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Abstract The present work investigates the effect of varying
Nozzle Opening Pressures (NOP) from 220 bar to 250 bar on
performance, emissions and combustion characteristics of
Calophyllum inophyllum Methyl Ester (CIME) in a constant
speed, Direct Injection (DI) diesel engine using Artificial
Neural Network (ANN) approach. An ANN model has been
developed to predict a correlation between specific fuel con-
sumption (SFC), brake thermal efficiency (BTE), exhaust gas
temperature (EGT), Unburnt hydrocarbon (UBHC), CO, CO2,
NOx and smoke density using load, blend (B0 and B100) and
NOP as input data. A standard Back-Propagation Algorithm
(BPA) for the engine is used in this model. A Multi Layer
Perceptron network (MLP) is used for nonlinear mapping be-
tween the input and the output parameters. An ANN model
can predict the performance of diesel engine and the exhaust
emissions with correlation coefficient (R2) in the range of

0.98–1. Mean Relative Errors (MRE) values are in the range
of 0.46–5.8%, while the Mean Square Errors (MSE) are found
to be very low. It is evident that the ANN models are reliable
tools for the prediction of DI diesel engine performance and
emissions. The test results show that the optimum NOP is
250 bar with B100.

Keywords Calophyllum inophyllumMethyl ester . Diesel
engine . Nozzle opening pressure . Performance . Emissions .
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1 Introduction

Rising fuel costs and future emission regulations have sharp-
ened the automotive industry’s focus on efficiency. Moreover,
the rapid depletion of fossil fuels due to extensive use has been
forced to investigate the renewable fuel with low emission. In
the search for alternative fuels, the good option is found to be
renewable fuels like vegetable oils, alcohols, etc. Biodiesel is
derived from vegetable oils such as jatropha, karanja,
Madhuca indica, sunflower, cotton seed, neem, corn, and
calophyllum inophyllum (punnai seed oil) by a process called
transesterification [1, 2]. Out of these edible and non-edible
vegetable oils are preferred for engine applications in India.
This study focuses on Calophyllum inophyllum biodiesel.
Some researchers [3, 4] investigated the testing of alternative
diesel fuel from Calophyllum inophyllum biodiesel in a DI
diesel engine. Engine performance, exhaust emissions and
combustion analysis of each fuel blend are monitored and
compared with those of diesel fuel.

Fuel injection pressure is one of the most important oper-
ating parameters affecting the performance and emissions in
diesel engine. Some researchers [5–10] have found that vis-
cosity is the main dominating effect, whereas density is the
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lowest on mean fuel droplet size and consequently to improve
fuel atomization viscosity should be the first choice of a bio-
diesel physical property to be reduced. The above mentioned
problem can be solved by blending diesel with CIME which
will reduce the viscosity. The another way to improve atomi-
zation is injecting biodiesel at higher NOP which in turn in-
crease the atomization process by increasing dispersion of
CIME fuel spray.

Artificial Neural Network (ANN) which is used to deter-
mine the engine performance map for different operating con-
ditions and biodiesel blends. This is one of the soft computing
techniques, which is used as a computational modeling tool to
reduce the burden of experimental cost and time. ANN and
biological neural network have important differences in terms
of both architectures and capabilities. Recently, ANN has been
a prominent and commonly used method for engine perfor-
mance tests, cutting mechanics; signal processing, data de-
composition and the image process [11]. Moreover, this
modeling method is able to produce novel solutions for some
problems. Ghobadian et al. developed an ANN model to esti-
mate diesel engine performance and emission analysis using
waste cooking biodiesel fuel [12]. In this study, it is observed
that the ANN model can predict the engine exhaust emissions
and performance quite well with correlation coefficient.

