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were developed for an asymmetrically heated annular chan-
nel filled with a porous medium, which can predict the ther-
mal performance within a wide range of radii and HF ratios.

List of symbols
asf	� Specific surface area (m−1)
A	� Area (m2)
cp	� Specific heat (J kg−1 K−1)
Da	� Darcy number
f	� Friction factor
h	� Heat transfer coefficient (W m−2 K−1)
hsf	� Local convective heat transfer coefficient 

(W m−2 K−1)
K	� Permeability (m2)
k	� Thermal conductivity (W m−1 K−1)
kr	� Thermal conductivity ratio (kr = kf/ks)
M	� Viscosity ratio
Nu	� Nusselt number
p	� Pressure (N m−2)
P	� Dimensionless pressure drop
Pr	� Prandtl number
q	� Heat flux (W m−2)
r	� Radius (m)
r1	� Inner radius (m)
r2	� Outer radius (m)
R	� Dimensionless radius
R2	� Radius ratio
Re	� Reynolds number
s	� Shape factor
t	� Dimensionless factor
T	� Temperature (K)
u	� Velocity (m s−1)
um	� Mean velocity (m s−1)
U	� Dimensionless velocity
x	� Axial position (m)

Abstract  Fully developed forced convective heat transfer 
in an annulus filled with a porous medium subject to asym-
metrical heating is investigated analytically with different 
models in this work. The classic Darcy and Brinkman mod-
els were employed for the fluid flow, while the local thermal 
equilibrium (LTE) and the local thermal non-equilibrium 
(LTNE) models were employed to describe the heat transfer 
process in porous media. An analytical model based on fin 
theory was also employed for analyzing this problem. Exact 
solutions with Darcy-LTNE, Darcy-LTE, Brinkman-LTNE, 
Brinkman-LTE, and the fin models were obtained. Among 
these solutions, the Brinkman-LTNE solution can be treated 
as the benchmark, as it is a complete model, which covers 
the effect of viscous force near the solid wall and the tem-
perature difference between the solid and fluid phases. The 
basic parameters that affect the velocity and temperature 
fields were analyzed in depth. The velocity and temperature 
profiles with these different models were also presented. 
The effects of some critical parameters on thermal perfor-
mance of asymmetrically heated annulus fitted with a porous 
medium were discussed. The cited different analytical mod-
els were compared in detail with each other. The critical heat 
flux (HF) ratios for the inner and outer walls were presented 
in terms of a Nu–ξ curve for the five models. These solutions 
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Greek symbols
ε	� Porosity
θ	� Dimensionless temperature
μ	� Dynamic viscosity (kg m−1 s−1)
ξ	� Heat flux ratio
ρ	� Density (kg m−3)
ϕ	� Polar angle (rad)

Subscripts
1	� Inner wall
2	� Outer wall
b	� Bulk
e	� Effective
f	� Fluid
fe	� Effective value of fluid
i	� Interface
m	� Mean
p	� Porous
r	� Ratio
s	� Solid
se	� Effective value of solid
w	� Wall

1  Introduction

Transport in porous media has been continuously receiving 
increased attention for the past decades. This stems from its 
critical importance in many engineering areas, such as oil 
extraction [1], heat transfer enhancement [2], solar thermal 
utilization [3], electronics cooling [4], thermal storage [5], 
chemical reforming [6], modeling of biological tissues [7], 
as well as many other areas. Another area of interest is the 
highly conductive porous media, such as metallic/carbon 
foams with open cells [8], sintered metallic fiber felts [9], 
packed beds [10], metallic lattice frame structures [11], which 
facilitates the vast applications of porous media in industry.

The volume averaging technique is a commonly used 
method for handling transport in porous structures [12]. 
The Darcy, Brinkman, and Forchheimer models have 
been used in various research works. The Brinkman 
model accounts for the viscous effect of an impermeable 
wall, while the Forchheimer model with quadratic term is 
appropriate for high velocity flows. For thermal transport 
in porous media, either local thermal equilibrium (LTE) or 
local thermal non-equilibrium (LTNE) models are utilized.

For steady convective heat transfer, when the differ-
ence between the thermal conductivity of the fluid phase 
and that of the solid phase is small, the LTE model is an 
efficient tool for predicting the heat transfer in porous 
media. Cheng and Hsu [13] numerically studied the fully-
developed, forced convective flow and heat transfer through 
packed bed of spheres in an annular space with Brinkman 

and LTE models by considering the effects of porosity 
and permeability variations near the wall. Vafai and Tien 
[14] performed a theoretical study for moisture transport 
of fluid in porous materials and the coupling heat/mass 
transfer process was numerically simulated based on LTE 
model. Chikh et al. [15] analytically investigated the forced 
convective heat transfer in an annulus partially filled with 
a porous medium subject to a constant heat flux, and ana-
lyzed the effect of the porous layer thickness on the Nus-
selt number. Mitrovic and Maletic [16] numerically solved 
the forced convective heat transfer in a porous annulus with 
asymmetrical thermal boundary conditions for the inner 
and outer walls. Mitrovic and Maletic [17] presented a 
numerical analysis for laminar forced convective heat trans-
fer in a parallel-plate channel filled with a porous medium 
subject to asymmetrical thermal boundary conditions using 
the LTE model. Cekmer et al. [18] presented an analytical 
solution for forced convection in a parallel-plate channel 
filled with a porous medium when exposed to asymmetri-
cal wall heat fluxes by using LTE model, and analyzed the 
effect of heat flux ratio on the heat transfer.

