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k(T)  Thermal conductivity
ko, hb, qo, εs  Parameters describing the coefficients of 

thermal conductivity, convective heat  
transfer, internal heat generation and sur-
face emissivity at ambient temperature

κ, γ  Parameters describing the linear and non-
linear variation of thermal conductivity

λ, e  Parameters describing the variation of sur-
face emissivity and internal heat generation

β, β1  Non-dimensional parameters describing the 
variation of linear and non-linear thermal 
conductivity parameter

n  Exponent of variable convective heat trans-
fer coefficient

N  Non-dimensional thermo-geometric param-
eter, 

(

2hr2i /kot
)0.5

M  Non-dimensional conduction-radiation 
parameter, (2r2i σεsT

3
b /kot)

G  Non-dimensional heat generation param-
eter, G = qor

2
i /koTb

EG  Non-dimensional parameter describing the 
variation of heat generation

Tb  Base temperature of fin
Ta  Ambient temperature
c1, c2, C1, C2  Constants of integration
ξ  Dimensionless radius of fin, ξ = (r − ri)/ri
R  Dimensionless outer radius ratio, R = ro/ri
θ  Dimensionless temperature,  

θ = (T − Ta)/(Tb − Ta)
p  Imbedding parameter
η  Fin efficiency
Qf  Actual heat transfer
Qmax  Maximum possible heat transfer
F(ξ)  Objective function

Abstract The performance characteristics and temperature 
field of conducting–convecting–radiating annular fin are 
investigated. The nonlinear variation of thermal conduc-
tivity, power law dependency of heat transfer coefficient, 
linear variation of surface emissivity, and heat generation 
with the temperature are considered in the analysis. A 
semi-analytical approach, homotopy perturbation method 
is employed to solve the nonlinear differential equation of 
heat transfer. The analysis is presented in non-dimensional 
form, and the effect of various non-dimensional thermal 
parameters such as conduction–convection parameter, con-
duction–radiation parameter, linear and nonlinear variable 
thermal conductivity parameter, emissivity parameter, heat 
generation number and variable heat generation parameter 
are studied. For the correctness of the present analytical 
solution, the results are compared with the results available 
in the literature. In addition to forward problem, an inverse 
approach namely differential evolution method is employed 
for estimating the unknown thermal parameters for a given 
temperature field. The temperature fields are reconstructed 
using the inverse parameters and found to be in good agree-
ment with the forward solution.

List of symbols
ri, ro, t  Inner radius, outer radius and thickness of 

the fin
h(T)  Coefficient of convective heat transfer
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1 Introduction

The advancement in engineering and technology is tak-
ing place day by day whether it is mechanical, electri-
cal, or electronics, etc. But, along with this advancement 
the important concern is about the heat dissipation from 
the equipment whether it is mechanical machines such as 
IC engine, heat exchanger, etc. or electrical transformer, 
or electronics equipment such as mobile, computer, etc. 
There are several ways for heat dissipation. Out of which, 
the extended surfaces are widely used to enhance the heat 
transfer in a variety of heat exchanging devices [1, 2].

In last few decades, a substantial amount of research 
has been conducted for the enhancement of heat transfer 
through extended surfaces. For this purpose, various types 
of extended surfaces are studied. Mokheimer [3] studied 
the effect of variable heat transfer coefficient on the per-
formance of annular fins with different profiles. In his 
study, the deviation in the results among the constant and 
variable heat transfer coefficient was reported. Zubair et al. 
[4] considered the effect of temperature dependent thermal 
conductivity on the optimal dimensions of circular fin with 
variable profile. Yu and Chen [5] studied the optimization 
of circular fin with temperature dependent thermal con-
ductivity and heat transfer coefficient. In his analysis, the 
non-linear heat transfer equation was solved by differential 
transformation method (DTM).

The performance and optimum dimensions of three 
types of cooling fins was examined by Kalman and Laor 
[6]. Cihat Arslanturk [7] proposed correlation equations 
which are useful to design engineers for optimum design 
of an annular fin with temperature dependent thermal 
conductivity. Khan and Zubair [8] investigated the con-
vecting–radiating circular fin with variable profile. Tem-
perature dependent thermal conductivity and heat transfer 
coefficient were taken into account. The idea of their study 
was either for a given amount of heat dissipation the vol-
ume of the fin was minimized or for a given volume the 
heat dissipation was maximized. The Adomian’s double 
decomposition method was applied by Chiu and Chen [9] 
for the study of temperature distribution and then estimates 
the stress field in circular fin with variable thermal con-
ductivity. The differential quadrature element method was 
applied to a convective-radiative fin with variable thermal 
conductivity by Malekzadeh et al. [10]. They showed that 
the method is computationally efficient and having good 
convergence rate with high accuracy.

