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Abstract It is often desirable to predict the effective ther-
mal conductivity (ETC) of a homogenous material like
open-cell foams based on its composition, particularly when
variations in composition are expected. A combination of
five fundamental simplified thermal conductivity bounds
and models (series, parallel, Hashin—Shtrikman, effective
medium theory, and reciprocity models) is proposed to pre-
dict ETC of open-cell foams. Usually, these models use a
parameter as the weighted mean to account the proportion of
each bound arranged in arithmetic and geometric schemes.
Based on ETC data obtained on numerous virtual Kelvin-
like foam samples, the dependence of this parameter has
been deduced as a function of morphology and phase ther-
mal conductivity ratio. Various effective thermal conduc-
tivity correlations are derived based on material properties
and foam structure. This is valid for open-cell foams filled
with any arbitrary working fluid over a solid conductivity of
materials range (4;/4r = 10-30,000) and over a wide range
of porosity (0.60 < ¢, < 0.95). Arrangement of series and
parallel models together using the simplest models for both,
arithmetic and geometric schemes, is found to predict excel-
lent results among all the generic combinations.
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uCT Micro-computed tomography
ETC Effective thermal conductivity

EMT Effective medium theory

P4 Prashant Kumar
prashant.kumar @univ-amu.fr
Frédéric Topin
frederic.topin @univ-amu.fr

1" TUSTL CNRS UMR 7343, Aix-Marseille Université,
Marseille, France

HS Hashin—Shtrikman

LBM Lattice Boltzmann method
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List of symbols

Latin symbols

AorR Side length of strut shape or radius of strut
shape (mm)

L. Node-to-node length (mm)

Ly Strut length (mm)

F Correlation factor (Eq. 30)

Req Equivalent circular strut radius (mm)

Greek symbols

o Open porosity

& Total porosity

Qeg Ratio of equivalent circular strut radius to node-
to-node length

B Ratio of strut length to node-to-node length

) Functional parameter in arithmetic scheme
(Eq.7)

8 Functional parameter in geometric scheme
(Eq. 8)

¥ Dimensionless geometrical parameter (Eq. 23)

n Dimensionless fitting parameter (Eqs. 27 and
29)

n Dimensionless fitting parameter (Eq. 28)

As Intrinsic  solid phase conductivity of foam
Wm™ 'K

B Solid/Bulk phase conductivity of foam material
Wm™ 'K

Af Fluid phase conductivity (W m~! K~!)

Aeff Effective thermal conductivity (W m 'K
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paraliel Effective parallel thermal conductivity (Eq. 1)
(Wm™' K™

Aseries Effective series thermal conductivity (Eq. 2)
(Wm™'K™

JHS,Upper HS upper bound thermal conductivity (Eq. 3)
(Wm™ 'K

AHS Lower HS lower bound thermal conductivity (Eq. 4)
Wm™ 'K

AEMT Effective medium theory thermal conductivity
(Eq.5) (Wm~' K™

JRM Reciprocity model (Eq. 6) (W m~! K1)

1 Introduction

The thermal conductivity of porous materials, more par-
ticularly open-cell foams, plays an important role in many
industrial processes. Heat conduction takes place through
a solid skeleton and a fluid passing through the 3-D inter-
connected network of open-cells. In order to effectively uti-
lize open-cell foams in heat transfer applications e.g. heat
exchangers, volumetric solar receiver etc., accurate knowl-
edge of their thermal transport properties are needed.

Many heat transfer mechanisms at pore scale could be
included in equivalent thermal conductivity. The effective
thermal conductivity refers to the case when only diffu-
sion plays a role. The energy transport is then controlled by
the effective thermal conductivity (e.g. [1-5]). However, at
high temperatures or for foam materials of extremely low
conductivity, an equivalent thermal conductivity depends
also on radiative heat transfer (e.g. [6-8]) for which the
expression or formulation is completely different.

The ETC of open-cell foams is not only dependent on
the constituent phase properties and porosity, but also on
the structure of the materials (e.g. [4, 9-12]). Moreover,
the intrinsic solid phase conductivity may be different from
the parent/bulk material conductivity. Miettinen et al. [9]
showed experimentally that there exists no simple relation-
ship between intrinsic solid phase heat conductivity and
porosity. Dietrich et al. [4] measured the thermal conductiv-
ity of strut materials and obtained a decrease in their intrin-
sic solid phase conductivity compared to the conductivity
of pure/bulk material. Kumar et al. [10] showed a decrease
of approximately 20-25% in the solid phase thermal con-
ductivity of bulk material when transformed in foams (see
also [11, 12]) from their calculated ETC data.

