at the pressure tab located at the inlet and outlet of the section.
The nanofluid flow rate was measured by a magnetic flow
meter which was placed at the entrance of the test section.
For each test run, it was essential to record the data of the
temperature, mass flow rates and pressure drop across the
section at steady state conditions. Two storage tanks made of
stainless steel with the capacity of 45 l were used to collect the
fluids leaving the test section. Hot nanofluid was pumped
from the fluid tank through the inner tube included twisted
tapes at different Reynolds numbers of 1000 to 6000. To en-
sure the steady state condition for each run, the period of

Fig. 1 Experimental setup
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around 15–20min, depending on Reynolds number and twist-
ed tapes, was taken prior to the data record.

One type of twisted tape inserts made from stainless steel
strips of thickness 12 mm were used.

2.2 Nanofluid preparation

The nanofluid was made by mixing in distilled water. TiO2-
Al2O3/water nanofluid with 0.01, 0.02, 0.03, 0.04 and 0.05%
volume fraction were prepared as working fluids. Surfactant
addition method was used for preparing nanofluid to this ex-
perimentation. Sodium Lauryl Sulphate (SLS) is used as sur-
factant. The method used for stabilizing the working fluid was
magnetic stirring at 1500 rpm and ultra-sonication (20 KHz)
for 1 h period to 1 l fluid. Figure 2 shows the scanning electron
microscopy (SEM) micrograph of TiO2-Al2O3/water nano-
composite. The average size of nanoparticles is estimated to
be about 20–70 nm.

3 Data reduction

Heat transfer rate of the nanofluid was calculated from the
difference between input and output temperatures of nanofluid
as the following equation:

Qnf ¼ m˙ nfCpnf Tout−Tinð Þnf ð1Þ

where Qnf is the heat transfer rate of the nanofluid and ṁnf is
the mass flow rate of the nanofluid. The heat transfer rate into
the cooling water was calculated from the following equation:

Qbf ¼ m˙ bfCpbf Tout−Tinð Þbf ð2Þ

where Qbf is the heat transfer rate of the base fluid and ṁbf is
the mass flow rate of the base fluid. Tout and Tin are respec-
tively outlet and inlet temperature of base fluid.

In this study, the supplied heat by the hot nanofluid
was found to be 3% higher than the received heat. This
deviation can be interpreted by convection and radiation
heat loss along the test section. The average heat transfer
rate Qave, is:

Qave ¼
Qbf þ Qnf

2
ð3Þ

However, in this study, the exergy analysis does not include
friction (or pressure drop) irreversibility and is based on only
heat transfer irreversibility. The entropy generation rate can be
written as follows [26]:

Sgeneration ¼ m˙ Cp

� �
hotln

T hotð Þout
� �

T hotð Þin
� �� �

þ m˙ Cp

� �
coldln

T coldð Þout
� �

T coldð Þin
� �� �

ð4Þ

Where T(hot)out is the outlet hot-side temperature,
T(hot)in is the inlet hot-side temperature, T(cold)out is
the outlet cold-side temperature, T(cold)in is the inlet
cold-side temperature, in ṁCp

� �
hot, ṁ and Cp are re-

spectively mass flow rate and specific heat at constant
pressure of hot fluid and in ṁCp

� �
cold

, ṁ and Cp are

respectively mass flow rate and specific heat at constant
pressure of cold fluid. The exergy efficiency or second
law efficiency is as [26]:

E¼1−
CP;nf Tout−Tinð Þ−T0CP;nf ln

Tout

Tin

� �
þ ΔP

ρnf

CP;nf Tin−T0ð Þ−T0CP;nf ln
Tin

T0

� �
þ ΔP

ρnf
þ CP;nf Tout−Tinð Þ 1−

T0

T

� �

ð5Þ

where ΔP is the measured pressure drop of the nanofluid, CP is
the specific heat, T0 is the reference dead temperature and ρnf
is the density of nanofluid.