LTNE model has received much attention for handling 
thermal problems in porous media. The importance of 
using LTNE model was comprehensively established and 
analyzed in the papers by Vafai and Sozen [19, 20], and 
Sozen and Vafai [21, 22]. Kuznetsov [23] presented a per-
turbation solution of heat transfer in a concentric annulus 
with Darcy model and LTNE model. Lee and Vafai [24] 
presented a comprehensive analytical study of convective 
heat transfer in a parallel-plate channel filled with porous 
media, and presented the parametric analysis for the ther-
mal performance, while analyzing various aspects of the 
LTNE model. Xu et al. [25] analyzed the LTNE phenomena 
in metal-foam channel and found there are two main fac-
tors affecting thermal transport in porous media: porosity 
and thermal conductivity ratio of fluid to solid (kr). Using 
the Brinkman flow model and the LTNE model, Lu et  al. 
[26] presented an analytical solution for forced convec-
tion in a tube filled with porous foams, and Zhao et al. [27] 
presented the analytical solution for forced convection in 
an annulus filled with porous foams. Shaikh and Memon 
[28] provided analytical and numerical solutions for forced 
convective heat transfer in a circular duct with or with-
out porous medium using Darcy–Brinkman–Forchheimer 
model. Ouyang et  al. [29] performed an analytical inves-
tigation on developing forced convective heat transfer in a 
parallel-plate channel filled with a porous medium. Yang 
and Vafai [30] utilized a comprehensive analysis of the 
boundary conditions to present an analytical solution for 
forced convective heat transfer in a porous medium chan-
nel and for the first time established the presence of tem-
perature bifurcation in porous media. Xu et al. [31] devel-
oped an explicit analytical solution for Brinkman flow and 
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non-equilibrium heat transfer in a parallel-plate channel 
filled with micro-foams under the condition of asymmetric 
heat fluxes, and analyzed the effect of basic parameters on 
Nusselt numbers at the two walls.

Amongst these publications, Refs. [13, 15, 16, 23] con-
sider the forced convection in annular configurations, and 
Refs. [16–18, 31] address the asymmetrical thermal bound-
ary conditions. Tubular configurations with annular space 
are extensively utilized in industrial applications, such as 
heat exchangers, solar collectors, chemical reactors, heat 
accumulators, heat pipes, and electronic heat sinks. Ther-
mal asymmetrical heating is frequently encountered in 
these applications. As such an analytical investigation of 
the non-equilibrium heat transfer in an annular space filled 
with a porous medium under asymmetrical thermal bound-
ary conditions is very important.

To this end, we will employ the LTNE model to obtain 
analytical solutions for forced convection in an annular 
duct filled with a porous material subject to a thermally 
asymmetrical condition. The Darcy and Brinkman models 
will be used with LTE and LTNE models, and the fin-the-
ory-based model will also be utilized. The effects of key 
parameters on different models will be analyzed in depth.

2 � Physical problem

The schematic diagram of forced convective heat transfer 
in a concentric annulus is shown in Fig. 1. The annulus is 
filled with a porous medium. The radius of the inner wall is 
r1 and that of the outer wall is r2. Different heat fluxes are 
imposed on the inner and outer walls. The following com-
monly used assumptions are imposed: (1) porous medium 
which fills the annulus is both homogeneous and isotropic; 
(2) thermophysical properties of the fluid and porous 

medium are independent of the temperature; (3) hydrauli-
cally and thermally fully developed conditions are consid-
ered and the fluid is taken to be Newtonian.

3 � Analysis

For thermally and hydraulically fully developed forced 
convection, the following conditions can be imposed:

The governing equations of the present problem with 
Brinkman term and LTNE model can be referred from Ref. 
[19]. The simplified momentum equation with the Brink-
man term is

For the LTE model, the difference between solid and 
fluid temperatures is neglected. The energy equation can be 
presented by

While, under LTNE condition, the solid and fluid energy 
equations are as follows:

The corresponding boundary conditions are

(1)

∂u
∂x = 0, v = 0,

∂p
∂r = 0,

dp
dx

= const, h1x = const, h2x = const,

∂Tf
∂x =

∂Ts
∂x =

dTf ,b
dx

=

dTw1
dx

=

dTw2
dx

= const

(2)0 = −dp

dx
+ µe

1

r

∂

∂r

(

r
∂u

∂r

)

− µf

K
u

(3)ρf cf u
∂Tf

∂x
= ke

1

r

∂

∂r

(

r
∂Tf

∂r

)

(4)







solid : 0 = kse
1
r

∂
∂r

�

r ∂Ts
∂r

�

− hsf asf
�

Ts − Tf
�

fluid : ρf cf u
∂Tf
∂x

= kfe
1
r

∂
∂r

�

r
∂Tf
∂r

�

+ hsf asf
�

Ts − Tf
�

Constant heat flux q1

Constant heat flux q2

Constant heat flux q2

Porous Media

Porous Media

r1

r2

r x

ϕ

Fig. 1   Schematic diagram of the problem under consideration
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In obtaining the analytical solutions, the following 
dimensionless parameters are employed.