Apart from experiments, substantial efforts have been
made in the recent years to estimate the effective thermal
conductivity based on: (1) numerical simulations using
X-ray uCT images of actual foam samples (e.g. [13-20])
(2) numerical simulations on idealized representation of
open-cell foams (e.g. [10, 11, 21, 22]) and, (3) empirical
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correlations by fitting experimental data (e.g. [1, 2, 4, 5,
12, 23, 24]).

Despite accuracy and precision of ETC results
obtained from numerical simulations (or experiments),
they are considerably time and resource consuming.
Moreover, ETC of a specific structure for a given work-
ing fluid has to be obtained individually on a case to case
basis. Thus, an empirical correlation is a reasonable com-
promise between measurements and computational time
for quick and accurate evaluation of ETC. It presents
general applicability for a wide range of materials, poros-
ities, and ratios of solid and fluid phase conductivities.

Various simplified bounds and models exist in litera-
ture to predict the ETC values for different porous media.
The most common inputs for these models are material
properties (e.g. solid and fluid conductivities) and mate-
rial morphology (e.g. porosity). Nevertheless, prediction
of ETC values for different class of materials i.e. foam
like structures is not straightforward. Consequently, vari-
ous authors proposed empirical correlations using these
bounds/models or combination between them to predict
reasonable ETC values with or without an adjustable
parameter depending on the ratio of constituent phases.

In open-cell foams, the empirical value of adjustable
parameter in ETC correlations varies between employed
models and used type of materials. Variations in adjust-
able parameter are due to the preferred choice of model/
bound by authors and depend usually on the type of foam
material used (metallic or ceramic) and thus, resulting in
a massive gap to have access to complete range of con-
ductivity ratios. Consequently, there is no simple model
that can be used for all existing types of open-cell foams.

In this work, our intent is to develop general-
ized ETC correlations in accessible porosity range
(0.60 <&, < 098) of foams resembling Kelvin-like
cell structure and extend the conductivity ratios range
(As/ Ay = 10-30,000) in order to fill this gap. It is from this
view point, five basic arrangements of simplified models
and their combinations including the series and parallel
models [25], Hashin—Shtrikman upper and lower bounds
[26], effective medium theory (EMT) [27], and, reci-
procity model [28] are adapted as generic minimum and
maximum bounds of thermal conductivity in both arith-
metic and geometric schemes. A functional parameter is
obtained by fitting ETC data obtained numerically from
our previous works [10, 11]. Obviously, this parameter
cannot be obtained beforehand but it has been determined
in our present work for the whole range of porosities and
thermal conductivity ratios. Thus, it could be used as a
function of the traditional input parameters (foam mor-
phology and material property: conductivities) in order to
predict ETC value for any Kelvin-like foam structure.
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2 Literature study of ETC correlations

We discuss here ETC as an intrinsic property of conduc-
tive heat transfer and not an apparent property represent-
ing many other unspecified heat transfer phenomena (e.g.
radiation, micro-convection, dispersion, evaporation—con-
densation etc.). Mixing heat transfer mode in a single
apparent coefficient leads to a confusing situation and
prohibit comparison and use of obtained data. Neverthe-
less in several cases, the diffusive heat transfer is not the
principal one for a given situation. This contribution could
be calculated separately and added eventually (e.g. [6]).

Usually, commercially available real foams are close
to periodic in nature. Pieper and Klein [29] demonstrated
that the periodic homogenization for real structures close
to periodic gives very accurate results. This led research-
ers to derive empirical correlations for quick estimation of
ETC values that are generally based either on asymptotic
approaches or on a micro-structural approach in case of
open-cell foams. It is widely known that the ETC strongly
depends on porosity and the ratio of thermal conductivi-
ties of the constituent phases but also on a lesser extent to
the distributions of the solid phase (e.g. between struts and
lumps) that depends on the manufacturing process. Using
analytical modelling, some authors (e.g. [1, 2, 5, 14, 23,
30]) have considered lumps at the node junctions while
others (e.g. [4, 10-12, 24]) did not assume the presence of
lumps of matter at the node junctions while deriving their
empirical correlations. Majority of these works concerns
very high conductive metal foams (e.g. [1, 2, 5, 24]) in high
porosity range (0.88 < ¢, < 0.97). On the other hand, a few
works are dedicated to low conductive ceramic foams (e.g.
[4]) for moderate porosity range (0.75 < &, <0.97).