Very recent, a hybrid numerical method i.e. combina-
tion of differential transformation and finite difference 
method was applied by Peng and Chen [11] for solving the 
heat transfer equation of an annular fin with temperature 
dependent thermal conductivity. Their model demonstrates 
that the heat dissipation from surface to surrounding occurs 

simultaneously by convection and radiation. The effects of 
all the thermal parameters such as heat transfer coefficient, 
absorptivity, emissivity, and thermal conductivity on tem-
perature distribution were discussed. Aksoy [12] employed 
homotopy analysis method (HAM) to study the effect 
of variable heat transfer coefficient and variable thermal 
conductivity parameter on the thermal performance of an 
annular fin. Although in all the above cases, the heat gen-
eration was ignored. This assumption is reasonable when 
the fin is not used at very high temperature. However, there 
are many situations when the internal heat generation can-
not be ignored during the heat transfer processes. Recently, 
Aziz and Bouaziz [13] attempt to solve the nonlinear heat 
transfer equation for a longitudinal fin with variable ther-
mal conductivity and heat generation using least squares 
method. It was observed that the internal heat generation 
to some extent influenced by the temperature distribution 
and efficiency. Georgiou and Razelos [14] considered inter-
nal heat generation in the performance study of a convec-
tive annular fin with trapezoidal profile. They showed that 
the heat convection ability in the fin reduces due to inter-
nal heat generation. Few authors consider the temperature 
dependent heat generation parameter which is more realis-
tic [15, 16].

To minimize the mathematical complexity, most of the 
researcher either assume constant thermal parameters or 
consider partial mode of heat transfer in the analysis of 
a fin. This type of simplification is applicable for particu-
lar applications and turn away from the real situation of 
heat transfer problem. In reality, the heat transfer through 
fin material involves all the thermal parameters which are 
generally temperature dependent. In the recent year, Torabi 
and Zhang [17] have presented differential transforma-
tion technique to study the conducting-convecting–radi-
ating straight fin with all temperature dependent thermal 
parameters. Similar study was carried out by Singh and 
Das [18] for straight and annular fin without consider-
ing the heat generation. However, in both the cases the 
correctness of their forward solutions was not properly 
attempted. Recently, Sun et al. [19] employed collocation 
spectral method for analyzing the convective–radiative fin 
with temperature dependent thermal properties. Lagrange 
interpolation polynomial was used to approximate the 
temperature distribution. The affect of all the parameters 
on the performance of the fin were found to be motivating 
for further research.

In the present advances of technological revolution, 
industry needs high performance heat transfer equipment 
with progressively low weight, compact and cost effec-
tive design. Thus, apart from forward solution, the inverse 
analyses are also overwhelming and encouraging. Das [20] 
used simplex search method to solve inverse problem for 
estimating the unknown thermal parameters of a straight 
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fin. The accuracy of the estimated parameters was stud-
ied for the effect of measurement errors, initial guess and 
number of measurement points. Later Mallick and Das [21] 
estimated the unknown thermo-mechanical parameters of 
an annular fin subjected to thermal stresses using an inverse 
approach. Their inverse analyses were limited to conduc-
tive–convective annular fin only, and the internal heat gen-
eration and radiation were ignored.

The main motivation of the present study is to address 
the real situation of heat transfer in which all the tem-
perature dependent thermal parameters such as conduc-
tion, convection, radiation and heat generation parameter 
are taken into account. Open literature search reveals that 
homotopy perturbation method (HPM) is not yet applied to 
the study of annular fin involving all thermal parameters. 
The closed form solution for highly nonlinear engineering 
problem is difficult, but has a great significance and chal-
lenge to the researchers as it gives better insight into the 
nature of the problem and understanding. In this work, an 
annular fin with rectangular profile is considered which is 
having wide industrial applications such as from compact 
heat exchanger to small electronic devices. The nonlinear 
differential equation of heat transfer is solved using HPM. 
This approximate analytical approach gives the forward 
solution for a temperature field. HPM has several advan-
tages for dealing with nonlinear problem. It involves less 
approximation and convergences rapidly to the accurate 
solutions as compared to other method such as ADM, 
DTM, HAM and conventional perturbation. The affects of 
various thermal parameters on temperature distribution are 
studied. In addition to that an inverse analysis using differ-
ential evolution (DE) has been carried out to estimate the 
unknown thermal parameters.

2  Problem description

In fin analysis, the heat transfer involves two factors (1) the 
movement of the heat through the fin material by conduc-
tion and (2) fin exchanges heat with the surrounding either 
through convection or radiation alone or both. Consider a 
thin axisymmetric annular fin (Fig. 1) of base radius ri and 
tip radius ro having a constant thickness t. The base of the 
fin is subjected to a constant temperature Tb, while the tip 
is considered to be well insulated. The heat is transferred 
to the surrounding by convection and radiation both. The 
radiation takes place at an effective sink temperature Ts. 
The assumptions are to be considered that the fin is made 
of homogeneous material and subjected to the temperature 
dependent thermal parameters such as, thermal conduc-
tivity (k), heat transfer coefficient (h), surface emissivity 
(ε) and internal heat generation (q). The various thermal 
parameters are defined as follows:

where, ko is the thermal conductivity at the ambient temper-
ature Ta, hb is the convective heat transfer coefficient to the 
temperature difference Tb − Ta, εs is the surface emissivity 
at the sink temperature Ts, and qo is the internal heat gen-
eration parameter at ambient temperature Ta. Parameters κ 
and γ are representing the variation of linear and nonlinear 
thermal conductivity, λ is the variation of surface emissiv-
ity, e is the variation of internal heat generation, and n is the 
exponent of variable convective heat transfer coefficient. 
For very small thickness and axisymetric nature of the 
problem, the heat flow through the fin material is assumed 
to be in radial direction only. Based on these assumptions, 
the steady state energy balance equation and the boundary 
conditions are given as,