3.1 � Darcy‑LTNE model

In the Darcy flow model, the velocity distribution at the 
cross-section is uniform. The governing equations for the 
solid and fluid phases are normalized as

The dimensionless boundary conditions are

The solid and fluid temperature distributions can be 
obtained analytically as

where the constants A1, A2, A3 and A4 are as follows

(5)







r = r1 : u = 0, Ts = Tf = Tw1, kse
∂Ts
∂r + kfe

∂Tf
∂r = −q1

r = r2 : u = 0, Ts = Tf = Tw2, kse
∂Ts
∂r + kfe

∂Tf
∂r = q2

(6)

R = r
r1
, U = u

um
, Da = K

r2
1

, P = K
µf um

dp
dx
,

M = µe

µf
, s =

√

1
M·Da

θs(f ) = Ts(f )−Tw1
q2·r1/kse , B = kf

kse
,

C = kfe
kse

, D = hsf asf r
2
1

kse
, ξ = q1

q2
, t =

√

D(C+1)
C

(7)







solid : 0 = 1
R

∂
∂R

�

R ∂θs
∂R

�

− D
�

θs − θf
�

fluid : 2(ξ+R2)

R22−1
= C 1

R
∂
∂R

�

R
∂θf
∂R

�

+ D
�

θs − θf
�

(8)

{

R = 1 : θs = θf = 0, ∂θs
∂R

+ C
∂θf
∂R

= −ξ

R = R2 : θs = θf = θw2,
∂θs
∂R

+ C
∂θf
∂R

= 1

(9a)

θs =
2(ξ + R2)

R
2

2
− 1















A3I0(tR)+ A4K0(tR)+
1

4(C + 1)
R
2

+ A1

C + 1
ln (R)+ A2

C + 1
+ C

D(C + 1)2















(9b)

θf =
2(ξ + R2)

R
2
2
− 1















− 1

C

�

A3I0(tR)+ A4K0(tR)
�

+ 1

4(C + 1)
R
2

+ A1

C + 1
ln (R)+ A2

C + 1
− 1

D(C + 1)2















(10)

A1 = R
3
2
−R2

2(ξ+R2)
− R

2
2

2

A2 = − 1
4

A3 = − K0(tR2)−K0(t)
I0(t)K0(tR2)−K0(t)I0(tR2)

· C

D(C+1)2

A4 = − I0(tR2)−I0(t)
K0(t)I0(tR2)−I0(t)K0(tR2)

· C

D(C+1)2

3.2 � Darcy‑LTE model

For the Darcy model of flow through a porous medium, the 
effect of impermeable wall on the flow is neglected, and the 
velocity distribution at a given cross-section is considered to 
be uniform. In this case, for fully-developed forced convec-
tion, the dimensionless energy equation for the LTE model is

The dimensionless closure conditions can be represented 
by

The analytical solution for the Darcy-LTE model is 
obtained as

3.3 � Brinkman‑LTNE model

With the LTNE model, the dimensionless equations for 
flow and heat transfer are

The dimensionless boundary conditions are

The analytical expression for the velocity is obtained as

where constants C1, C2, and P are as follows

The analytical solutions for temperatures of solid and fluid 
are obtained as follows

(11)
1

R

∂

∂R

(

R
∂θf

∂R

)

= 2(ξ + R2)

(C + 1)
(

R2
2 − 1

)

(12)

{

R = 1 : θf = 0

R = R2 : (C + 1)
∂θf
∂R

= 1

(13)

θf =
2(ξ + R2)

(C + 1)
(

R
2
2 − 1

)

{

1

4

(

R
2 − 1

)

+
[

R2

(

R
2
2 − 1

)

2(ξ + R2)
− R

2
2

2

]

· ln (R)
}

(14)



















momentum eq. : 0 = 1
R

∂
∂R

�

R
∂U
∂R

�

− s
2(U + P)

solid energy eq. : 0 = 1
R

∂
∂R

�

R
∂θs
∂R

�

− D
�

θs − θf
�

fluid energy eq. : 2(ξ+R2)

R
2
2−1

U = C
1
R

∂
∂R

�

R
∂θf
∂R

�

+ D
�

θs − θf
�

(15)

{

R = 1 : U = 0, θs = θf = 0, ∂θs
∂R

+ C
∂θf
∂R

= −ξ

R = R2 : U = 0, θs = θf = θw2,
∂θs
∂R

+ C
∂θf
∂R

= 1

(16)U = P[C1I0(sR)+ C2K0(sR)− 1]

(17)

C1 = K0(s)−K0(sR2)
K0(s)·I0(sR2)−I0(s)·K0(sR2)

C2 = I0(s)−I0(sR2)
I0(s)·K0(sR2)−K0(s)·I0(sR2)

P = 1
2{C1[R2 ·I1(sR2)−I1(s)]−C2[R2 ·K1(sR2)−K1(s)]}

s

(

R
2
2
−1

) −1



2667Heat Mass Transfer (2017) 53:2663–2676	

1 3

(18a)θs =
2(ξ + R2)P

R2
2 − 1



















C5I0(tR)+ C6K0(tR)−
D
Cs2

s2 − D(C+1)
C

[C1I0(sR)+ C2K0(sR)]

− 1

4(C + 1)
R2 + C3

C + 1
ln (R)+ C4

C + 1
− C

D(C + 1)2



















(18b)θf =
2(ξ + R2)P

R2
2 − 1























− 1

C
[C5I0(tR)+ C6K0(tR)]+

1− D
s2

C
�

s2 − D(C+1)
C

� [C1I0(sR)+ C2K0(sR)]