For the validation of empirical correlations against ETC
data, it is henceforth of major importance to measure the
intrinsic solid phase thermal conductivity of the foam
sample because different commercially available foams
employ different manufacturing techniques; that lead to
significant changes in the intrinsic solid phase thermal
conductivity of foams, compared to the same parent/bulk
material [4, 9-11]. The correlations reported in the lit-
erature can be classified into three major groups that use
mainly the same preferences of building correlations. Most
commonly, one or two adjustable parameters that contain
information about morphology are obtained by fitting
experimental or numerical ETC data to derive correlations.

The first group of authors used only porosity and
derived correlations based on series and bounds arranged
in either geometric (e.g. [24]) or arithmetic (e.g. [4])
scheme. Note that these models do not introduce addi-
tional morphological parameters to describe ETC;
although this influence has already been shown to be sig-
nificant (see [10-12, 17, 18]).

The second group of authors tried to introduce other
morphological parameters in their correlation based on
2-D (e.g. [1, 2]) or 3-D foam geometry (e.g. [1, 2, 5, 12,
23, 29-31]) and deduced an adjustable parameter from
experimental data. Most of these correlations are lim-
ited to very high conductive materials (e.g. Al, Cu) while
neglecting the influence of low conductive fluid such as
air or water (48 /4 > 400). These correlations give poor
estimates of ETC values for foams of different materials.
Constant and variable values of adjustable parameters
were obtained by fitting experimental data as a func-
tion of morphology and conductivity ratios. Contrary to
this, Qu et al. [30] described a so-called ‘morphological
parameter’ that was obtained by fitting the experimental
ETC data is rather material dependent (thermal conduc-
tivity ratio) instead of foam morphology and is only valid
for a few types of foam materials. Kumar and Topin [12]
derived ETC correlation for low conductive ceramic foam
materials (150 < 4;/4r < 900) and modified the Lemlich
approach. Their models could be used together to predict
the intrinsic solid phase conductivity of foams of dif-
ferent materials irrespective of fluid phase and porosity
when ETC is known.

The third of group of authors calculated ETC from
numerical solution of heat equation on idealized or
reconstructed open and closed foam structures (e.g. [7,
10-20, 22]). Pore scale numerical simulations (using
finite element, finite volume and Lattice-Boltzmann
methods) allow solving heat equation within both solid
and fluid phases on such foam structures while varying
porosity, morphology and conductivity ratios. Druma
et al. [22] concluded that some simplified models could
not accurately predict the ETC of foams (approximated
by spherical pores, homogeneously dispersed within
a solid matrix) over the complete range of porosities.
Coquard and Baillis [14] deduced that the realistic rep-
resentations of foam structures (e.g. Cubic, Tetrakaid-
ecahedron and Weaire-Phelan unit cells) did not account
for the commercial foam irregularities and imperfec-
tions. Mendes et al. [17] observed that using HS bounds
to build an ETC correlation give the best results for
most of the investigated foam structures. They also pro-
posed an empirical correlation using a complex arrange-
ment of Series and Parallel models [18]. In both cases,
the adjustable parameters can only be obtained from the
complete set of ETC data. Kumar et al. [10] performed
numerical simulations on Kelvin-like cell structure with
convex triangular cross section ligaments to determine
ETC over a wide range of solid to fluid conductivity
ratios. The weighted factor appearing in their correla-
tion is deduced from the morphological parameters and
the ratio of solid to fluid phase thermal conductivi-
ties. This work was further extended to different strut
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cross-sections [11]. These authors found that the cell
size and the strut cross section shape have negligible
effects on ETC.

3 Simplified ETC models of porous media

The effective thermal conductivity of open-cell foams is
much higher than those of the granular porous media. Since
the solid has a higher conductivity, the interconnected
microstructure virtually increases the pathway of thermal
conduction (or energy flux) in the homogenous medium
compared with the discrete granular microstructure, and
therefore enhances the effective thermal conductivity of the
foam material.

Two models of a two-phase material, which are
not themselves realistic for a foam but provide useful
results are the “parallel” and “series” models illustrated
in Fig. la, b, respectively and are often used as bench-
marks for new model validations. The physical struc-
tures assumed in the derivations of the Series and Paral-
lel models are layers of the components aligned either
perpendicular or parallel to the heat flux as presented in
Eqgs. 1 and 2.