(1a)k = ko

{

1+ κ(T − Ta)+ γ (T − Ta)
2
}

(1b)h = hb

(

T − Ta

Tb − Ta

)n

(1c)ε = εs{1+ λ(T − Ts)}

(1d)q = qo{1+ e(T − Ta)}

(2a)

t
d

dr

[

k(T)r.
dT

dr

]

− 2h(T)r(T − Ta)

− 2ε(T)σ r(T4 − T4

s )+ q(T)tr = 0

(2b)T = Tb at r = ri and
dT

dr
= 0 at r = ro

ri 

ro 

Radiation 

Conduction 

Convection

t 

Fig. 1  Geometry of an annular fin
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where σ is the Stefan’s Boltzmann constant. For simplic-
ity and wide area of applications, various entities are non-
dimensionalised as follows:

On substitution of non-dimensional terms, the energy bal-
ance equation and the boundary conditions are modified as,

3  Method of solution

The nondimensional steady state nonlinear heat trans-
fer equation with variable thermal parameters is solved 
using HPM. In this method, homotopy in topology is cou-
pled with regular perturbation for taking the full advan-
tage of both homotopy and perturbation method. HPM do 
not require any small parameter which is one of the big-
gest constraint in the traditional perturbation method. The 
homotopy is constructed in such a way that it continuously 
deforms from one system to other system as the embedding 
or expanding parameter changes from 0 to 1 (0 ≤ p ≤ 1). 
This method is simple and straight forward for solving non-
linear differential equation. The convergence rate of this 
method is very fast such that even less number of iteration 
shows much more accurate solution which is valid for the 
whole solution domain.

To illustrate the basic ideas of HPM and the complete-
ness of the presentation, the He’s formulation is restated 
for a general nonlinear differential equation as follows [22, 
23]:

with the boundary conditions,

(3)

θ =
T

Tb
, θa =

Ta

Tb
, θs =

Ts

Tb
, ξ =

r − ri

ri
, R =

ro

ri
,

β = κTb, β1 = γT2
b , N2 =

2hbr
2
i

kot
, M =

2r2i σεsT
3
b

kot
,

G =
qor

2
i

Tbko
, λR = λTb, and EG = eTb

(4a)

d
2θ

dξ2
+ βθ

d
2θ

dξ2
+ β1θ

2
d
2θ

dξ2
+ β

(

dθ

dξ

)2

+ 2β1θ

(

dθ

dξ

)2

+
1

1+ ξ

dθ

dξ
+

β

1+ ξ
θ
dθ

dξ
+

β1

1+ ξ
θ2

dθ

dξ
− N

2θn+1

−M

(

θ4 + λRθ
5

)

+ G(1+ EGθ) = 0

(4b)θ = 1 at ξ = 0 and θ ′ = 0 at ξ = R− 1

(5)L(θ)+ N(θ)− f (r) = 0, r ∈ Ω

(6)B

(

θ ,
∂θ

∂n

)

= 0, r ∈ Γ

where L and N are the linear and nonlinear operator, f(r) 
is a known analytical function, B is the boundary opera-
tor, and Γ is the boundary of the domain Ω.Now, con-
struct homotopy for a given nonlinear differential equa-
tion as,

where L = d2

dξ2
, p∈[0, 1] is an embedding parameter which 

changes monotonically from zero to 1, θo is an initial 
approximation and θ is the temperature distribution which 
is the function of ξ. Following HPM, the nondimensional 
heat transfer equation (Eq. 4a) can be written as,

The solution of Eq. 8 can be approximated in the form 
of power series p such as,

Substituting the value of θ into Eq. 8 and equating the 
coefficients of the like powers of p, one has:

with the following boundary conditions,

The values of θ0, θ1 and θ2 are obtained by solving 
Eq. 10 and using the proper boundary conditions as men-
tioned in Eq. 11. For p → 1, the approximate solution for 
temperature field is,

where,

(7)(1− p)[L(θ)− L(θo)] + p [L(θ)+ NL(θ)− f (r)] = 0,

(8)

L(θ)+ pL(θo)− L(θo) = −p

[

βθ
d2θ

dξ2
+ β1θ

2 d
2θ

dξ2
+ β

(

dθ

dξ

)2

+ 2β1θ

(

dθ

dξ

)2

+
1

1+ ξ

dθ

dξ
+

βθ

1+ ξ

dθ

dξ
+

β1

1+ ξ
θ2

dθ

dξ

−N2θn+1 −Mθ4(1+ �Rθ)+ G(1+ EGθ)