4 Response surface methodology

In most RSM problems, the form of the relationship
between the response and the independent variables is
unknown. Thus, the first step in RSM is to find a suit-
able approximation for the true functional relationship
between Y (response variable) and independent variables
set. Usually, a low-order polynomial in some region of
the independent variables is employed. If the response
is well modeled by a linear function of the independentFig. 2 SEM micrograph of the TiO2-Al2O3/water nanocomposite
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variables, then the approximating function is the first-
order model [27].

Y ¼ β0 þ ∑
k

i¼1
βixi þ ε ð6Þ

where Y is a response variable; k is the number of variables, β0
is the constant term, βi represents the coefficients of the linear
parameters, xi represents the variables, and ε is the residual
associated to the experiments.

The next level of the polynomial model should con-
tain additional terms, which describe the interaction be-
tween the different experimental variables. This way, a
model for a second-order interaction presents the following
terms [28]:

Y ¼ β0 þ ∑
k

i¼1
βixi þ ∑

k

i¼1
βiix

2
i þ ε ð7Þ

Where βii is a constant. In order to determine a critical point
(maximum, minimum, or saddle), it is necessary for the poly-
nomial function to contain quadratic terms according to the
equation presented below [28]:

Y ¼ β0 þ ∑
k

i¼1
βixi þ ∑

k

i¼1
βiix

2
i þ ∑

k

1≤ i≤ jk
βijxix j þ ε ð8Þ

where βij is a constant, too. A second-order model can signif-
icantly improve the optimization process when a first order
model suffers from lack of fit due to interaction between var-
iables. For present study, factors and levels of process param-
eters are shown in Table 1.

The first requirement for RSM involves the design of
experiments to achieve adequate and reliable measurement
of the response of interest. To meet this requirement, an
appropriate experimental design technique has to be
employed. The experimental design techniques commonly
used for process analysis and modeling are the full facto-
rial, partial factorial and central composite designs. A full
factorial design requires at least three levels per variable to
estimate the coefficients of the quadratic terms in the re-
sponse model. A partial factorial design requires fewer

experiments than the full factorial design. However, the
former is particularly useful if certain variables are already
known to show no interaction. An effective alternative to
factorial design is central composite design, requiring
many fewer tests than the full factorial design and has been
shown to be sufficient to describe the majority of steady-
state process responses. Hence in this study, it was decided
to use CCD to design the experiments. Hence, the total
number of tests required for the three independent vari-
ables is 23 + 2 × 3 + 6 = 20 as shown in Table 2. [14]. All
the experimental values are shown in Table 2.

5 Artificial neural networks

Due to their simplicity, flexibility, availability and large
modeling capacity [15–17], the non-linear mathematical
models of artificial neural network (ANN) get great attention.
The processors are analogous to biological neurons in human
brain. The feed forward neural network has been become the
most popular in engineering applications [18, 19]. As shown
in Fig. 4, this ANN configuration has one input layer, one
hidden layer and one output layer. During the feed forward
stage, a set of input parameter is supplied to the input nodes

Table 1 Experimental range and levels of independent variables

Coded factors Parameters Levels

-1 0 1

A Reynolds number 2500 7250 12,000

B Volume fraction (v/v %) 0.01 0.03 0.05

C Twisted ratio(y/w) 2.5 3.85 5.2

Table 2 Experimental design in terms of coded factors and results of
central composite design (CCD)

Std Run Factor 1 Factor 2 Factor 3 Response 1
A:Reynolds
number

B: volume
fraction (v/v %)

C:twisted
ratio(y/w)