)Lparallel =(1—¢))hs + 80)% (1)

PR
(r- 80)}77‘" + go/s

@)

j~seriex =

Hashin and Shtrikman [26] derived effective conductiv-
ity bounds on the basis of a variational approach that were
the best (i.e. narrowest) possible bounds for macroscopi-
cally homogeneous, isotropic, two-phase materials that
could be derived from the components’ volume fractions
and conductivities. The bounds state that the ETC of any
isotropic mixture of several isotropic conducting materials
satisfies certain inequalities independently of the structure
of a porous medium (see Fig. 1¢). The Hashin—Shtrikman
(HS) bounds always lie within the Series—Parallel bounds,
regardless of the components volume fractions or thermal
conductivities and are given by Eqgs. 3 and 4.
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Fig. 1 Five fundamental effective thermal conductivity structural models for two-component (solid and fluid phases) open-cell foam materials

(assuming the heat flow is in the vertical direction)
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The problem of electrical conduction in an inhomoge-
neous medium could be solved by the effective medium
theory (EMT). Laudauer’s EMT model [27] consists of a
two-component medium composed of two different mate-
rials, with neither phase being necessarily continuous or
dispersed. The shape of each material element is assumed
to be spherical. The main assumption in Landauer’s theory
is that the medium surrounding an element is considered
homogenous, which has an effective conductivity that
characterizes the overall properties of the mixture (see
Fig. 1d). Either component may form continuous heat con-
duction pathways, depending on the relative amounts of
the components, making this structure unbiased towards
its components. Moreover, for porous media in which the
solid phase forms continuous pathways, such as open-cell
foams, the minimum ETC bound is expected to be given
by the effective medium theory (EMT) as given in Eq. 5.

1
LEMT = 7 [Beo — Dis + {3(1 — o) — 1}

1/ [Be0 = g+ 31— ) — 12,]> + 842,

&)
The reciprocity model was based on the reciproc-
ity theorem [28] which assumes that a microstructure
of two-component remains statistically equivalent when
exchanging the volume fractions of the components (see
Fig. le) and is given by Eq. 6. Reciprocity model is quite
different than other models and predictions agreed well
with many granular materials of spherical nature [32].

4 Comparison between experimental
and numerical ETC

Most of the ETC data were reported in the literature for
the cases where /s (or 25) > A (usually metal foams).
In order to perform numerical simulations to calculate
ETC of foam samples, it is necessary to provide solid
and fluid conductivities as an input parameters on foam
structures. As discussed in Sects. 1 and 2, intrinsic solid
phase thermal conductivity of foam materials (4;) has
not been generally measured in majority of the works.
It is from this view point, we chose to perform numeri-
cal simulations using the measured intrinsic solid phase
conductivities of Al,O3, Mullite and OBSiC ceramic
foams (A; = 26, 4.4, 15 W m~! K~! respectively) by
Dietrich et al. [4]. The fluid conductivity (4¢) of air used
was 0.03W m~' K"

As ETC is mainly porosity driven, virtual open-
cell foams were generated based on total porosity (&)
reported by Dietrich et al. [4]. 3-D numerical simulations
at pore scale were performed on these virtual open-cell
foams with circular strut cross-section in LTE condition
(for detailed description, see our previous work [11]). In
the Fig. 2, total porosity as well as ETC data obtained
numerically were compared against experimental data
and are in excellent agreement. However, there are very
minimal differences which could be attributed to the
measurements uncertainties, numerical errors and mor-
phological disparity. This agreement confirms quantita-
tively and qualitatively the previously published numeri-
cal dataset of ETC, which lends confidence to develop

iV (Vo /hs — 1)e, different ETC configurations based on different simpli-
= (6)
A 1+ (\/2s/ 2 — 1)&, fied models.
0.86 1 +0.13ol/9/,. 120 1 +6% .
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0.2 ¥————rr 0+ . . . . ,
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Fig. 2 Comparison and validation of experimental ETC data (taken from the works of Dietrich et al. [4]) against numerically calculated ETC

data of ceramic foams
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5 Empirical modelling of effective thermal
conductivity

Depending on the availability of foam material (ceramic,
alloys and pure metals), authors found out different val-
ues of adjustable parameters based on different arrange-
ment of bounds. These adjustable parameters possessed
fixed (e.g. [4, 23, 31]) and variable (e.g. [10-12, 24]) val-
ues in the most of the reported works. On the other hand,
a few authors did not obtain any adjustable parameter in
ETC determination for very high conductive material.
The most common belief in this case is that heat conduc-
tion is mainly due to solid conductivity occurring mainly
through the parallel layout while neglecting the influence
of working fluid conductivity like air or water.