To the reader’s knowledge, the effect of the NOP has not
been clearly studied when using CIME in a diesel engine.
Therefore, these topics need to be investigating the experiments
and final results are validated by using ANN. The aim of this
paper is twofold. One is to obtain better thermal efficiency by
burning CIME injected at a higher NOP in a DI diesel engine.
Higher NOP results in better atomization of CIME which may
improve the combustion and thereby releasing more heat [13].
The other is to develop an ANN model to predict the perfor-
mance of the engine and the exhaust emission. The changes
NOP have been observed by using CIME as fuel without any
modifications in a DI engine, and the fuel impact on engine
performance has been examined. An ANNmodel is developed
by considering the load, blend (B0 and B100) and NOP in the
input layer. By this way, prediction of some parameters such as
SFC, BTE, EGT, UBHC, CO, CO2, NOx and smoke density is
aimed. Also, the mathematical models for output results are
obtained using MATLAB 8.01 program.

2 Materials and methods

2.1 Biodiesel properties

The biodiesel chosen for the present investigation is
Calophyllum inophyllum Methyl Ester (CIME). The proper-
ties of the CIME are experimentally evaluated. The properties
of raw Calophyllum inophyllum oil, CIME (B100) are com-
pared with the diesel (B0) in Table 1.

3 Experimental setup

Experiments have been conducted in an electronically con-
trolled, 4 stroke, kirloskar, Tangentially Vertical (TV-1) single
cylinder, Direct Injection (DI) diesel engine developing power
output of 5.2 kW at 1500 rpm connected with water cooled
eddy current dynamometer. The Fig. 1 shows the schematic
diagram of experimental setup. The detailed specifications of
the engine are presented in Table 2. The standard static injec-
tion timing of 23° bTDC and nozzle opening pressures of 220,
230, 240 and 250 bar are used for the entire experiments at
different load condition of the engine. The photographic view
of fuel injector nozzle is shown in Fig. 2. The fuel injector
nozzle modeling is developed by using solid works is shown
in Fig.3. AVL 444 di-gas analyzer is used for the measurement
of exhaust emission of HC, CO and NOx. Smoke level is
measured by using standard AVL 437 smoke meter. The ac-
curacy of measurement and their performance may vary de-
pending on the operational conditions and experimental envi-
ronment. For this reason, the uncertainty occurs due to fixed
or random errors. The uncertainties in the measured parame-
ters are estimated based on analytical progression. The uncer-
tainties calculated for the measured quantities are given in
Table 3. All the experimental readings are taken from 0% to
100% in a step of 20% load and steady state conditions of the
engine. The performance and emission values are observed as
test values. To train and test the ANN, the test results obtained
in the experimental study are used.

4 Experimental results

4.1 Effect on performance parameters

The variation of SFC with respect to the brake power for
different NOPs of 220, 230, 240 and 250 bar by using diesel
(B0) and CIME (B100) are shown in Fig. 4. It can be observed
that at all loads and NOPs; the fuel consumption is higher in
the case of CIME compared to diesel. This may be due to
higher density and lower heating value of CIME compared

Table 1 Properties ofCalophyllum inophyllumMethyl Ester compared
with Diesel

S. No Name of the Properties ASTM Code B0 B100

1 Kinematic Viscosity
at 40 °C in cSt

D2217 2.83 5.34

2 Gross Calorific Value
in kJ/kg

D4809 42,250 40,600

3 Flash Point in °C D93 56 170

4 Fire Point in °C D93 58 186

5 Specific Gravity D445 0.82 0.91

6 Cetane Number D975 46 52.4
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to diesel. The variations of BTE with respect to the brake
power for different NOPs by using diesel (B0) and CIME
(B100) are shown in Fig. 5. High NOP means, the injection
always takes place at high pressure and hence, fuel atomiza-
tion is better and mixing with air is good. It leads to better

combustion and in turn, improves BTE. The results show that
efficiency at full load is closer to diesel fuel for the reason that
of improved atomization and better mixing process at higher
NOPs. A smaller droplet will have lesser momentum and its
relative velocity decreases in air which results in its partial
suffocation by its own products of combustion. It can be seen
that at NOP 250 bar, the efficiency is marginally higher than
diesel fuel. This may be resulting to the better combustion of
CIME. It is to be noted that the oxygen (12%) in the CIME