Exergetic
efficiency

13 1 7250 0.03 2.5 0.53

5 2 2500 0.02 5.2 0.37

8 3 12,000 0.05 5.2 0.43

15 4 7250 0.03 3.85 0.61

1 5 2500 0.02 2.5 0.51

6 6 12,000 0.02 5.2 0.4

3 7 2500 0.05 2.5 0.92

7 8 2500 0.05 5.2 0.89

14 9 7250 0.03 5.2 0.55

17 10 7250 0.03 3.85 0.54

19 11 7250 0.03 3.85 0.55

16 12 7250 0.03 3.85 0.57

10 13 12,000 0.03 3.85 0.31

2 14 12,000 0.02 5.2 0.37

12 15 7250 0.05 3.85 0.43

20 16 7250 0.03 3.85 0.4

11 17 7250 0.02 3.85 0.33

9 18 2500 0.03 3.85 0.76

4 19 12,000 0.05 2.5 0.66

18 20 7250 0.03 3.85 0.54
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and the information is transferred forward through the net-
work to the nodes in the output layer. The nodes perform
non-linear input–output transformations by means of sigmoid
activation function. The mathematical background, the proce-
dures for training and testing the optimize ANN model, and
account of its history can be found in the text by Haykin [20].
In developing an ANN model, the available data set (70–80%
of the data [21]) is divided into two dataset: the first dataset is
used to train the ANN model, and then it is validated with
another dataset. The training process of the ANN model can
be done by comparing with the predicted results of the ANN
model to the input data. The weights and biases are changed in
order to minimize the error between the predicted output
results and the input data. The scheme used in this
study is the back propagation algorithm. The proposed
ANN model configuration is set by selecting the num-
ber of hidden layer and the number of nodes in hidden
layer. There are many training functions can be adopted
in the training process, which the backward propagation
algorithms are used in the present study. For all back-
ward propagation algorithms, a three-layer ANN model
with a tangent sigmoid transfer function (tansig) for
hidden layer and a linear transfer function (purelin) for
output layer are used. The Levenberg–Marquardt algo-
rithm with a minimum MSE and R is used as the train-
ing function because of its higher stability and faster
convergence rate. An artificial neuron is a basic pro-
cessing element in modeling AANs and is characterized
by weights (w), a bias (b), and a transfer/activation function
(f). The weight values are set using a random number gener-
ator. The inputs to each neuron are multiplied by the weight
values and the results are added with each other and with the

bias value. Then, the neuron output is extracted through a
suitable transfer function according to Eq. (9).

Yj ¼ f ∑
n

i¼1
wj;ixi þ bj

� �
ð9Þ

where x is the incoming signals, Y is the output and n is the
number of neurons that connect to the jth neuron.

Table 3 Analysis of variance (ANOVA) for response surface quadratic model for exergetic efficiency

Source Sum of squares df Mean square F -Value p-value Prob > F

Model 0.45 9 0.050 4.95 0.0099 Significant

A-Reynolds number 0.100 1 0.100 9.80 0.0107 Significant

B-volume fraction (v/v%) 0.11 1 0.11 11.01 0.0078 Significant

C-twisted ratio(y/w) 0.014 1 0.014 1.38 0.0469 Significant

AB 0.045 1 0.045 4.40 0.049 Significant

AC 1.414E-003 1 1.414E-003 0.14 0.0314 Significant

BC 1.682E-004 1 1.682E-004 0.017 0.0472 Significant

A2 0.014 1 0.014 1.37 0.0212 Significant

B2 0.019 1 0.019 1.83 0.0344 Significant

C2 0.016 1 0.016 1.57 0.0293 Significant

Residual 0.10 10 0.010

Lack of fit 0.076 4 0.019 4.40 0.0531 Not significant

Pure error 0.026 6 4.300E-003

Cor total 0.55 19
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5.1 Modeling method based on radial basis function
(RBF) neural networks

The networks with radial circuit function are widely used to
non-parametric estimation of a multi-dimension function via a
limited set of training data. The radial neural networks due to
their rapid and comprehensive learning are very helpful and
particularly attractive [22]. It is worthy to note that these net-
works only by having one latent layer propose such properties.
Often, these networks are compared with error post-
propagation neural networks. The input layer is only an input
layer and any processing doesn’t occur there. The second lay-
er or latent layer make a non-linear matching between input
space and another space typically with a larger dimension and
has an important role in converting the non-linear patterns to
separable linear patterns. Finally, the third layer provides the
weight sum along with a linear output. If it is used a RBF, this
output will be useful but if necessary to classify the patterns,
thus it can apply a rigid limiter or a sigmoid function on output
neurons to produce the output values as 0 or 1. As it is clear
from above explanations, the unique feature of this network is
the processing that is done in latent layer. The function of
latent layer can be expressed as follow:

F xð Þ ¼ ∑
p

j¼1
wj∅ x−u j

�� ��� � ð10Þ

This relation shows that to estimating the f function from p
function, a radius is used that has uj as centroid. The || x − uj ||
Symbol is a function of distance in space of Rn that typically is
selected as Euclidian distance. Since that the curve of radial
circuit functions has the radial symmetry, thus the neurons of
latent layer is called as Bradial function neurons^. The famous
function in radial networks is the Gussy or exponential func-
tion as follow:

∅ x−uj
�� ��� � ¼ e

x−u jk kð Þ
σ j ð11Þ

Where ∅ is the wide factor of jth kernel, and uj and σj are
the center and width of the jth RBF unit in the hidden layer,
respectively. The Gauss exponential function selected as neu-
rons response function in networks with radial circuit function
because Girossi and Pougy in 1990 showed that the exponen-
tial function is belong to a group of functions that have best
features for estimation. This ensures, there is a set of weights
that estimates the relation between inputs and target vectors
better than any other functions. This feature absent in sigmoid
function that is used in designing the error post-propagation
networks. An unsupervised learning stage is often used for
adjusting the parameters of the hidden layer including RBF
center ci and width σi, and a supervised learning process is
used to determine the connection weightωik [23]. Up to now,
a number of training algorithms have been proposed for train-
ing RBF networks, such as fixed randomly selected center,
self-organized center selection and supervised selection of
center [24]. As a self-organized method, orthogonal least
square (OLS) approach has been employed for center selec-
tion [24, 25]. The OLS uses Gram–Schmidt algorithm for
center selection and updating of RBF neural networks, and
adaptive gradient descent procedure is used to adapt the
weights [25]. The network parameters can be obtained by
minimizing the following function:

minj ¼ ∑
q

k¼1
ynk−ydkj j2 ð12Þ

where ynk and ydk are the network output and desire target
output of the kth output layer node, respectively.

In the present study, data related to Reynolds number, vol-
ume fraction and twisted ratio were considered as input and
exergetic efficiency was approved as target for the neural
network (Fig. 3).

Fig. 6 Change of network performance with the number of iterations

Table 4 Correlation coefficient
(R) and MSE variation versus
epochs for optimal ANNmodel in
training, validation, test and all
data with 30 neurons

Number of neuron R2 MSE

Test Validation Test All Training Validation Test All

30 0.999 0.998 0.998 0.999 0.0001 0.0002 0.0003 0.0001
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The progress trend is seen in Fig. 4. As seen, firstly the
input and output data are given to network or selected. Then,
the RBF neural network by its neurons initiates the test of
trained network. Albeit, it should to say that in RBF neural
networks, in addition to forming a network, the training pro-
cess is occurs too. After training the network, based on spec-
ified maximum neurons and error rate that determined as de-
fault, if an acceptable answer obtained, it can say that training
was success. Otherwise, by determine a different number of
neurons and setting the default error rate differently, again the
network training will perform to reach an acceptable answer.
The RBF neural networkmodel that adapted byBromhear and
Loo, needs to less training time and it can estimate the training
vectors by zero error.

6 Uncertainty analysis

The uncertainties for different instruments and parameters
used in experiment including thermocouple, flow meter,
density, specific heat, Reynolds number and exergetic
efficiency are estimated and their uncertainty persentages are
±0.15, ±0.19, ±0.13, ±0.16, ±0.23 and ±0.29, respectively.

7 Results and discussion

The calculated values of Exergetic Efficiency entered in the
software design Expert 10. The response surface method is
applied to develop the empirical relationship between experi-
mental input variables and output responses such as Exergetic
Efficiency. A regression analysis is done to develop the best fit
model to the experimental data, which are used to generate
response surface plots. Table 3 indicates the analysis of

variance (ANOVA) for the output parameters of Exergetic
Efficiency with double pipe heat exchanger. For the present
study, Reynolds number (A) and twisted ratio (C) are gener-
ating significant effect than Volume fraction (B).The square
valves of Reynolds number and twisted ratio have also major
effect. The interaction effect between Reynolds number and
Volume fraction of inclination (AB) has more impact on
Exergetic Efficiency than Volume fraction and Twisted ratio
(BC) and Reynolds number of inclination on the Twisted ratio
(AC) on double pipe heat exchanger. For the double pipe heat
exchanger, the predicted Model F–value of 4.04 suggests that
the model is significant. There is only a 0.03% chance that a
BModel F-Value^ this large could occur due to noise. Values
of BProb > F^ less than 0.05 reveal that model terms are sig-
nificant. The BPred R-Squared^ of 0.9169 is not as close to the
BAdj R-Squared^ of 0.9365 as one might normally expect.