The present work investigates in predicting ETC val-
ues by determining a functional parameter in terms of the
traditional input parameters valid for the complete range
of porosities and accessible thermal conductivity ratios of
Kelvin-like foams. This has been carried out by arranging
various combinations of simplified bounds and models
(see Egs. 7 and 8).

As a first step, a generalization of the simplified model
for ETC similar to the works of Mendes et al. [17] is
proposed in the arithmetic scheme as presented in Eq. 7.
This approach is extended and applied to a geometric
scheme (also proposed by a few authors e.g. [10-12, 24])
as described in Eq. 8. The two schemes are chosen in
order to identify how simple models can be best arranged
based on generic minimum and maximum bounds and
could predict accurate ETC values of open-cell foams.

/Ieff = 8min + (I— s)imax (7)

Aeff = Top* Foit” (8)

where, Ayq and A, are generic maximum and minimum
bounds for the ETC respectively, and § and 8’ are the
functional parameters to be determined from the fitting of
various experimental/numerical data.

Mendes et al. [17] used an adjustable parameter § that
was an explicit function of the structure of porous media
and obtained by calculating ETC of solid phase alone
(i.e. under vacuum condition). § values were obtained
for each case from numerical simulations by giving A s
and respective values for A, and . under vacuum
conditions.

A different strategy is applied in the current work to
obtain the parameters, § and §’ by solving Egs. 7 and 8 in
terms of Aefr, Amin and Apqyx as:

Amax — jve]j‘

§ = Zmax Ll
)tmax - ;Lmin (9)
;L ln(/leﬁc) — In(Amin) (10)

In(Zmax) — I (Amin)
where, 0 < 8(or 8/) <1.
Based on the proposed generic ETC model, given by
Egs. 9 and 10, and considering different possible minimum
(Amin = Zseries» AHS.Lower» ~EMT and /gy) and maximum
(Amax = Aparallel and Ags ypper) bounds, twelve different
arrangements of these models are formed (Models 1-12,
six for each scheme, Eqs. 11-22 in Table 1) by select-
ing different expressions for A,y and A,. In the follow-
ing sections, they are called as “model” for the sake of
simplicity.

These models are presented in Table 1 where explicit
expressions of § and §’ are provided. The dataset of 2000
numerically obtained values of ETC obtained on virtual
and ideal isotropic foam structures was gathered from our
previous work [11] to determine values of § and 8’ in order

Table 1 Simplified models for effective thermal conductivity, based on the generic model given by Egs. 9 and 10, obtained by selecting differ-

ent thermal arrangements for A, and Ay

Aamin Amax Arithmetic scheme Geometric scheme
Configuration nos. é (using Eq. 9) Eq. nos. Model no. 8’ (using Eq. 10) Eq. nos.

Aseries Lparallel Model 1 8 = parallel —efy 11 Model 7 s = n(Jefr) —In(series) 17
“parallel —*series 1 In ()vparullel) —In(Aseries)

JHSLower  AHS.Upper ~ Model 2 8y = - AHS Upper —eff 12 Model 8 5. — —nCGep)=InCaisLover) 18
ZHS Upper —*HS Lower 27 In(2us,upper)—1n(ZHs,Lower)

AEMT Lparallel Model 3 85 = parallel = Aeff 13 Model 9 Sl = In(Zegr ) —In(ZgmT) 19
parallel—*EMT 37 In(Aparatier) —InGemr)

LEMT 5. Upper  Model 4 84 = LHSUpper—l_ 14 Model 10 5 _ _ InQeg)=InCenr) _ 20
LHS,Upper —-EMT 4 ™ In(Zns,upper) —InGemr)

ARM Lparallel Model 5 85 = Aparallel = eff 15 Model 11 5. = In(Jef) —InCir) 21
Zparallel = ARM 5 7 In(Aparatier) —InGgm)

ARM AHS, Upper Model 6 86 = _;“HSTUP/W*_;%ﬂ 16 Model 12 sl = In(Jefr ) =InCrar) 22
LHS,Upper —ARM 6 In(2ps,upper ) —In(iry)
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to account for a wide range of porosities, different mor- Same procedure was followed and § values for mini-
phological parameters of foam structures as well as low to ~ mum and maximum bounds arranged in arithmetic scheme
high ratios of solid to fluid conductivity ratios. Previously, = were plotted against ¢ for Models 1-6 (see Eqs. 11-16)
porosity (g,) of an idealized isotropic Kelvin-like cell was  based on Eq. 9. It can be seen in Fig. 3a, ¢ corresponding
expressed as a function of dimensionless morphological  to the Model 1 (Aseries and Aparaier bounds) and Model 3
parameters (i) of foams of any strut cross section [10-12] (Aemt and Apgraizer bounds), 8 values (obtained from Eq. 9
(Eq. 23).
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Fig. 3 Plot of § (dimensionless) for different arrangements of simpli- cal ETC values of Kumar and Topin [11] corresponding to different
fied models (Models 1-6) in arithmetic scheme. The dotted line rep- Models (1-6). Different colours of cubic data points represent § val-
resents the best fitting of § values calculated using Eq. 9 from numeri- ues obtained for different porosities (colour figure online)
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using numerical ETC values [11]) collapse very well and a
unique curve is obtained as presented in Eqgs. 24-25.