− 1

4(C + 1)
R2 + C3

C + 1
ln (R)+ C4

C + 1
+ C

D(C + 1)2























3.5 � Fin model

For a highly-conductive porous material, the fluid tempera-
ture at a cross-section can be approximated to be relatively 
uniform due to the dominant solid heat conduction. In this 
case, the thermal conductivity of the fluid does not play a 
major role. As such, the fin analysis method can be intro-
duced to obtain an approximate solution. The fin model 
is an approximate tool for evaluating the heat transfer in 
porous medium. In the fin analysis method, the velocity and 
fluid temperature is assumed to be uniform, and the heat 
transfer between the fins and the fluid is usually treated as 
an equivalent heat source for the heat conduction in the 
solid. The Darcy flow is considered in the fin model, Darcy-
LTE model and Darcy-LTNE model with the assumption 
of uniform distribution of velocity. In the Brinkman-LTE 
model and Brinkman-LTNE model, the non-uniform distri-
bution of velocity is considered. The purpose of adopting 
Darcy model is to be able to compare with the full model 
so as to examine the effect of non-uniform velocity on heat 
transfer. For the present problem of forced convection in an 
asymmetrically heated porous medium, the heat conduction 
equation for a porous fins can be written as

Subject to the following boundary conditions

From the energy conservation, the bulk fluid tempera-
ture can be obtained as

(24)kse
1

r

∂

∂r

(

r
∂Ts

∂r

)

− hsf asf
(

Ts − Tf ,b
)

= 0

(25)

{

r = r1 : kse
∂Ts
∂r

= −q1

r = r2 : kse
∂Ts
∂r

= q2

(26)Tf ,b(x) = Tf ,in +
2x(q1r1 + q2r2)

cf ρf um
(

r22 − r21

)

where the constant parameters C3, C4, C5 and C6 in the 
above equations are

3.4 � Brinkman‑LTE model

In this part, the Brinkman model for flow and LTE model 
for heat transfer are employed. The governing equations are

The dimensionless boundary conditions are

The analytical solution for velocity will be the same as 
that given in the prior section. The temperature solution is 
derived as

where the constants C7 and C8 are

(19)

C3 = R2

(

R
2
2
−1

)

2(ξ+R2)P
− R2

s
[C1I1(sR2)− C2K1(sR2)]+ R

2
2

2

C4 = 1
4
− 1

s2

C5 = K0(t)−K0(tR2)
K0(t)·I0(tR2)−I0(t)·K0(tR2)

Cs
2

[

s2−D(C+1)
C

]

D(C+1)2

C6 = I0(t)−I0(tR2)
I0(t)·K0(tR2)−K0(t)·I0(tR2)

Cs
2

[

s2−D(C+1)
C

]

D(C+1)2

(20)

{

Momentum eq. : 1
R

∂
∂R

(

R ∂U
∂R

)

− s2(U + P) = 0

Energy eq. : 1
R

∂
∂R

(

R
∂θf
∂R

)

= 2(ξ+R2)

(C+1)
(

R22−1
)U

(21)

{

R = 1 : U = 0, θf = 0

R = R2 : U = 0, (C + 1)
∂θf
∂R

= 1

(22)

θf =
2(ξ + R2)P

(C + 1)
(

R
2

2
− 1

)

{

1

s2
[C1I0(sR)+ C2K0(sR)]

−1

4
R
2 + C7 ln (R)+ C8

}

(23)
C7 = R32−R2

2(ξ+R2)P
− R2

s
[C1I1(sR2)− C2K1(sR2)]+ R22

2

C8 = 1
4
− 1

s2
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Equation (24) for the porous fin can be normalized as

It should be noted that the dimensionless bulk fluid tem-
perature θf,b is a quantity that should be determined in the 
present fin analysis method. The dimensionless boundary 
conditions are

In the fin analysis method, the dimensionless bulk fluid 
temperature θf,b is obtained as

(27)
1

R

∂

∂R

(

R
∂θs

∂R

)

− D
(

θs − θf ,b
)

= 0

(28)

{

R = 1 : θs = 0, ∂θs
∂R

= −ξ , θs = −θf ,b

R = R2 : ∂θs
∂R

= 1

Thus, the dimensionless pressure drop can be expressed 
as

The Nusselt numbers at the inner and the outer walls are

(33)ReK = ρf um ·
√
K

µf

(34)P = K

µf um

dp

dx
=

( √
K

ρf u
2
m

dp

dx

)

· ρf um
√
K

µf

= fK · ReK

(35)

Nu1 = h1·2(r2−r1)
kf

= q1
Tw1−Tfb

· 2(r2−r1)
kf

= − 2ξ(R2−1)
B·θf ,b

Nu2 = h2·2(r2−r1)
kf

= q2
Tw2−Tfb

· 2(r2−r1)
kf

= − 2(R2−1)

B·(θw2−θf ,b)

(29a)θf ,b = −

[

K1

(√
D
)

+ ξK1

(√
DR2

)]

I0

(√
D
)

+
[

I1

(√
D
)

+ ξ I1

(√
DR2

)]

K0

√
D

√
D
[

K1

(√
D
)

I1

(√
DR2

)

− I1

(√
D
)

K1

(√
DR2

)]

The solid temperature can be solved using the above 
equation to obtain

(29b)θs =

[

K1

(√
D
)

+ ξK1

(√
DR2

)][

I0

(√
DR

)

− I0

(√
D
)]

+
[

I1

(√
D
)

+ ξ I1

(√
DR2

)][

K0

(√
DR

)

− K0

(√
D
)]

√
D
[

K1

(√
D
)

I1

(√
DR2

)

− I1

(√
D
)

K1

(√
DR2

)]

As can be seen, the analytical solution based on the fin 
approximation is much simpler as compared with the full 
analytical solution incorporating Brinkman and LTNE 
aspects.