Fig. 7 The results of mean square error for exergetic efficiency data

Fig. 8 Error histogram for training, validating and testing of the
Simplified Model neural network for Exergetic Efficiency in mini
double pipe heat exchangers
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Fig. 9 MSE variation versus epochs for optimal ANN model in training,
validation, test and all data with 30 neurons
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This may indicate a large block effect or a possible problem
with your model and/or data. The major parameters are model
reduction, response transformation, outliers, etc. BAdeq
Precision^ measures the signal to noise ratio. Based on
ANOVA and the following empirical relation is developed
to predict the Exergetic Efficiency of double pipe heat ex-
changer. Regression equation in uncoded units is as following
Equation:

Exergetic Efficiency ¼ 0:43331−1:63889E−005Aþ 44:37884B

−0:32980C−1:26786E−003AB−2:60882E

−006AC−0:28499BCþ 3:18848E−009A2

−369:15502B2 þ 0:042217C2

ð13Þ

Other important information about fitting, reliability, ade-
quacy and homogeneous and heterogeneous error variances of
the models performance can be obtained in the diagnostic
plots (Fig. 5). This Figure give show any deficiency of the
models fitting to the experimental data. Figure 5 shows the
normal probability of the residuals for responses, to confirm
whether the standard deviations between the actual and the
predicted response values follow a normal distribution.
Points and points’ clusters in Fig. 5 indicate that experimental
values are distributed relatively near to the straight line and
show desirable correlation between these values. Therefore,
there are no serious violations in the hypothesis that errors are

normally distributed and independent of each other, and also
that the error variances are homogeneous and residuals are
independent. The plots of residual against predicted re-
sponses. It can be observed that all points of experimental runs
are randomly distributed and all values are within the range of
−4 and 4. These results show that the models proposed by
RSM are satisfactory and that the constant variance assump-
tions are confirmed.

Exergy efficiencywas computed. Exergy efficiency inmini
double pipe heat exchangers reduces with an increase in the
Reynolds number. For optimum Reynolds number at 2500, at
a particle volume fraction of 0.041%, TiO2-Al2O3/water
nanofluid exhibits the highest growth in as compared to water
as base fluid. Exergetic Efficiency increases by increasing
volume fraction of TiO2-Al2O3/water and decreasing
Reynolds number. When using nanofluids as agent fluid, it
is known that, by adding different nanoparticles to the water,
the Exergetic Efficiency increases. It can be said that
the addition of nanoparticles in base fluids results into
enhancement of the effective heat transfer surface area.
Thermal conductivity increases because of the hydrody-
namic effect of Brownian motion of nanoparticles, mo-
lecular level layering of the liquid at liquid particle in-
terface, effect of nanoparticle clustering and the nature
of the heat transport in nanoparticles [5]. With an in-
crease in nanoparticles volume fraction, the viscosity of
the nanofluids buildups and successively the fluid fric-
tion involvement in the Exergetic Efficiency rise. It is
possible to observe that as Reynolds value increases,
there is a reduction of Exergetic Efficiency, because there is
a decrease in the difference between wall and bulk average
temperatures, which causes a decrease in the Exergetic
Efficiency [5]. Conversely, as Re increases, there is an incre-
ment of friction factor contribution on Exergetic Efficiency,
due to the higher values of velocity gradient, causesing an
increase in the wall shear stress [5]. Exergetic efficiency en-
hances between 18 and 56% using nanofluid and the loss
decreased by 20–38%.Twisted tape inserts increases the heat
transfer rate in the heat exchanger by increasing turbulence in
the fluid flow. Turbulent flow or swirl flow increases the ther-
mal contact by reducing boundary layer thickness. The turbu-
lent flow ensures the better mixing of the fluid particles which
increases heat transfer efficiency [5, 6].
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Fig. 10 R values of various ANNmodels for training, validation, test and
all data with 30 neuron