1 =&, =19 = 127o, p + %zmgq (23)
61 = 0.6249(1 — ¢) (24)
83 = 0.6213(1 — ) (25)

where opqy = Rey/Lc (ratio of equivalent circular strut
radius to node-to-node length) and 8 = L;/L,. (ratio of strut
length to node-to-node length) respectively. This formula-
tion (Eq. 23) is presented in [11].

The RMSD (root-mean-square-difference) values (see
Eq. 26) are 0.77 and 1.93% for § values of Models 1 and 3.

RMSD = 10RMS(ELOG) _ yith ELOG = 10g (8) cate — 108(8)exp

(26)

In case of Model 2 (Aus rower and Aps ypper bounds),
data of § values fit very well (see Fig. 3b). An intercept has
been introduced in order to obtain the best fit of ETC data.
However, no explanation is yet found for the meaning of
the intercept. The models 4-6 (see Fig. 3d, f) clearly indi-
cate that they follow same trend with porosity but do not
form unique characteristics. However, these fittings are not
coherent over the entire range of porosity and thus, they are
not suitable to be arranged in arithmetic scheme to predict
accurate values of ETC.

In the case of arrangements of simplified models in geo-
metric scheme, the derivation of an empirical correlation is
more difficult to obtain an excellent combination of dimen-
sionless morphological parameters and ratio of constituent
phases. The geometric scheme of series and parallel models

using a weighted parameter (Model 7, Eq. 17) has already
been presented [10—12] and thus, this scheme is not shown
here. Following their procedure, §’ values for Models 8—12
(see Eqs. 18-22) are calculated (obtained from Eq. 10
using numerical ETC values [11]) and further efforts
have been made to obtain an accurate relation between &
and a combination of ¥ and A;//s as presented in Fig. 4.
However, we could not advance to obtain any relationship
between 8, ¢ and g/ /4 for Models 9 and 10. The plots of
85, 85 and 8} are represented against n = (2% ,/2),
n' = In(y'3/2r) and n = In(y**3)s/ ) in Fig. 4a—c
respectively. The dimensionless parameters n (and ') are
the best fitting parameters to estimate effective thermal
conductivity (using Eq. 8). It can be easily observed that
all the values of §’ in relation with n (and n’) collapsed on
a single curve for all the different strut shapes. The RMSD
values are 1.04, 1.82 and 1.6% for Models 8, 11, and 12
respectively, obtained just by replacing § with 8’ in Eq. 26.
From Fig. 4, numerical approximation of §’ for Models 8,
11, and 12 are given by Eqs. 27-29 as:

85 = —0.00287n> + 0.0395y + 0.8226 27
85 = —0.0051 + 0.0876n" + 0.4914 (28)
85 = —0.0029n> + 0.0458y + 0.759 (29)

There is no physical reason to choose a quadratic pol-
ynomial function in Egs. 27-29 and we do not claim any
physical meaning to the curve fitting. The quadratic poly-
nomial function is the simplest function that gives a good
approximation of ETC data.

The development of functional parameter, § (or §8') is
clearly a function of foam morphology (¥) and constitu-
ent conductivities (4;/4r) depending the combination of

(a) 1, (b) 1, (c) 1,
09 - ', 09 0.9 1
0.8 A "‘ 0.8 1 08 .
0] & 07 07 .l"=.i
~ 06 ~ 06 1 ~06{
=05 "; 05 1 ,n‘ 05
© 04 ©oo4] ¥ © 04l
03 1 03 1 03 1
0.2 1 0.2 1 0.2 1
o1 Model 8 014 Model 11 01 4 Model 12
0 T ———s

43210123 56 7 89

!
=In@ARAJ2) ()

Fig. 4 Plot of § (dimensionless) versus fitting parameters 1 and n’
(dimensionless) of different strut shapes. a Model 8—plot of §, versus
n = In(¥*?3 )5/ 2f). b Model 11—plot of 85 versus n’ = In(¥ ' s/ 2¢).