Fig. 1 Schematic diagram of the
diesel engine setup

Table 2 Specification Details of the Engine

Name of the Description Details / Value

Make Kirloskar TV1

Type Vertical diesel engine, 4stroke,
Water cooled, single cylinder

Bore 87.5 mm

Stroke 110 mm

Compression Ratio 17.5:1

Swept Volume 661 cm3

Rated Brake Power 5.2 kW(7 HP)

Speed 1500 rpm

Combustion Chamber Hemispherical Combustion Chamber

Ignition System Compression Ignition Engine

Static Injection Timing 23o bTDC

Nozzle Opening Pressure 220 bar

Fuel Injection Pump MICO Inline, with Mechanical
Governor and Flange Mounted

Nozzle Injector Holes with
diameters

Hole 3 (0.28 mm)

Loading Device Eddy Current Dynamometer

Dynamometer arm length 0.195 m
Fig. 2 Photographic view of fuel injector nozzle
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takes part in combustion which in turn, enhances the combus-
tion process [13]. The variations of EGT with respect to the
brake power for different NOPs by using diesel (B0) and
CIME (B100) are shown in Fig. 6. It is seen that the EGT of
CIME is increased because better combustion takes place
compared to diesel when NOP is increased at full load. By
increasing NOP, the EGT is increased and this could be due to
lower heat transfer rate at high NOP which is apparent from
the trends of BTE [14].

4.2 Effect on emission parameters

The UBHC and CO emissions of both fuels are lower in par-
tial load. However, they increase at higher engine load as
shown in Fig. 7 and Fig. 8 respectively. This happens due to
relatively less oxygen available for the reaction, when more
fuel is injected in to the engine cylinder at higher engine load.
This claim has been validated in Fig. 9, and it shows the CO2

variation. CO2 emissions for CIME are comparatively higher
than that of diesel fuel at full load condition of the engine. As
the NOP increases the fuel droplet travel with a high velocity
that may hit the combustion chamber wall, which may lead to
higher UBHC emissions. It is observed that CO and HC emis-
sions of CIME drop as, NOP is increases and reaches to a least
at 250 bar. High NOP improves spray characteristics and they
will lead to a lower physical delay period. This will improve
the performance of CIME, which normally has a high ignition
delay due to its high viscosity. The improved spray also leads
to better combustion and brake thermal efficiency. The varia-
tions of oxides of nitrogen with respect to brake power for
different NOPs are shown in Fig. 10. The formation of NOx

is lesser than diesel fuel, due to lower EGT. In addition, the
higher oxygen content of CIME leads to more complete com-
bustion, which result in greater combustion temperature peaks
and they cause higher NOx emissions when NOP is increased.
However, the higher viscosity and density of biodiesel cause
delayed combustion phase, which results in the slower com-
bustion characteristics of Calophyllum inophyllum biodiesel.
The variations of smoke emissions with respect to brake pow-
er for different NOPs are shown in Fig. 11. This may be due to
heavier molecular structure, double bonds in the vegetable oil
chemical structure and high viscosity of CIME. The number
of double bonds present in the fatty acid is strongly related to
emissions. These factors are responsible for higher smoke
emissions which result in incomplete and lethargic combus-
tion [14].

4.3 Effect on combustion characteristics

Cylinder pressure crank angle variation at full load with diesel
(B0) and CIME (B100) at different NOPs are given in Fig. 12.
The cylinder pressure runs for 100 cycles. The maximum
cylinder pressure is recorded at 240 bar injection pressure
for B100 and it may be due to the longer ignition delay period.

Fig. 3 Solid works modeling view of fuel injector nozzle

Table 3 Uncertainties and
measurement methods of
instruments used in engine
experimentation

S. No Measurement % Uncertainty Measurement Technique

1 Load ±0.2 Strain gauge type load cell

2 Speed ±0.1 Magnetic pickup principle

3 Temperature ±0.15 Thermocouple

4 Diesel fuel measurement ±1 Volumetric measurement

5 Biodiesel Measurement ±1 Volumetric measurement

6 Time ±0.2 Stop watch

7 Manometer ±1 Principle of balancing column of Liquid

8 Piezoelectric pressure transducer ±0.1 Magnetic pickup principle

9 Crank angle encoder ±0.2 Magnetic pickup principle

10 CO ±0.2 NDIR technique

11 HC ±0.1 NDIR technique

12 NOx ±0.2 NDIR technique

13 Smoke Density ±1 Opacimeter
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As the ignition delay period increases, more fuels accumu-
late which results in increase in peak pressure. But, when the
NOP increases, the ignition delay reduces. This is due to
higher dispersion, shorter breakup length, lower sauter mean
diameter and better atomization. The heat release rates at var-
ious crank angles are shown in Fig. 13.