Table 5 Range and responses for
desirability Lower Upper Lower Upper

Name Goal Limit Limit Weight Weight Importance

A:Reynolds number Minimize 2500 12,000 1 1 5

B:volume fraction(v/v%) Maximize 0.02 0.05 1 1 5

C:twisted ratio(y/w) Minimize 2.5 5.2 1 1 5

R:Exergetic Efficiency Maximize 0.31 0.92 1 1 5
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Table 6 Report of different
desirabilities Number Reynolds number Volume fraction

(v/v%)
Twisted ratio
(y/w)

Exergetic
Efficiency

Desirability

1 2500.000 0.050 2.500 0.937 1.000 Selected

2 2500.547 0.050 2.500 0.937 0.999

3 2500.029 0.050 2.500 0.937 0.998

4 2562.506 0.050 2.500 0.933 0.998

5 2555.837 0.050 2.504 0.933 0.998

6 2500.045 0.050 2.521 0.934 0.998

7 2500.163 0.050 2.500 0.936 0.997

8 2635.179 0.050 2.500 0.928 0.996

9 2500.086 0.050 2.538 0.932 0.996

10 2540.372 0.050 2.500 0.933 0.996

11 2500.001 0.050 2.549 0.931 0.995

12 2500.025 0.049 2.500 0.935 0.994

13 2745.099 0.050 2.500 0.920 0.993

14 2500.012 0.049 2.500 0.934 0.992

15 2500.009 0.050 2.595 0.924 0.991

16 2500.017 0.049 2.500 0.933 0.991

17 2500.001 0.050 2.613 0.922 0.989

18 2903.258 0.050 2.501 0.909 0.985

19 2937.868 0.050 2.500 0.907 0.983

20 2500.439 0.049 2.598 0.920 0.982

21 2500.137 0.048 2.500 0.928 0.982

22 2500.039 0.050 2.679 0.914 0.980

23 2500.007 0.048 2.500 0.927 0.980

24 3035.132 0.050 2.500 0.901 0.978

25 2500.008 0.050 2.706 0.910 0.977

26 2500.067 0.048 2.558 0.920 0.976

27 2532.807 0.047 2.500 0.922 0.974

28 2500.011 0.047 2.500 0.922 0.972

29 2500.013 0.050 2.751 0.905 0.970

30 3192.029 0.050 2.500 0.890 0.969

31 2500.023 0.046 2.500 0.919 0.967

32 3235.826 0.050 2.500 0.887 0.967

33 2500.000 0.047 2.556 0.913 0.963

34 3358.892 0.050 2.500 0.879 0.960

35 3540.853 0.050 2.500 0.867 0.950

36 2500.434 0.045 2.500 0.909 0.949

37 2500.001 0.050 3.038 0.874 0.928

38 2500.060 0.050 3.086 0.870 0.921

39 2500.055 0.042 2.500 0.887 0.914

40 2500.174 0.050 3.199 0.860 0.904

41 2500.017 0.044 2.755 0.869 0.901

42 2500.010 0.050 3.594 0.835 0.846

43 2500.014 0.050 3.655 0.832 0.837

44 2500.001 0.035 2.500 0.797 0.792

45 2500.008 0.036 2.797 0.782 0.781

46 2500.001 0.042 3.770 0.779 0.739
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As seen in Fig. 6, the change in network efficiency has
been shown against repeat rate in network. Firstly, network
assumes the default error rate as zero (goal = 0). However, it
can change this value arbitrary so that it can consider a rate of
error and when network reached to it, it will stop. By increase
the repeat rate, the error rate will reduce. In Fig. 6, the repeat
rate is 30 and the network performance for this rate reached to
1.63684e-005 that is an indication of successful prediction.