¢ Model 12—plot of 8; versus 1) = In(Y2> 1/ /#). The errors in these
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bounds and models employed. For each combination, the
functional parameter is unique. Figure 5 presents a simple
algorithm to predict ETC from input parameters for foam
structures. Moreover, this algorithm can also be used to
predict the solid phase conductivity and morphology from
a known ETC value that could help in optimizing foam
structure. The applicability of these functional parameters
to predict ETC is validated in the next section.

6 Comparison and validation

ETC correlations developed in the Sect. 5 for different
arrangements and schemes are compared and validated
against the experimental and numerical data reported in the
literature data for foams of different materials (ceramic and
metal).

6.1 With ceramic open-cell foams

Predicted ETC results are firstly compared and validated
against the experimental data reported by Dietrich et al. [4]
for ceramic foams. Values of § and & of different models
are calculated using empirical correlations according to dif-
ferent arrangements and schemes (Models 1, 3, 8, 11 and
12) and further applied them to estimate ETC. The analyti-
cal results are presented in Table 2. From Table 2, it can

Input parameters:
€0, As/As

!

Choose combination
of simplified bounds
and models

!

Calculate functional
parameter, & (or 8")

!

Calculate ETC

Output to optimization

Input to desired properties

Fig. 5 Algorithm to predict effective thermal conductivity (ETC)
by morphological and material properties characteristics of a foam
matrix. This algorithm can be used in reciprocal way-from input to
output and vice versa

be clearly observed that all these models predict excellent
ETC results (see also Fig. 6-left).

6.2 With metal open-cell foams

A few authors (e.g. [9-11]) have already highlighted the
problem of non-reporting of intrinsic solid phase conduc-
tivity of most of the foams. Most commonly, the correla-
tions that have been reported in the literature were based
on parent/bulk solid phase conductivity. Different metal
foam materials (or alloys) and their associated ETC val-
ues of various authors are presented in Table 3.

Consequently, the methodology described as modified
Lemlich model [12] has been used to determine intrin-
sic solid phase conductivity while using the experimental
ETC data. These authors proposed the following formula-
tion of modified Lemlich model that is valid for any arbi-
trary fluid as:

defp 2 s
iy 3

S()'F (30)

where,
F = —0.004(In(% - 7/3p))” + 0.0593In (92 - /i) + 0.7144.

A simple method has been described below to calcu-
late the intrinsic solid phase conductivity (4,) for a given
Y, Ao and Ay,

Step I: Eq. 30 can be rewritten as:

Pl

Aeff
A

1/ [—04004(111(%-,13 1)) +0.05931n(y2 - /Af)+0.7144]

€29
Step II: Assign As/Ar = Ky and 4.5/ = K, and apply
natural log functions to both sides:

_2h

In(1.5-K,) = In(Kj)

1
In(yr)
[nl {in(y? - Ky) }2 +m{in(y? - Ky)} + n3}
(32a)
In (1.5 - K,) — In(Ky)
1
- “in(y) =0
[nl {ln(¢2 . Ks) }2 + nz{ln(lp2 . KA)} + ng]
(32b)

where, n; = —0.004, np = 0.0593,n3 = 0.7144.

Step III: Using iterative process, solve for Kj.

Intrinsic solid phase conductivities were calculated
using Eqgs. 31, 32a for each foam material and these val-
ues were subsequently substituted in different models
(Models 1, 3, 8, 11 and 12) to predict analytical ETC
values (see Table 3). From Table 3, it can be prompted
that the different models are consistent with each other

@ Springer
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Fig. 6 Comparison and validation of experimentally and analytically
obtained effective thermal conductivity (Z.) data by using different
models (Models 1, 3, 8, 11, 12) for ceramic foams (leff) and metal
foams (right). Note that, Ana. analytical, Exp. experimental. The fit-
ting comparison between experimental and analytical ETC values is

and their uses can be combined to predict accurate ETC
values (see also Fig. 6-right). However, the predicted val-
ues underestimate the experimental ETC data which can
be attributed to the formulation [12] by which the intrin-
sic solid phase conductivity of a different material is
under-evaluated.

7 Conclusion

Different arrangements of simplified models in arithmetic
and geometric schemes were tried and tested to determine
effective thermal conductivity of foam samples of differ-
ent materials. It has been demonstrated that arrangements
of different simplified models may work for one scheme
but may not work for another.

