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Dh	� Hydraulic diameter (m)
G	� Mass velocity (kg/m2s)
H	� Specific enthalpy (J/kg)
h	� Heat transfer coefficient (W/m2K)
L	� Length (m)
m	� Mass (kg)
ṁ	� Flowrate (kg/s)
n	� Number of nodes
Nu	� Nusselt number
Pr	� Prandtl number
R′, R	� Radii (m)
Re	� Reynolds number
S	� Heat exchange surface (m2)
Sc	� Cross section area (m2)
Sp	� Pass area (m2)
t	� Time (s)
T	� Temperature (°C)
V	� Volume (m3)
x	� Coordinate
y	� Coordinate

Greek letters
α	� Dimensionless group
β	� Dimensionless group
γ	� Dimensionless group
ρ	� Density (kg/m3)
λ	� Thermal conductivity (W/m K)
μ	� Dynamic viscosity (Pa s)
�t	� Temporal discretization step (s)
�x	� Axial discretization step (m)
Φ	� Heat flux (W)

Subscripts
1	� Cold fluid 1
2	� Cold wall 2

Abstract  This paper presents a numerical analysis by 
using the finite difference method to describe the steady 
and unsteady state thermal behavior of triple concentric-
tube heat exchanger with parallel flow and counter flow 
arrangements. One gives the temperature variations of 
the three fluids and three walls with time along the tri-
ple concentric-tube heat exchanger. The fluids have a 
time lag and the response of triple concentric-tube heat 
exchanger in parallel flow configuration is faster than 
those of a counterflow arrangement, its performances are 
always lower than those of a counterflow triple concen-
tric-tube heat exchanger. The heat transfer coefficients 
by convection of the three fluids vary with time in addi-
tion to the temperature and the heat exchanger perfor-
mances are lower in unsteady state than the steady state 
case.

Abbreviations
TTHE	� Triple concentric tube heat exchanger
DTHE	� Double concentric tube heat exchanger

List of symbols
A	� Matrix
B	� Matrix
Cp	� Specific heat at constant pressure (J/kg K)
D	� Diameter (m)
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3	� Hot fluid 3
4	� Hot wall 4
5	� Cold fluid 5
6	� Cold wall 6
e	� External
exp	� Experimental
H	� Horizontal
i	� Inlet, inside
num	� Numerical
o	� Exit
V	� Vertical
w	� Wall

1  Introduction

The heat exchanger is a device allowing to transfer the heat 
between two or more fluids through walls, without mixing 
them or they may be in direct contact.

The simplest model of heat exchanger that one can con-
ceive is a simple tubular heat exchanger; it is difficult with 
this type of exchanger to obtain important exchange sur-
faces without resulting in very bulky devices. It is one of 
the reasons that led to develop other exchange geometries 
such as triple concentric-tube heat exchanger (TTHE).

The TTHE enhance the heat exchange through an addi-
tional flow passage and a high surface area is about twice 
that of a double concentric-tube heat exchanger (DTHE). 
In TTHE, we can transfer the heat between three different 
fluids such as: the refrigerant, the lubricant and the cooling 
source in a refrigeration machine.

This type of heat exchanger is frequently used in the 
agrifood, pharmaceutical and nuclear industries, etc. For 
heating, cooling, drying and pasteurization of the product, 
it is well suited for non-Newtonian fluids, with or without 
particles, for example (cheese sauce, mashed fruit, pasta, 
etc.).

The product to be treated generally flows in the annular 
space between the inner and intermediate tubes.

The literature devoted to this type of heat exchangers 
can be divided into two categories according to the operat-
ing conditions (steady and unsteady).

1.1 � Steady state

After the first analysis conducted by Morley [1], con-
cerning the heat transfer between three fluids in a heat 
exchanger, several studies: Rabinovich [2], Wolf [3] and 
Aldous [4] have been conducted by involving heat transfer 
between three fluids in parallel flow, analytical and experi-
mental studies are then developed on (TTHE). Zuritz [5] 
solved the differential equations of the first order by the 
Laplace transform to determine the temperatures of the 

three fluids in a triple concentric-tube heat exchanger in 
case of counterflow.