Table 4 shows the correlation coefficient (R) and MSE
variation versus epochs for optimal ANN model in training,
validation, test and all data with 30 neurons. In the science
of statistics, dispersion is typically shown by correlation
coefficient. If correlation coefficient is close to one, then
this indicates that the predicted values for the model and
what measured in the laboratory are the same. One of the
problems occurs for neural networks with low number of
data in training is Boverfitting^ phenomenon in which the
model cannot be generalized. Evaluation of error for testing
and accuracy data is one of the ways to recognize the
overfitting [5]. Proximity of the correlation coefficient for
this type of data reveals that overfitting did not take place.
According to Table 4, the correlation coefficient for the data
equals to 0.999, indicating that this phenomenon did not
happen in our model.

Figure 7 is the performance plots of the mean square error
value versus the number of epochs that is iteration numbers.
Mean square error decreases with increasing iteration numbers
and converges to a steady state value based on the Levenberg–
Marquardt algorithm characteristic as the best training perfor-
mance is achieved at 7 epochs [5].

Furthermore, the errors between output and target data, for
training, validation and test data for Exergetic Efficiency in
mini double pipe heat exchangers is represented in Fig. 8. As
seen in the histograms, shape of the neural networks’ errors is
bell curve. For the Simplified Model, 86% of the training
errors are focused between −0.01956 and 0.01349 and 73%
of the validation errors are focused between −0.02428 and
0.01821 and 62% of the test errors are concentrated between
−0.03372 and 0.03238. Although the maximum absolute error
between the output and target is 0.05598, it’s happening is
clearly insignificant compared to data bank used as shown
by Fig. 8. These comparative results show that optimal ANN
architecture is 3–30-1. It is obvious that the percentage differ-
ence (%) between experimental and ANN results during train-
ing is in the range of (−0.058) to (+0.038).

Figures 9 and 10 represent the variation of mean square
error (MSE) and correlation coefficient (R) of the optimized
ANN model with number of 1 hidden layer with 30 neurons
for testing and overall (training +testing) and validation
dataset for Exergetic Efficiency in mini double pipe heat ex-
changers. It can be said that the MSE and R values tend to
decrease and to increase with increase in the neurons hidden
layer. With 1 hidden layer and 30 neurons, the MSE has it

minimum value as well as maximum R. When the number
of neurons is more than 30, the MSE and R increase and
decrease, respectively [5]. Therefore, the neural network con-
taining 1 hidden layer with 30 neurons is selected as the best
case. Obviously, the best result is obtained by 30 neurons with
1 hidden layer. If the mean square error is smaller, the predic-
tion will be successful [5].

The purpose of optimization is to find a right set of condi-
tions that will meet the goals. Table 5 represents the ranges
and responses for desirability. Here, Reynolds number and
twisted ratio(y/w) is minimized and volume fraction (v/v%)
is maximized. Exergetic Efficiency should be maximum for
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increased heat transfer rate. The appropriate set of conditions
having highest desirability value is elected as optimum value.
The highest desirability value in Table 6 and Figs. 11 and 12 is
1. Therefore, this set of conditions has been established as the
optimum value.

8 Conclusion

The present study has been done on TiO2-Al2O3/water nano-
composite. The main concern of experiment was to evaluate
the nanoparticles volume fraction, Reynolds number and
twisted ratio effect on the Exergetic Efficiency with inserting
twisted tape. Central Composite Design (CCD) and cascade
Radial Basis Function (RBF) were used to display the signif-
icant levels of the analyzed factors on the Exergetic
Efficiency. Reynolds number, volume fraction and twisted
ratio were considered as input and Exergetic Efficiency was
approved as target for the neural network. Total mean square
error and correlation coefficient were used to evaluate the
results which the best result was obtained from double layer
Perceptron Neural Network with 30 neurons in which total
mean square error and correlation coefficient were equal to
0.002 and 0.999 respectively. Exergetic efficiency improved
by 18% to 56% using nanofluid and the loss decreased by 20–
38%. The optimum designing parameters of double pipe heat
exchanger with inner twisted tape and nanfluid under the con-
strains of Exergetic Efficiency 0.937 are found to be Reynolds
number 2500, twisted ratio(y/w) 2.5 and volume fraction
(v/v%) 0.05.
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