The highlight of the present work is to significantly
improve the notion of fixed value of adjustable parameter
and thus, determining a functional parameter of coupled
thermal bounds and models as a function of foam mate-
rial properties and morphology. Their validity and adapt-
ability has been shown to predict accurate ETC values.

1007 | nodel 1 (y=0.943x)

# Model 3 (y=0.9883x)

Model 8 (y=0.9447x)
10 | * Model 11 (y=0.9435x) ﬂ'
u Model 12 (y=0.9501x)

'f

e

A (Ana.,, Wm'K-1)

¥ Bias in ETC results due to
i" underestimation of 1; and

is same for all the models
0.1 T T |
0.1 1 10 100

Aeir (Exp., WmrlK)

also presented (right). The ETC data of ceramic foams were taken
from the works of Dietrich et al. [4] while ETC data of metal foams
were taken from Bhattacharya et al. [2], Solérzano et al. [3], Bodla
et al. [15], Ranut et al. [19], Wulf et al. [20], Takegoshi et al. [33] and
Paek et al. [34]

The predicted values are compared and validated against
experimental data for foams of different materials in a
wide porosity range.

It is from this view point, arrangement of Parallel and
Series models in both arithmetic and geometric schemes
predicts the most accurate effective thermal conductivity
results. Moreover, the combination of Parallel and EMT
models in the arithmetic scheme as well as Parallel and
Reciprocity models, and HS upper bound and Reciproc-
ity models arranged in geometric scheme also predict
accurate results.

Depending on the availability of morphological
resources, any of these models can be easily used to
determine effective thermal conductivity from morphol-
ogy and thermal conductivity ratio. From the present
results, it can be safely concluded that the proposed cor-
relations are most suitable for evaluating the functional
parameters of both schemes. Finally, it may be empha-
sized that the most remarkable feature of the proposed
models lies in the fact that they allow one to quite accu-
rately predict the effective thermal conductivity of open-
cell foam structures for any working fluid.
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Table 3 continued

Material Experiments Analytical

Authors

Model 3 Model 8 Model 11 Model 12

Model 1

Equa-

Jeft

€o

tions (31, 32)

Error (%)

/6 deff

’5 Jeg  Error (%) s

Error (%) §

83 Jeg  Error (%) 5'2 eff

Error (%)

ie.z‘f

4.68 3.70

0.875
0.875

4.86 2.10
4.86
4.26

0.804
0.804
0.798

0.85
0.85
0.24
4.57
0.94
0.61
3.03
2.70
3.13
3.57
3.03

4.76
4.77
4.18
3.34
4.23

4.88

0.919

0.85
0.85
0.96
0.86
0.71
0.82
3.13
2.78

4.72
4.73
4.19
3.50
4.27

491

0.567
0.567

0.571

10.00

4.68
4.69
4.15
3.47
4.24

4.87

0.571

124.84

5.2

0.9131
0.9126
0.9198
0.944
0.927

ERG-Al

Bodla et al.

4.69 3.50

1.89
1.91

0.920

9.98
8.19
0.57
7.22
8.29
13.98
13.25
13.89
15.63
13.51

0.570
0.575

124.20

5.21
4.52
3.49
4.57
5.31
0.372

T6201

[15]

4.10 3.76

325 525

0.869
0.851

0.915

121.11

343 2.69

433 236
5.00 2.46

0.32 0.00
0.36 0.00

0.31

0.785

0.900
0.913

0.587

0.590
0.579
0.581

150.13

ERG-Al
T6101

Ranut et al.

4.15 4.16
477 4.60
0.32 0.00

0.37 278
0.31

0.866
0.869
0.788

0.798

0.576
0.577

137.25

[19]

0.802
0.668

0.915

162.64

0.929

FeCrAl-alloy 0.89

0.32
0.36
0.31
0.27
0.32

0.848
0.864

0.853

0.33
0.37
0.32
0.28
0.33

0.553

0.32
0.36
0.31
0.27
0.32

0.556
0.531

6.09
4.82
4.87
5.76
5.49

Waulf et al.,

0.807
0.795

0.682

0.528

0415

0.85
0.87
0.9

0.88

[20]

0.00

0.00

0.670

3.23
3.70
3.13

0.541

0.544
0.562
0.550

0.36
0.32
0.37

0.27 0.00 0.777  0.27 0.00
0.32 0.00

0.32 0.00

0.838 0.655

0.559
0.547

0.792

0.670

0.851

Ttalics values represent the experimental data while the non-italics values represent the calculated/analytical data
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