3.6 � Parameter definitions

The friction factor for forced convection in a porous annu-
lus is defined as

The conventional Reynolds number is defined as

The friction factor and the Reynolds number based on 
permeability are defined as:

(30)f = 2(r2 − r1)

ρf u
2
m

2

· dp
dx

= 8
(

R2
2 − 1

)

P

Re · Da

(31)Re = ρf um · 2(r2 − r1)

µf

(32)fK =
√
K

ρf u
2
m

dp

dx

The bulk fluid temperature can be obtained from the fol-
lowing integral:

3.7 � Analysis

The dimensionless parameters defined in Eq. (6) are impor-
tant for estimating the thermal performance of a porous 
annulus with asymmetrical heat fluxes. Due to the imposed 
asymmetrical heat load on the annulus, the temperature 
distribution will be asymmetrical. The structure of annulus 
will be similar to a parallel-plate channel when the outer 
radius becomes close to the inner radius (R2 → R1).

The derived dimensionless velocity (U = u/um) is a func-
tion of the shape factor (s), radius ratio (R2), and dimen-
sionless radial position (R), which can be expressed as

(36)

θf ,b =
∫

A
Uθf dA

∫

A
UdA

= 1

π
(

R
2
2
− 1

)

∫

R2

1

∫ 2π

0

Uθf RdϕdR

= 2

R
2
2
− 1

∫

R2

1

Uθf RdR

(37)U = FU(s,R2,R)
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For the most complete temperature distribution for 
the solid and fluid (Brinkman-LTNE model), the derived 
dimensionless temperatures for the solid and fluid are influ-
enced by several factors, such as s, P, R2, C, D, t, ξ, and R. 
This can be expressed as

The parameters M, and Da are incorporated within the 
shape factor (s), and expressed as

The dimensionless pressure drop (P) can be expressed as

It can be seen that dimensionless pressure drop (P) is 
correlated with radius ratio (R2), Darcy number (Da), and 
product of Reynolds number (Re) and friction factor (f).

Since thermal dispersion acts as an additional fluid heat 
conduction, the parameter C represents the ratio of the 
effective heat conduction resistance for the solid versus that 
for fluid, expressed as

The parameter D in Eq. (6) can be treated as the ratio of 
solid effective thermal resistance to local convective ther-
mal resistance, shown as

(38)θ = Fθ (s,P,R2,C,D, t, ξ ,R)

(39)s = Fs(M,Da)

(40)P = K

µf um

dp

dx
= f · Re · Da

8
(

R2
2 − 1

) = FP(R2,Da, fRe)

(41)C = kfe

kse
= Rse

Rfe

= ε

1− ε
kr = FC(ε, kr)

(42)D = hsf asf r
2
1

kse
= r1/kse

1/
(

hsf asf r1
) = Rse

Rcv

The parameter t is a combination of parameters C and 
D, and can be represented by the ratio of overall thermal 
resistance to the local convective thermal resistance, given 
as

The analytical solutions presented in this work can pre-
dict the thermal performance of convection in a porous 
annulus for a wide range of heat flux ratios (ξ ∈  (−∞, 
−R2)⋃(−R2, +∞)). The point ξ = −R2 is a singular point 
for the present problem and the analytical values for it can 
be obtained when the heat flux ratio approaches this point 
(ξ → −R2). This singular point corresponds to two special 
cases for the asymmetrically heated annulus. These are

where �q1 and �q2 are the heat flux vectors for the inner and 
outer walls respectively.

Zhao et  al. [27] investigated the forced convection 
in an annulus filled with porous foams using Brinkman 
model while incorporating the thermal non-equilibrium 
model. In their study, the inner tube was subjected to a 
constant heat flux and the outer tube was adiabatic. This 
is a specific case when the HF ratio is infinite in the pre-
sent analytical solution. Figure 2 shows a comparison of 
the present analytical result with the analytical result of 
Zhao et al. [27]. It can be seen that our analytical temper-
ature distributions of solid and fluid are nearly the same 
as those obtained by Zhao et al. [27]. At the outer wall of 

(43)t2 = D(C + 1)

C
= r1/kfe + r1/kse

1/
(

hsf asf r1
) = Rfe + Rse

Rcv

(44)ξ = −R2 ⇔







�q1 = |�q1|, �q2 = −|�q1|
R2

�q1 = −|�q1|, �q2 = |�q1|
R2
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the annulus, the fluid temperature in our solution differs 
slightly from that in Zhao et  al. [27]. This is due to the 
simplified boundary condition at the outer tube leading to 
the following solution,

which is different from the present boundary condition 
used in Eq.  (5). Comparing the Brinkman-LTNE model 
with the Darcy-LTE model in Fig. 2, the solid and fluid 
temperature of the latter model is slightly closer to the 
wall temperature than that of the former model. This is 
expected since the heat transfer obtained by using the 
Darcy-LTNE model is overestimated due to the uniform 
velocity in the Darcy model. Thus, the present analytical 
solution for forced convection in a porous annulus with 
asymmetrical heat fluxes is validated.