]

(9)θ = θ0 + pθ1 + p2θ2 + · · · · · ·

(10)

p0 : θ0 = θ0

p1 :
d2θ1

dξ2
= N2 +M(1+ �R)− G(1+ EG)

p2 :
d2θ2

dξ2
= −(β1 + β)

d2θ1

dξ2
−

1+ β

1+ ξ

dθ1

dξ
−

β1

1+ ξ

dθ1

dξ

+

{

(n+ 1)N2 + (4+ 5�R)M − GEG

}

θ1

(11)

ξ = 0 : θo = 1 and ξ = R− 1 :
dθ0

dξ
= 0

ξ = 0 : θi = 0 and ξ = R− 1 :
dθi

dξ
= 0 for i = 1, 2, . . . . . .

(12)θ = θo + θ1 + θ2 + · · · · · ·

(12a)θo = 1
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(12b)

θ1 =

{

N2 +M(1+ λR)− G(1+ EG)

}

{

ξ2

2
− (R− 1)ξ

}

(12c)

θ2 = −(β1 + β)θ1 −

{

N
2 +M(1+ λR)− G(1+ EG)

}

(1+ β1 + β)

[

ξ2

2
− {log(1+ ξ)− 1}(1+ ξ)R

]

+

{

(n+1)N2 −M(4+ 5λR)− GEG

}{

N
2 +M(1+ λR)− G(1+ EG)

}

{

ξ4

24
− (R− 1)

ξ3

6

}

+

+ (1+ β1 + β)

{

N
2 +M(1+ λR)− G(1+ EG)

}

R+

{

N
2 +M(1+ λR)− G(1+ EG)

}

×

[

(1+ β1 + β){(R− 1)− R logR} +
{

(n+1)N2 −M(4+ 5λR)− GEG

} (R− 1)3

3

]

ξ

4  Fin efficiency

The performance of a fin is measured in terms of efficiency. 
The efficiency of a fin is defined as the ratio of actual heat 
transfer through the fin to the heat transfer if the fin is iso-
thermal. The heat transfer rate from the fin is given as,

The ideal heat transfer is obtained when the entire fin is 
considered to be at base temperature. Thus, the ideal heat 
transfer can be expressed as,

The fin efficiency is given as,

5  Differential evolution method

There are several optimization techniques to deal with the 
inverse analysis of various type of engineering problem. All 
of them having their own merits and demerits. A new heu-
ristic parallel direct search method known as differential 
evolution (DE) is used for inverse analysis in the present 
problem. Price and Storn [24] proposed a vector population 
based stochastic method to handle the Chebyshev poly-
nomial and later used for varieties of nonlinear problem. 
This method has several advantages like fast convergence 

(13)

qf = 4π

[

hbTbr
2

i

∫ R−1

0

θn+1(ξ + 1)dξ + σεsT
4

b r
2

i

×

∫ R−1

0

θ4(1+ λRθ)(ξ + 1)dξ

]

(14)qideal = 2πr2i

(

R2 − 1
)[

hbTb + σεsT
4
b (1+ λR)

]

(15)

η =
qf

qideal

=

2

[

N
R−1
∫

0

θn+1(ξ + 1)dξ +M
R−1
∫

0

θ4(1+ λRθ)(ξ + 1)dξ

]

(

R2 − 1
)

{N +M(1+ λR)}

by using only few control parameters and finding the true 
global minimum regardless the values of initial param-
eters. The population size in DE is considered Np parameter 

vectors for each generation and it does not change during 
the minimization process. It involves three processes (1) 
mutation, (2) crossover and (3) selection ratio. For exam-
ple, let us consider a i-th member, xi,G from the population 
of G-th generation. The mutation process for this affiliate 
can be expressed as follows:

where, r1, r2, r3 ∈ {1, 2, 3, ……, Np} are randomly cho-
sen integers. In DE, the weighted difference of two random 
population vectors is added to the base vector. In Eq. 16, 
Cm is referred to as the mutation probability (differential 
weight) which controls the differential amplification of 
the weighted difference of two random population vec-
tors. Parameter xr1 is the best member of the, i-th popula-
tion for which the value of the relevant objective function is 
the least. Crossover increases the diversity of the perturbed 
parameter vectors. The crossover constant, CR, is selected 
between 0 and 1 which depends on the user. In crossover, 
the random parameter vector is generated by combining 
elements of the parent vector and the trail vector and if the 
random parameter is less than the crossover probability, 
then that particular solution is subjected to crossover. In 
general, the entire population in the next iteration is stimu-
lated by the best member of the current population in some 
or other manner. In the present work Cm is taken as 1.0 and 
CR as 0.5.