The maximum heat release takes place during the premixed
combustion phase. This is because of the higher NOP, which
improves atomization and mixing leading to better combus-
tion. The Cumulative Heat Release Rates (CHRR) at various
crank angles are shown in Fig. 14.

The decrease in CHRR for NOP 250 bar is believed due to
the high latent heat of vaporization of test fuel. Heat loss

occurs, due to combustion. Further, cylinder wall heat transfer
and losses happen owing to friction on the test engine.

5 Modeling with ANN for optimum nozzle opening
pressure

5.1 Network structure

ANN consists of artificial neural cells called neurons. The net-
works contain input, hidden, and output layers which are made
of a number of nodes. Neurons (processing elements) at input
layer transfer data from external world to hidden layer. The data

Fig. 4 Specific fuel consumption
Vs brake power

Fig. 5 Brake thermal efficiency
Vs brake power
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in the input layer do not process the data to the other layers. In the
hidden layer, outputs are produced using data from neurons in
the input layer. Then, summation and activation are performed.
There can be more than one hidden layer. In this case, the single
hidden layer sends outputs to the following output layer.

The output of the network is produced by processing data
from the hidden layer and sent to external world through the
output layer. The summation function calculates the net input
coming to a cell. The most common one is to calculate the
weighted sum. Inputs (Load, Blend and NOP) are the knowl-
edge from other cells or external world to the input cells.
These are determined by examples that the network wants to
be trained. Weights (w1, w2...wn) are the values which

determine the effect of input set or one more processing ele-
ment in the preceding layer on the processing element. Every
input value is multiplied by weight value which connects it to
the processing element and subsequently, it is combined by
summation function. Thus, net input of the network can be
found. The summation function is given in Eq. (1).

NTi ¼ ∑ n
j¼1 wijx j þ wbi

� � ð1Þ

Activation function provides a curvilinear match between
input and output layers. Also, it determines the output of the
cell by processing net input to the cell. The constructed net-
work performance significantly affects the selection of

Fig. 6 Exhaust gas temperature
Vs brake power

Fig. 7 Unburnt hydrocarbon
exhaust gas emissions Vs brake
power
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appropriate activation function. Recently, logistic sigmoid
transfer function has been generally used as an activation
function in the MLP network model, because it is a differen-
tiable, continuous and non-linear function. Hence, the logistic
sigmoid (sigln) transfer function is used as the activation func-
tion in this analysis. This function produces a value between 0
and 1 for every one value of net input. The formula of the
logistic sigmoid function is given in Eq. (2).

f NTið Þ ¼ 1

1þ e−NTi
ð2Þ

According to the trial results, ANN architecture with three
neurons in input layer, twenty-three neurons in hidden layers

and eight neurons in output layers obtains better predictions
and is shown in Fig. 15.

5.2 Learning algorithm

There are many learning algorithms in order to determine the
weights in ANN. The back propagation is one of the most
common learning algorithms. This back propagation method
updates the weights in accordance with the difference between
available data and network output. Learning parameter
employed in the method has a great importance to reach the
optimum results. Learning parameter can be constant or

Fig. 8 Carbon monoxide exhaust
gas emissions Vs brake power

Fig. 9 Carbon dioxide exhaust
gas emissions Vs brake power
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dynamically restructured in the model. There are various train-
ing functions that have been applied by the previous studies
such as gradient descent with adaptive learning rule,
Levenberge-Marquardt, gradient descent with momentum
and adaptive learning rule, scaled conjugate gradient and
Bayesian regularization [15–21]. In order to obtain the closest
output values to experimental results, the best learning algo-
rithm with optimum number of neurons in hidden layer is
determined. For this reason, both SCG and LM learning algo-
rithms and different numbers (20–28) of neurons in hidden
layer are used in the built network structure for effective pow-
er. In consequence of trials, the best learning algorithm and the

network architecture for the prediction of effective power be-
come LM: 3–23-8 (Fig. 15). The Table 4 show the determina-
tion of the best learning algorithm and optimal number of
neurons for effective power.