Ünal [6] developed, in the first part of his study, a math-
ematical model by giving the various ordinary differential 
equations of first and second order and solutions for both 
parallel flow and counterflow arrangements. In the second 
part [7], the results of several cases corresponding to a 
counter-current arrangement are presented based on analyt-
ical solutions obtained in the first part. The study of these 
cases includes calculations of performance and design; it 
showed that the relative sizes of the three tubes radii are the 
most important parameters that influence the effectiveness 
of the exchanger.

Sahoo et  al. [8] developed an iterative technique based 
on the equations obtained from the first law of thermody-
namics for the accurate estimation of heat transfer coeffi-
cients and overall heat transfer coefficients when the two 
surfaces are involved (the inner surface of the intermediate 
tube and the outer surface of the inner tube) of the triple 
concentric-tube heat exchanger.

Batmaz and Sandeep [9] determined the global coeffi-
cients of fluids in a (TTHE) by using the energy balance 
equations in a control volume. In 2008, the same authors 
[10], compared the effectiveness of the (TTHE) to that of 
a double concentric-tube heat exchanger, they observed 
that for counterflow assays, the values of the (TTHE) 
effectiveness are higher than that of the (DTHE) with the 
same diameters of the inner tube and outer tube. For the 
parallel flow, the results showed that in some cases the 
(DTHE) could achieve higher efficiency values than the 
(TTHE). The decrease in the (TTHE) efficiency is due to 
the crossover.

Radulescu et  al. [11] have developed an algorithm for 
calculating the heat transfer coefficient of the fluid flowing 
in the inner annular space of a triple concentric-tube heat 
exchanger. The flow regimes in the heat exchanger are tran-
sient in the central tube and inner annular space and lami-
nar in the outer annular space. They established a new Nus-
selt correlation of the annular space.

Quadir et  al. [12] conducted an experimental study on 
performance of (TTHE) in steady state operation for two 
flow configurations, called N–H–C and C–H–N for insu-
lated and uninsulated conditions. The three considered flu-
ids are: hot water, cold water and normal tap water. Under 
N–H–C arrangement, normal water flows into the inner 
tube, the hot water flows into the inner annular space, and 
cold water flows into the outer annular space. All the flu-
ids flow in parallel to one another. The cold water and the 
normal water are permuted in the C–H–N arrangement; the 
hot water flow rate remains unchanged. They concluded 
that the transfer of heat between the three fluids considered 
more effective in N–H–C configuration than the C–H–N 
arrangement. Quadir et  al. [13] have realized a numerical 
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study to describe the thermal behavior of the triple concen-
tric-tube heat exchanger with the finite element method in 
the steady state and for the same arrangements mentioned 
in their previous study [12]. They presented the results 
under the form of the dimensionless temperature variations 
of the three fluids along the heat exchanger for their differ-
ent flow rates.

Pătrăşcioiu and Rădulescu [14] have been developed a 
numerical model of predicting outlet temperatures in a tri-
ple concentric-tube heat exchanger. They have been used 
the equations of heat transfer and of fluid-dynamics, as well 
as a numerical algorithm to solve systems of non-linear 
equations. Nowadays, commercial CFD can and is used in 
analyses of this type of heat exchangers, Behera et al. [15].

1.2 � Unsteady state

All the heat exchangers work in steady state. The unsteady 
state is the result of the fluctuations in flows supplied by 
pumps, the load shedding and the starting up of the thermal 
installations. In unsteady state, the heat conduction in walls 
and the heat convection in fluids of the heat exchanger 
depend on the time. These processes are described in 
detail in the work of Kakc and Yener [16]. Valladares [17] 
has developed a one-dimensional numerical study of the 
thermal performance of the triple concentric-tube heat 
exchangers, the governing equations are discretized by the 
step-by-step implicit method for fluids and a numerical 
scheme of implicit finite difference and the central resolu-
tion line by line to the tube walls. However, he only pre-
sented the results in steady regime, he compared them with 
the results obtained by Ünal [7] in order to verify and vali-
date the numerical model.