In manufacturing of heat transfer equipment, the inverse 
estimation of various parameters for better performance 
along with cost-effective design is becoming quite popu-
lar. The objective of this work is to inversely predict the 
thermal parameters for a conductive–convecting–radiat-
ing annular fin. The reference temperature field is obtained 
from HPM based forward solution of heat transfer equa-
tion. Following objective function is considered to estimate 
the unknown parametersβ, β1, N, M, λR, G and EG:

(16)vi,G+1 = xr1,G + Cm(xr2,G − xr3,G)

(17)
F =

p
∑

j=1

{(

θj(n)− θ̄j
)/

θj
}2
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where p is the number of points at which temperatures are 
measured, θj is the temperature field obtained from the 
forward solution and θ̄j is the guessed temperature field 
for a parameter vector in the solution space. In practice, 
the measurements of the temperature field cannot be fully 
error free. Thus, the inverse parameters are also estimated 
in consideration with arbitrary measurement errors. The 
objective function for temperature field associated with the 
measurements error can be expressed as,

6  Results and discussion

Results are presented for an annular fin where all the ther-
mal parameters are considered to be a function of local 
temperature. The study is mainly focused on an approxi-
mate closed form solution for temperature field and the 
inverse estimation of unknown parameters for a given 
temperature field. A novel mathematical technique, HPM 
is used to solve the nonlinear heat transfer equation. For 
verifying the correctness of present HPM solution for 
temperature field, results are compared with the available 
literature results in Table 1. A comprehensive literature 
review exposed that only Das et al. [18] employed ADM 
for the analysis of an annular fin with all variable thermal 
parameters without the consideration of internal heat gen-
eration. Similar analysis with internal heat generation was 
performed by Torabi et al. [17] using DTM for straight 

(18)F =

p
∑

j=1

{(

θj(n)− [θ̄j + er]
)/

θj
}2

fin only. Both the methods are cumbersome and give slow 
convergence as compare to HPM solution. Moreover, the 
validation of their forward solution is performed consid-
ering radiation parameter and heat generation is equal to 
zero. This partial validation cannot give the guarantee to 
the correctness of their forward solution when radiation 
and heat generation is involved in the heat transfer pro-
cess. For the completeness of the validation, the present 
results are compared separately with (I) convective-con-
ductive fin with nonlinear convective heat transfer coef-
ficient, (II) convective-conductive fin with internal heat 
generation and (III) radiative fin with variable thermal 
conductivity. In all the cases, proposed method results 
give excellent agreement with the results available in lit-
erature. The maximum difference between the proposed 
method and methods in literature is about only 2.91 %. 
Furthermore, the present HPM result for temperature 
field is compared with the finite difference (FD) result 
in Fig. 2, where all the thermal parameters are taken into 
consideration. Relaxation method was employed to obtain 
the FD solution following the algorithm of Young and 
Mohlenkamp [25, Ch. 34]. In FD solution, 10 points are 
discretized and the result converges to the HPM result at 
about 140 iterations.

For wide application of the problem, all parameters are 
simplified into non-dimensional form. To illustrate the pre-
sent closed form solution, unless mentioned otherwise the 
values of non-dimensional parameters, β = 0.3, β1 = 0.3, 
N = 0.5, M = 0.5, λR = 0.2, G = 0.4, E = 0.4, n = 2.0 and 
R = 2 are considered in the analysis.

Table 1  Validation of the proposed HPM solution

Results are compared separately with Refs. [11, 12, 14]

Case I Case II Case III

Convective–conductive fin with non-
linear convective heat transfer coef-
ficient (n). β = 0.3, R = 2, N = 0.5, 
n = -0.25, G = 0, β1 = M = λR = 0, 
ξ = (r − ri)/ri

Convective–conductive fin with internal heat 
generation. β = β1 = M = λR = 0, R = 2, n = 0, 
1/N2 = 0.8, G = 0.5 ξ1 = r/ri

Radiative fin with variable thermal conductivity 
hb = 50 W/m2 K, α = ε = 0.8, κ = 0.00018, γ = 0, 
G = 0, n = 0, R = 3

ξ HAM [12] Proposed ξ1 Georgiou et al. [14] Proposed r (m) Peng and Chen [11] (K) Proposed (K)