5.3 Training and testing data

A vital role for building an ANN architecture is the determi-
nation of percentages of training and testing data. When the
studies in literature are analyzed, it is revealed that different
ratios are used for training and testing the data. The percent-
ages of training, testing and validating the data are

Fig. 10 Oxides of nitrogen
exhaust gas emissions Vs brake
power

Fig. 11 Smoke density Vs brake
power
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70%:15%:15% respectively. In this study, 17 experimental
results have been prepared for training, validating and testing
the data of ANN. The ratios for training, testing and validating
the data are selected as 70%:15%:15%. In this context, 4 data
for validating, 4 data for testing and 17 data for training are
randomly selected.

5.4 Normalization of input and output data

The scaling of inputs and outputs significantly affects perfor-
mance of ANN in back propagation model. The logistic sig-
moid transfer function is used in this study as mentioned
above. One of the features of this function is that only a value

between 0 and 1 can be produced. Input and output data sets
are normalised before training, validating and testing process.

According to the studies in the literature, two formulas are
used for the normalization. In this work, all the data sets (Xi)
(from the training, validation and test sets) are scaled to a new
value xi using the formula in Eq. (3). The MSE value is given
by Eq. (4).

xi ¼ xi−xmin

xmax−xmin
ð3Þ

MSE xyð Þ ¼ 1

n
∑ n

i¼1 xi−yið Þ2 ð4Þ

Fig. 12 Comparisons of cylinder
pressure at full load

Fig. 13 Comparisons of heat
release at full load
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where n is the number of samples and xi and yi are the values
of the ith samples in x and y, respectively.

5.5 Statistical evaluation of outputs

Back-Propagation (BP) training algorithm is a ramp descent
algorithm. The BP algorithm minimises total error by varying
the weights through its ramp consequently tries to improve the

performance of the ANN network. The training of the network
is stopped, the tested values stop and the ANN learning is
completed. Then, the performance of the ANN predictions is
measured by comparing the predictions with the experimental
results which are not used in the training process. In order to
understand whether an ANNmakes good predictions, the test-
ing data, that have never been accessible to the network, are
used and the results are checked at this stage.

Fig. 14 Comparisons of
cumulative heat release at full
load

Fig. 15 Network configuration
of ANN model
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5.6 Prediction of engine performance using ANN

The aim of using the ANN modeling is considered as a prac-
tical approach to test the ability of predicting a correlation
between specific fuel consumption, brake thermal efficiency,
exhaust gas temperature, UBHC, CO, CO2, NOx and smoke
density using load, blend (B0 and B100) and Nozzle opening
pressure (NOP) as input data. The developed ANN is found to
be successfully predicted the output parameters as shown in
Figs. 16, 17, 18, 19, 20, 21, 22 and 23.

6 Conclusions

Based on the experimental work on a DI diesel engine fueled
with diesel fuel (B0) and CIME (B100) the following conclu-
sions are drawn. With B100, increasing the NOP from the
standard value (220 bar) to 250 bar resulted in improvement

Fig. 16 Regression coefficient, Experimental and ANN- predicted SFC

Fig. 17 Regression coefficient, Experimental and ANN- predicted BTE

Table 4 Summary of different networks evaluated to yield the criteria
of network performance for the ANN model