(45)
∂Ts

∂r
= ∂Tf

∂r
= 0

100 101 102
10-1

100

101

102

103
|f K

·R
e K

|

Shape factor, s

R2=1.1
R2=1.2
R2=1.5
R2=2.0

| fK·ReK|=1

Fig. 4   Effect of the shape factor on |fK·ReK|

1.0 1.1 1.2 1.3 1.4 1.5
0.0

0.2

0.4

0.6

0.8(a) (b)

(c) (d)

s=200  t=120.9
C=0.009  D=130.3
ξ=-R2 kr=0.001

D
im

en
si

on
le

ss
 te

m
pe

ra
tu

re
, θ

Dimensionless radius, R

θ, Brinkman+LTE
θ, Darcy+LTE
solid, Brinkman+LTNE
fluid, Brinkman+LTNE
solid, Darcy+LTNE
fluid, Darcy+LTNE
solid, Fin
fluid, Fin

1.0 1.1 1.2 1.3 1.4 1.5

0.00

0.05

0.10

0.15

0.20

0.25
s=200  t=120.9
C=0.009  D=130.3
ξ=0

D
im

en
si

on
le

ss
 te

m
pe

ra
tu

re
, θ

Dimensionless radius, R

θ, Brinkman+LTE
θ, Darcy+LTE
solid, Brinkman+LTNE
fluid, Brinkman+LTNE
solid, Darcy+LTNE
fluid, Darcy+LTNE
solid, Fin
fluid, Fin

1.0 1.1 1.2 1.3 1.4 1.5
-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

D
im

en
si

on
le

ss
 te

m
pe

ra
tu

re
, θ

Dimensionless radius, R

θ, Brinkman+LTE
θ, Darcy+LTE
solid, Brinkman+LTNE
fluid, Brinkman+LTNE
solid, Darcy+LTNE
fluid, Darcy+LTNE
solid, Fin
fluid, Fin

s=200  t=120.9
C=0.009  D=130.3
ξ=1   kr=0.001

1.0 1.1 1.2 1.3 1.4 1.5
-25

-20

-15

-10

-5

0

s=200  t=120.9
C=0.009  D=130.3
ξ=100   kr=0.001

D
im

en
si

on
le

ss
 te

m
pe

ra
tu

re
 θ

Dimensionless radius, R

θ, Brinkman+LTE
θ, Darcy+LTE
solid, Brinkman+LTNE
fluid, Brinkman+LTNE
solid, Darcy+LTNE
fluid, Darcy+LTNE
solid, Fin
fluid, Fin

Fig. 5   Temperature profiles for different HF ratios based on the derived analytical solutions. a ξ = −R2, b ξ = 0, c ξ = 1, d ξ = 100



2671Heat Mass Transfer (2017) 53:2663–2676	

1 3

4 � Results and discussion

4.1 � Fluid flow

In the Brinkman model, the viscous force at the solid wall 
is considered. As such, the velocity distribution at any cross-
section is not uniform, as can be seen in Eq. (16). Figure 3 
shows the dimensionless velocity profiles of the fluid flow 
in an annular space filled with a porous medium for differ-
ent shape factors. It can be seen that an increase in the shape 
factor can flatten the velocity profile. The velocity profile for 
small shape factors is nearly parabolic and the peak velocity 
at the center is relatively large (1.5), which is similar with 
that for an open channel, while, the velocity profile for large 
shape factors is quite uniform and the velocity gradient near 
the solid wall is relatively large.

The dimensionless pressure drop equals to the 
product of permeability-based friction factor and 

permeability-based Reynolds number, as can be seen in 
Eq. (34). Figure 4 shows the effect of shape factor on the 
absolute value of the dimensionless pressure drop (prod-
uct of permeability-based friction factor and permeabil-
ity-based Reynolds number) for different radius ratios. It 
can be seen that the absolute value of the dimensionless 
pressure drop decreases with an increase in the shape fac-
tor. When the shape factor is sufficiently large, the abso-
lute value for the product of friction factor and Reynolds 
number based on permeability gradually approaches 1, 
which is the flow characteristic of the Darcy flow model 
[12].

4.2 � Temperature profiles

Equations  (9), (13), (18), (22), and (29) present the tem-
perature solutions respectively for the Darcy-LTNE, Darcy-
LTE, Brinkman-LTNE, Brinkman-LTE and the fin models. 
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In this part, the temperature profiles for different models 
are analyzed and compared with each other.