0.0 1.0000 1.0000 1.0 1.0000 1.0000 0.020 600 600

0.1 0.9751 0.9739 1.1 0.9345 0.9344 0.024 586.127 586.864

0.2 0.9542 0.9522 1.2 0.8816 0.8815 0.028 576.301 575.980

0.3 0.9366 0.9343 1.3 0.8394 0.8395 0.032 568.208 567.005

0.4 0.9220 0.9198 1.4 0.8024 0.8067 0.036 561.272 559.686

0.5 0.9102 0.9083 1.5 0.7759 0.7816 0.040 556.069 553.828

0.6 0.9009 0.8994 1.6 0.7494 0.7630 0.044 552.023 549.274

0.7 0.8939 0.8929 1.7 0.7359 0.7498 0.048 549.133 545.896

0.8 0.8891 0.8886 1.8 0.7250 0.7412 0.052 546.821 543.589

0.9 0.8862 0.8861 1.9 0.7194 0.7365 0.056 545.665 542.261

1.0 0.8853 0.8853 2.0 0.7137 0.7350 0.060 544.509 541.834
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In most of the fin analysis research, to minimize mathe-
matical complexity only linear dependency of thermal con-
ductivity is considered. This consideration is quite accept-
able only when the fin is operated at low temperature. At 
higher operating temperature, the thermal conductivity may 
vary nonlinearly. The effects of linear (β) and nonlinear 
(β1) thermal conductivity parameter on the nondimensional 
temperature distribution along the outward radial direc-
tion are presented in Fig. 3. It can be seen that both the 
parameters individually influenced the temperature fields. 
With the increase of those parameters, the heat transfer rate 
through the fin material is increased. As a result, higher tip 
temperatures are observed. It can be noticed that the similar 
temperature fields are observed when both the parameters 
have same non-dimensional values, but acting alone. This 
is because of linear variation of non-dimensional tempera-
ture field with the linear and nonlinear thermal conductiv-
ity parameters as indicated in Eq. 12c. A detail comparison 
between the influence of β and β1 are depicted in Table 2. 
Both the parameters independently play a significant role 
for changing the tip temperature. However, one parameter 
has the same effect as the other.

The convective heat transfer coefficient between fin 
and its surrounding fluid depends on the Nusselt number 
which in turn is a function of Rayleigh number and Prandtl 
number of the system. For convective heat transfer, the 
Rayleigh number is certainly a function of change in tem-
perature between the heater and surrounding. Thus, that 
the convective heat transfer coefficient is expected to be a 
function of temperature difference. In the present analysis, 
the convective heat transfer coefficient is considered to be 
varying with the ratio of temperature difference following 

power law. Figure 4 represents the effect of the variation 
of convective heat transfer coefficient. From Eq. 1, it can 
be seen that the convective heat transfer coefficient, h 
decreases with the increase in power of convective heat 
transfer coefficient, n. Hence, the positive values of n act 
against the convective heat transfer from the fin surface 
to the surrounding. As a result, higher local temperatures 
are observed with the increase of the power of convective 
heat transfer coefficient. The biot number (Bi) is an impor-
tant parameter to describe the amount of heat transfer. The 
effect of non-dimensional conduction–convection param-
eter (N = Bi/t) on the temperature distribution is presented 
in Fig. 5. The parameter, N decreases with the increase of 
thermal conductivity which in turn heat transfer through 
the fin material increases with decrease of N.

Fig. 2  Comparison of proposed HPM results with FD solution for 
temperature field

Fig. 3  Effect of a linear and b nonlinear variable thermal conductiv-
ity parameter on the dimensionless temperature distribution as a func-
tion of dimensionless fin radius
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Figure 6 shows that the radiation from the fin surface 
has significant effect on the heat transfer. The temperature 
dependent dimensionless radiation–conduction parameter 
(M) and the parameter describing the variation of surface 
emissivity (λR) changes the temperature distribution as 
shown in Fig. 6a, b. In consultation of the figures, it can 
be stated that in both the cases the tip temperature mono-
tonically decreases with increase in M and λR. The decrease 
of tip temperature is a result of continuous heat dissipation 
from the fin surface to the surrounding. For λR = 0, the 
temperature distribution is influenced by the constant radia-
tion–conduction parameter. Whereas, for M = 0, the tem-
perature variation is independent from the radiation effect.

Figure 7 illustrates how temperature field in the fin 
material is influenced by the internal heat generation. The 
temperature distribution for the different values of heat 
generation parameter (G) and the parameter describing the 
variation of heat generation (EG) are shown in Fig. 7a, b 
respectively. It can be observed that the local temperature 
of the fin increases with the increase of those parameters. 
This result suggests that the tendency to convect heat from 
the fin surfaces is reduced by the heat generation. The com-
parison between Fig. 7a, b reveals that the parameter G has 
more profound effect as compare to the parameter EG.

The efficiency is an important parameter for measur-
ing the performance of a fin. Thus, the fin design cannot 
go through without the measurement of its efficiency. 
Figure 8 illustrates the variation of fin efficiency as a func-
tion of thermo-geometric parameter. Unless mention oth-
erwise, the values of the parameters are same as taken for 
solid curves. The effect of various thermal parameters, β, 
β1, n and M are also depicted in the figs. In general, the 
efficiency gradually decreases with the increase of param-
eter, N. However, slight deviation is observed in the vari-
ation of parameters n and M. The efficiency for different 
values of variable thermal conductivity parameters (β and 
β1) is presented in Fig. 8a. The result shows that lower effi-
ciency is associated with the lower values of the thermal 
conductivity parameters. The dependency of fin efficiency 
on the parameters β and n is presented in Fig. 8b. It can be 

Table 2  Effect of linear (β) 
and non-linear (β1) thermal 
conductivity parameters on fin 
tip temperature

Other thermal parameters are G = 0.4, EG = 0.4, N = 0.5, M = 0.5, λR = 0.2 and n = 2