Activation
function

Training rule Neurons in
hidden layer

Training error Training R2

sig/lin trainlm 20 9.10315 X 10−4 0.9968

sig/lin trainlm 21 6.51244 X 10−4 0.9934

sig/lin trainlm 22 1.34686 X 10−4 0.9974

sig/lin trainlm 23 1.16823 X 10−4 0.9989

tan/lin trainlm 23 4.45431 X 10−3 0.5857

sig/lin traingdm 23 5.4658 X 10−3 0.8465

sig/lin trainscg 23 12.2554 X 10−3 0.8945

sig/lin trainrp 23 18.5425 X 10−3 0.8421

sig/lin trainlm 24 1.89311 X 10−3 0.9931

sig/lin trainlm 25 3.71309 X 10−3 0.9847

sig/lin trainlm 26 2.10119 X 10−3 0.9904

sig/lin trainlm 27 3.57211 X 10−3 0.9925

sig/lin trainlm 28 3.55556 X 10−3 0.9852
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Fig. 18 Regression coefficient, Experimental and ANN- predicted EGT

Fig. 19 Regression coefficient, Experimental and ANN- predicted UBHC emission

Fig. 20 Regression coefficient, Experimental and ANN- predicted CO emission
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Fig. 21 Regression coefficient, Experimental and ANN- predicted CO2 emission

Fig. 23 Regression coefficient, Experimental and ANN- predicted Smoke emission

Fig. 22 Regression coefficient, Experimental and ANN- predicted NOx emission
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of performance and emissions due to better spray formation in
turn combustion. The following changes are noticed at maxi-
mum load.

& By transesterification process the CIME properties are
closer to diesel fuel.

& CIME, derived from non-edible oil, which is an oxygen-
ated fuel, used in a diesel engine reduces NOx at NOP
250 bar.

& At NOP 250 bar, the thermal efficiency improves with
increased emissions.

& Brake thermal efficiency increases from 26.288% to
27.973%.

& The smoke density increases with decreasing NOx content
and is observed at NOP 250 bar.

& NOx reduces from 1128 ppm to 900 ppm which may be
due to the combined effect of operating fuel as well as
high NOP.

& An improvement in the heat release rate noticed with in-
crease in the NOP of 240 bar.

& The applicability of ANNs has been investigated for the
performance and emissions of a DI engine.

& After investigating, it is found that the R2 values are very
closely 1 for the training and testing data. MSE is smaller
than 3.8% for the testing data.

& MRE are found to be within acceptable limits. This shows
good correlation between the experimental and ANN pre-
dicted values.

This ANN analysis shows that, as an alternative to conven-
tional modelling technique and hence, this ANN approach can
be used to accurately predict the problems of IC engines.
Moreover, as an alternative to classical modelling technique
the ANN approach can be highly recommended to predict the
engine’s emissions and the performance instead of undertak-
ing complex and time-consuming experimental studies.

The optimum NOP can be identified based on the perfor-
mance, emission and combustion characteristics by
conducting the load test on the DI diesel engine. This may
probably be due to the changes in the fuel spray structure
which affects combustion. The changes in the spray may be
higher dispersion, higher spray tip penetration, shorter break-
up length and lower sauter mean diameter. Thermal efficiency
at NOP 220 bar is comparatively lower than that of diesel.
Finally, it is concluded that NOP 250 bar could improve the
combustion, performance and emissions with CIME in a DI
diesel engine.

B100, 100%CIME; ANN, Artificial Neural Networks; BP,
Back-Propagation; bTDC, before Top Dead Center; BSFC,
Brake Specific fuel consumption; BTE, Brake Thermal effi-
ciency; CIME, Calophyllum inophyllum Methyl Ester; CO,
Carbon monoxide; CO2, Carbondioxide; CI, Compression
Ignition; R2, Correlation coefficient; oCA, degree crank angle;

B0, Diesel; DI, Direct Injection; HSU, Hartridge Smoke Unit;
HRR, Heat Release Rate; IC, Internal Combustion; KJ, Killo
Joules; Kg, Killogram; kW, Kilowatt; TRAINLM,
Levenberg–Marquardt; purelin, linear; logsig, log-sigmoid;
MRE, Mean Relative Error; MSE, Mean-Squared Error;
NN, Neural Networks; Xi, Normalised input/output; NOP,
Nozzle Opening Pressure; NOx, Oxides of Nitrogen; ppm,
Parts Per Million; P, Pressure (bar); SD, Smoke Density;
tansig, tangent-sigmoid; TDC, Top Dead Center; UBHC,
Unburnt hydrocarborn.
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