Figure  5 shows the temperature profiles for the five 
models presented in this work for different HF ratios (−R2, 
0, 1, and 100). As can be seen from Eq. (44), when the heat 
input at one wall is equal to the heat output of the other 
wall, the net heat imposed on the fluid is zero. In this case, 
the problem shown in Fig. 1 becomes a pure heat conduc-
tion problem. Figure  5a shows the temperature profiles 
for different models for ξ = −R2. All the temperature pro-
files for the solid and fluid with Darcy-LTNE, Darcy-LTE, 
Brinkman-LTNE, and Brinkman-LTE models are linear 
and coincide with each other, which is what is expected to 
occur when the heat conduction is the dominant heat trans-
fer mechanism. Figure  5b shows the temperature profiles 
for different models for ξ = 0. In this case, the inner wall 
is adiabatic, as can be seen from Fig. 5b for all the mod-
els. Figure 5c shows the temperature profiles for different 
models for ξ = 1. Due to the geometrical asymmetry of an 
annular duct, the predicted temperature profiles for differ-
ent models for ξ = 1 are also asymmetrical, which is dif-
ferent from asymmetrically heated parallel-plate channel 
[31]. Figure  5d shows the temperature profiles for differ-
ent models for ξ = 100. In this case, the outer wall can be 
regarded as adiabatic compared with the inner wall. As can 
be seen in Fig.  5b–d, the LTE models (including Darcy-
LTE and Brinkman-LTE models) always overestimate the 
heat transfer as compared with LTNE models (including 
Darcy-LTNE and Brinkman-LTNE models). Simultane-
ously, the fluid temperature for the Darcy models (includ-
ing Darcy-LTE and Darcy-LTNE models) is slightly higher 
than that of Brinkman models (including Brinkman-LTE 
and Brinkman-LTNE models), respectively. Since the fluid 
temperature is assumed to be uniform in the fin model, the 
temperature for the fin model is quite different from those 

of Darcy-LTNE, Darcy-LTE, Brinkman-LTNE, and Brink-
man-LTE models.

Figure 6 shows the temperature profiles for the five ana-
lytical models at different radius ratios (R2 = 1.01, 1.3, and 
2) with ξ = 2. Figure 6a shows the temperature profiles for 
the five analytical models at R2 =  1.01. When the radius 
ratio approaches 1, the difference between inner and outer 
radii is small. From Fig.  6a, the temperature profiles for 
the solid and fluid in an annular channel for R2 = 1.01 is 
approximately symmetrical. Figure 6b shows the tempera-
ture profiles for the five analytical models for R2 = 1.3. It 
can be seen that the asymmetrical aspects have become 
more prominent. Figure  6c presents the temperature pro-
files for the five analytical models for R2 = 2. The LTNE 
effect in porous media is diminished in this case due to 
an increase in the width of the annulus, as seen in Fig. 6c. 
Also as can be seen in Fig. 6, the fluid temperature for the 
LTE models is greater than those for the LTNE models, and 
the fluid temperature for the Darcy models is greater than 
those for the Brinkman models.

4.3 � Heat transfer assessment

For the asymmetrically heated annular channel, the wall 
temperature at the inner surface is different from that at 
the outer surface. Therefore, the Nusselt numbers of the 
two walls sandwiching the annular channel with a porous 
medium are different from each other. Equation  (35) 
defines the Nusselt numbers for the inner and outer walls 
and Eq.  (36) presents the bulk mean temperature of the 
fluid. Since the effect of impermeable wall and the LTNE 
effect are taken into account in Brinkman-LTNE model as 
compared to the other models, the Brinkman-LTNE model 
is treated as the benchmark among the five models. In 
this section, the effects of the key parameters on thermal 
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performance of asymmetrically heated porous annulus with 
different models are presented and discussed.

Figure 7 shows the effect of the Reynolds number on 
the thermal performance of the Brinkman-LTNE, Darcy-
LTNE, and the fin models. As expected, an increase in 
the Reynolds number increases both the inner and outer 
wall Nusselt numbers. The Brinkman-LTNE result is 
always slightly less than the Darcy-LTNE result in terms 
of the Nusselt numbers at the inner and outer walls. For 
Brinkman-LTNE and Darcy-LTNE models, since the heat 
flux at the inner wall is greater than that of the outer wall 
(ξ =  2), the Nusselt number at the inner wall is higher 
than that of the outer wall for lower Reynolds numbers. 
However, when the Reynolds number increases, the 
outer-wall Nusselt number becomes larger than the inner-
wall Nusselt number. Further, the difference between 
the outer and inner wall Nusselt numbers increases with 
an increase in the Reynolds number. This is due to the 
larger surface area which results in a larger convective 
heat transfer at the outer wall. For the fin model with an 
assumption of uniform fluid temperature, the outer wall 
Nusselt number is larger than the inner wall Nusselt num-
ber, and the difference between these Nusselt numbers 
increases in the entire range of Reynolds numbers.

Figure  8 shows the effect of the shape factor on the 
thermal performance of an asymmetrically heated 
annulus filled with a porous medium. The shape fac-
tor including the effects of the viscosity ratio and the 
Darcy number, determines the velocity distribution. Thus, 
the analytical results for the Darcy-LTE, Darcy-LTNE, 
and the fin models are independent of the shape factor. 
As can be seen in Fig. 8, an increase in the shape factor 
increases the Nusselt numbers for the Brinkman-LTNE, 
and Brinkman-LTE models. An increased shape factor 

corresponds to a lower Darcy number, which results in a 
more uniform Darcy type velocity distribution. As such, 
as the shape factor increases, the result of the Brinkman-
LTE model gradually approaches that of the Darcy-LTE 
model, while the result for the Brinkman-LTNE model 
gradually approaches that for the Darcy-LTNE model.