S no. β = 0 and β1 = 0 β1 = 0
Variation of β

β = 0
Variation of β1

Variation of β and β1

β θtip β1 θtip β and β1 θtip

1 0.7066 −0.3 0.6730 −0.3 0.6730 −0.3 0.6394

2 −0.2 0.6842 −0.2 0.6842 −0.2 0.6618

3 −0.1 0.6954 −0.1 0.6954 −0.1 0.6842

4 0.1 0.7178 0.1 0.7178 0.1 0.7290

5 0.2 0.7290 0.2 0.7290 0.2 0.7514

6 0.3 0.7402 0.3 0.7402 0.3 0.7738

Fig. 4  Effect of nonlinear parameter, (n) describing the variation of 
convection coefficient on the dimensionless temperature distribution 
as a function of dimensionless fin radius

Fig. 5  Effect of thermo-geometric parameter on the dimensionless 
temperature distribution as a function of dimensionless fin radius



1045Heat Mass Transfer (2017) 53:1037–1049 

1 3

seen that the efficiency decreases with decrease in param-
eter, β and it is more pronounced at the higher values of N. 
The nonlinear parameter, n describing the variation of con-
vecting parameter has significant effect in the fin efficiency. 
The increase of conductive–radiative parameter, M reduces 
the fin efficiency as shown in Fig. 8c.

The thermal analysis of a fin for a given parameters 
are performed directly from the forward solution which is 
obtained by solving the energy balance equation, using suit-
able initial and boundary conditions. This type of solution 
is well-posed. However, the challenge is a cost effective 
and efficient fin designing which requires a good combina-
tion of various thermo-physical parameters. In order to esti-
mate the various combinations of unknown thermo-physi-
cal parameters for a required temperature field, an inverse 

approach based on differential evolution (DE) method is 
employed. The inverse parameters are obtained using the 
forward solution for a given temperature field. This type of 
problems is mathematically ill-posed, because of small per-
turbation in the system may cause significant error in the 
estimated parameters. As one of the main objective of the 
present study is to predict the thermo-physical parameters 
for a predefined temperature field, the parameters, β, N, M, 
λR, G, and EG are to be estimated inversely. Unless men-
tioned otherwise the values of parameters β = 0.3, N = 0.5, 
M = 0.5, λR = 0.2, G = 0.4, and EG = 0.4 are considered 
in the forward solution for temperature field. Table 3 pre-
sents the inversely estimated values for three parameters, 
β, N and M within the specified upper bound and lower 

Fig. 6  Effect of a variable radiative parameter (λR) and b convect-
ing–radiating parameter (M) on the dimensionless temperature distri-
bution as a function of dimensionless fin radius

Fig. 7  Effect of a heat generation parameter (G) and b variable 
parameter describing the internal heat generation (EG) on the dimen-
sionless temperature distribution as a function of dimensionless fin 
radius
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bound as mentioned in the table. It can be seen that the 
same tip temperatures are obtained for different combina-
tions of, β, N and M values. The convergence histories of 
the present optimization obtained from the DE simulation 
and the iterative variation of the parameters, β, N and M 
for all the runs as mentioned in Table 3 are presented in 
Fig. 9. It can be seen that the function value, F converges 
with the increase of iterations in each cases. At the initial 
stage of the optimization, the values of the parameters 
are randomly adjusted to each other and gets stable at the 
later stage of the iteration. For the correctness of the pre-
sent optimization, the temperature fields are reconstructed 
using the inverse parameters obtained from the different 
runs. The results are compared with the temperature field 
obtained from the forward solution as shown in Fig. 10. It 
can be seen that the reconstructed temperature fields almost 
coincide with the forward temperature field. This result 
suggests that the different fin material having parameters 
with these predicted values can be used to produce the 
same temperature field. Now, consider a large scale inverse 
where five unknown parameters, N, M, λR, G, and EG are 
to be estimated simultaneously. Table 4 shows the vari-
ous combinations of inverse parameters obtained from the 
simulation for a given temperature field. The corresponding 
tip temperatures and their efficiencies are also estimated in 
the table. Very small deviation (maximum 2.6 %) in the tip 
temperatures and fin efficiency is observed. In Fig. 11, the 
plot of the reconstructed temperature fields versus direct 
temperature field give 45° lines, which suggest a very good 
agreement between the inverse and forward solution.

It is well known that due to some local error, the experi-
mental results slightly differ from the theoretical values. 
Thus, the estimation of inverse parameters considering ran-
dom measurement errors in the forward solution has great 
significance. The simultaneous estimation of seven unknown 
thermo-mechanical parameters considering zero error and 
15 % random error in the temperature field is presented in 
Table 5. The result suggests that for error free conditions 
the simulation converges very fast (about at 50 iteration) to 

Fig. 8  Fin efficiency as a function of thermo-geometric parameter, 
N: a effect of variable thermal conductivity parameters (β and β1), b 
effect of parameter n, and c effect of conduction radiation parameter 
(M)

Table 3  Inversely estimated three parameters considering zero meas-
urement error

Range: [β, N, M]: [0–0.5; 0.2–0.8; 0.2–0.8]

S. no. β N M Tip temp.

Forward 0.3 0.5 0.5 0.87162

Run 1 0.3266 0.4940 0.5064 0.87156

Run 2 0.3981 0.4729 0.5263 0.87157

Run 3 0.2467 0.5161 0.4844 0.87161

Run 4 0.2147 0.5247 0.4757 0.87153
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reach the desired fitness value, whereas even after 200 itera-
tions the simulation did not get fully converge when 15 % 
random error was considered in the reference temperature 
field. Using those inverse parameters, the temperature fields 
are reconstructed and compared with the forward tempera-
ture field with or without error consideration in Fig. 12. The 
reconstructed temperature fields exhibit reasonably good 
agreement within the prescribed domain of the temperature 
field. The tip temperatures obtained from the inverse param-
eters of Run-1 and Run-2 are very close to the direct one, 
whereas about 3.12 % error is found when 15 % random 
error is considered in the reference temperature field.

7  Conclusions

This work employs a semi-analytical approach, homotopy 
perturbation method for obtaining an approximate solution 

Fig. 9  Convergence histories of DE simulation for predicting 3-unknown parameters β, N, and M and their iterative variations: a variations of 
objective function, b variations of parameter β, c) variations of parameter N and d variations of parameter M

Fig. 10  Comparison between predicted and measured temperature 
distribution for 3-unknown parameters, β, N and M as mentioned in 
Table 3
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of temperature distribution of an axisymmetric annular fin 
with linear and non-linear variable thermal parameters. In 
addition to this, the study also includes the inverse estima-
tion of thermal parameters for a desired temperature field. 
The non-linear differential equation of conducting–con-
vecting–radiating annular fin with temperature dependent 
thermal parameters is solved efficiently using HPM. For the 
aforesaid conditions, the HPM achieve very fast and accu-
rate analytical solution that gives a very good agreement 
with the results available in the literature. It can be seen 
that the non-dimensional temperature fields are influenced 
by all the thermal parameters. The inverse solution char-
acterized by a physical model using DE method presents 
a promising prospect to the fin designer. The inverse solu-
tion predicts various combinations of unknown parameters 

for a desired temperature field, and thus the ill-posed is 
observed. From the present study, following concluding 
remarks can be drawn:

• The temperature distribution from base to tip of the fin 
has a strong dependency on the various thermal param-
eters. Higher tip temperature is observed when the val-
ues of the parameters, β, β1, n, G and EG increases. 
However, their nature of influence on the tip temperature 
is completely different. The positive values of β and β1 
enhances the heat transfer from source to tip through con-
duction. Whereas, the parameters n, G and EG increases 
the convective heat transfer from source to surrounding.

Table 4  Inversely estimated 
five parameters considering zero 
measurement error

Range: [λR, N, M, Eg and G]: [0.1–0.8; 0.2–0.8; 0.2–0.8, 0.2–0.6, 0.2–0.6]

S no. N M λR Eg G Tip temp. Efficiency

Forward 0.5 0.5 0.2 0.4 0.4 0.7738 0.5363

Run 1 0.4275 0.4416 0.2714 0.2104 0.3744 0.7739 0.5321

Run 2 0.4473 0.4945 0.1549 0.3898 0.3452 0.7736 0.5503

Run 3 0.5663 0.3648 0.7093 0.2848 0.5107 0.7737 0.5289

Run 4 0.3439 0.6033 0.2001 0.5429 0.3954 0.7721 0.5241

Fig. 11  Predicted temperature versus direct temperature field consid-
ering 5-unknown parameters, N, M, λR, G, EG as mentioned in Table 4

Table 5  Inversely estimated 
seven parameters considering 
15 % measurement error

Range: [β, β1, λR, N, M, Eg and G]: [−0.3–0.4; 0.1–0.4; 0.1–0.8, 0.2–0.8; 0.2–0.8, 0.2–0.6, 0.2–0.6]

Run β β1 N M λR Eg G Fitness value Iteration

0 % error 1 0.0245 0.1749 0.6114 0.3643 0.3225 0.3897 0.4020 10−4 50

2 −0.160 0.1252 0.7437 0.4068 0.2455 0.2699 0.5997 10−4 50

15 % error 3 0.3998 0.2993 0.8000 0.3778 0.1018 0.2028 0.2005 8 × 10−2 200

4 0.0036 0.1037 1.1826 0.3842 0.3785 0.5434 0.5746 8 × 10−2 200

Fig. 12  Comparison between predicted and measured temperature 
field considering zero and 15 % measurement error. In the simulation, 
7-parameters, β, β1, N, M, λR, G and EG are considered as optimized 
parameter
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• The local temperature of the fin reduces with the 
increase of the parameters N, λR and M, and it is more 
pronounced at the tip.

• The fin efficiency monotonically decreases with the 
increase of the parameters N and M, and enhanced with 
the increase of the parameter, β. However, a non-mono-
tonic behaviour is observed with the parameter n.

• The reconstructed temperature fields obtained from the 
multiple combinations of inverse parameters within the 
predefined range gives almost unique result and agrees 
very well with the reference temperature field.

• The present DE based inverse model is capable to esti-
mate a large number of unknown parameters and con-
verges in short period of simulation time (about 50 iter-
ations are required for seven unknown parameters).
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