Figure 9 shows the effect of the thermal conductivity 
ratio (kr) on the thermal performance of asymmetrically 
heated porous annulus predicted by the five analytical 
models. The comparisons between the fin model and 
other models show the applicable scope of the fin model 
for a thermal performance prediction. The increase in the 
thermal conductivity ratio, corresponding to a decrease in 
the solid thermal conductivity, leads to a lower Nusselt 
number at the inner and outer walls due to the weakened 
solid heat conduction. As seen in Fig. 9, a decrease in kr 
increases the difference between LTE and LTNE results 
for either the Brinkman or the Darcy models. When kr is 
very large (kr  >  10−2), this difference can be neglected. 
However, for small kr (kr  <  10−3), LTNE model should 
be employed for the thermal performance prediction 
in porous media rather than the LTE model. The differ-
ence between the result for the fin model and that for the 
Brinkman-LTNE model is enlarged as kr increases. In 
the range of kr  >  10−3, this difference is unacceptable. 
When kr is less than 10−4, the results for the fin model is 
closer to that of the Brinkman-LTNE model than that of 
the Darcy-LTNE model. This indicates that the fin model 
is useful for predicting thermal performance of porous 
media for the case of very small thermal conductivity 
ratios. The fin model is invalid when the thermal conduc-
tivity ratio (kr) is substantial.

Figure 10 shows the effect of the dimensionless annulus 
width (R2 − 1) on the thermal performance of asymmetrically 
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heated porous annulus (ξ =  2) for a set inner wall radius 
(r1). The Nusselt numbers at the inner wall increases with an 
increase in the width of the annulus. An increase in the annu-
lus width leads to a more uniform velocity distribution and 
relatively smaller temperature difference between solid and 
fluid phases. It is seen that the fin model can be applicable for 
a small annulus width. With an increase in the annulus width, 
the difference between LTE and LTNE results for either 
Darcy or Brinkman models decreases, and becomes negligi-
ble for R2 – 1 > 3. As such, the LTE model can be applied for 
predicting the thermal performance of an annulus filled with a 
porous medium with a substantially large width.

It should be noted that when HF ratio varies, the tem-
perature of the inner wall may equal to the fluid bulk 
temperature. From Eq.  (35), the corresponding HF ratio 
for this condition, results in an infinite Nusselt number, 
which can be defined as the critical value of the inner wall 
(ξcr1). A similar feature occurs for the Nusselt number of 
the outer wall when its temperature becomes the same as 

the fluid bulk temperature. This results in the critical HF 
ratio for the outer wall (ξcr2). The effect of HF ratio on 
predicting the thermal performance with different mod-
els is shown in Fig.  11 and the critical HF ratios for the 
inner and outer walls for each model can be observed in 
Fig.  11. Figure  11a, b are for the range of ξ  <  0 and for 
that of ξ > 0 respectively, in logarithmic horizontal coordi-
nate. Figure 11c shows the corresponding overview graph 
of Fig. 11a, b in linear horizontal coordinate. It can be seen 
from Fig.  11a that the critical HF ratios at the inner and 
the outer walls with the fin model are −0.102 and −16.707, 
respectively. From Fig. 11b, the critical HF ratios at inner 
wall with Brinkman-LTE, Brinkman-LTNE, Darcy-LTE, 
and Darcy-LTNE models are approximately 0.549, 0.164, 
0.605, and 0.229, respectively. While, the HF ratios at 
outer wall with these four models are approximately 2.281, 
10.165, 2.483, and 7.127, respectively. From Fig.  11c, it 
can be seen that the LTE result is always greater than the 
corresponding LTNE result for either Brinkman or Darcy 

Fig. 11   Effect of the HF ratio (ξ) on the inner and outer wall Nusselt numbers. a ξ < 0, b ξ > 0, c overview
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models. The Darcy result is always larger than the corre-
sponding Brinkman result for either LTE or LTNE models.

5 � Summary

Analytical solutions for the fully-developed forced con-
vection in a porous annulus with asymmetrical heat fluxes 
using five flow/thermal models are presented in this work. 
These analytical solutions can predict the thermal perfor-
mance of an asymmetrically heated porous annulus in a 
wide range of radius and HF ratios. Based on the most 
comprehensive model, that is, Brinkman-LTNE model, 
it is found that the thermal performance of asymmetri-
cally heated annulus with porous media can be improved 
by increasing the Reynolds number, increasing the shape 
factor, or decreasing the thermal conductivity ratio. An 
increase in the annulus width can lead to a more uni-
form velocity field and weakened LTNE effect in porous 
media. This makes the thermal performance predicted by 
Brinkman-LTNE model to increase first and then decrease 
with an increase in the width of the annulus. It is found 
that the LTE model always overestimates the heat trans-
fer compared to LTNE model, and that when the thermal 
conductivity ratio is very large (kr > 10−2), the difference 
between LTE and LTNE results can be neglected. But 
the LTE model fails to predict the actual heat transfer for 
small thermal conductivity ratios. As expected, the Darcy 
model results in a larger heat transfer than the Brinkman 
model. The fin solution is found to provide an acceptable 
approximation to the Brinkman-LTNE result for low ther-
mal conductivity ratios or small annulus widths. Overall, 
the LTNE phenomena is critical for thermal transport in 
highly conductive porous media. In addition, the viscous 
force near the wall has a notable effect on the global 
thermal performance. Thus, the analytical solution for 
the Brinkman-LTNE model is more accurate compared 
to the other simplified models and should be utilized in 
general. The conventional fin analysis method is generally 
regarded as a crude model. Finally, the critical HF ratios 
are found for the inner and outer walls for the five models 
which were analyzed in this work.
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