Nema and Datta [18] present in their study a digital 
model that can be used to control the temperature or the 
pressure of the steam to overcome the milk outlet tempera-
ture drop caused by the fouling in a helical triple concen-
tric-tube heat exchanger. The optimal operating strategy is 
to increase the temperature of the wall gradually to fight 
against heat loss due to fouling. Bielski and Malinow-
ski [19] have solved analytically by the method of the 
Laplace transform, the set of partial differential equations 
describing the transient temperature field in a parallel flow 
(TTHE). The solution is obtained for a particular case of 
the heat exchanger with two heat connections between the 
two fluids, a constant temperature in a tube and an increas-
ing temperature level at the entrance of a fluid. Nema and 
Datta [20] have presented in a second section an improved 
simulation model, which can be used to predict the thick-
ness of the fouling and the outlet temperature of the milk in 
a helical triple tube heat exchanger.

In this study, we use a numerical simulation of tempera-
ture and heat transfer coefficients by convection fields of 

the three fluids and three walls for both parallel flow and 
counterflow arrangements of single-phase heat transfer in 
steady and unsteady state in a triple concentric-tube heat 
exchanger.

The main objective of this study is to calculate numeri-
cally the time lag and the variation of heat transfer coef-
ficients by convection of the three fluids with time in 
addition to the temperature along the triple concentric-
tube heat exchanger in parallel flow and counterflow 
arrangements.

2 � Mathematical formulation

2.1 � Description of the heat exchanger

The proposed heat exchanger for this study consists of three 
coaxial tubes. The first fluid “1” passes through the central 
tube of internal and external radii inside R2 and R′

2 respec-
tively, the second fluid “3” enters in the internal annular 
space of internal and external radii R4 and R′

4 respectively, 
and the third fluid “5” passes through the external annulus 
of internal and external radii R6 and R′

6 respectively.
The three fluids can circulate in the same direction 

(parallel flow) or in the opposite direction (counterflow). 
These three fluids are separated by metal walls “2” and “4” 
through, which the heat exchanges take place by heat con-
duction. The heat transfer between the fluids and the walls 
is realised by heat convection. The outer tube wall “6” is 
used to separate the fluid “5” from the external environ-
ment as shown in Fig. 1.

This study was conducted under the following 
assumptions:

•	 Unsteady operating regime.
•	 Constant flow sections.
•	 Completely insulated heat exchanger.
•	 Monophasic and incompressible fluids.
•	 Thermophysical properties of the fluids vary with tem-

perature.
•	 Axial heat conduction only in the walls.
•	 One-dimensional calculus.
•	 Turbulent flow regimes.

Our study is based on the energy balances performed on 
each fluid and on each wall. The heat exchanger is divided 
in length volumes �x in each of these volumes, the proper-
ties of the fluid and the solid are assumed constant at any 
given time, Fig. 2:

(1)

�H|X−�X/2 −�H|X+�X/2 +�V|y −�V|y+�y = mCP
∂T

∂t
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Counterflow case

In the case of a methodical flow, one replaces the heat flux 
through their next expressions:

The heat balance for each wall and fluid is given by the 
following expressions:

Wall “6”

Fluid “5”

(2)�H = −�Sc
∂T

∂X
for walls

(3)�H = ṁH for fluids

(4)�V = h S
∂T

∂X

(5)

− �Sc6
∂T

∂X

∣

∣

∣

∣

X−�X/2

+ �Sc6
∂T

∂X

∣

∣

∣

∣

X+�X/2

+ h5S5�T5 = (mCP)6
∂T

∂t

(6)

ṁH|X−�X/2 − ṁH|X+�X/2

+ h5S4�T4 − h5S5�T5 = (mCP)5
∂T

∂t

R’2 R4 R2
Cold fluid "1" 

Hot fluid "3" 

Cold fluid "5" 

Wall "2" 

Wall "4" 

Wall "6" 

R’6R’4 R6

Cold fluid "1" 

Cold fluid "5" 

Hot fluid "3" 

Wall "6" 

Wall "4" 

Wall "2" 

Fig. 1   Longitudinal section of the triple concentric tube heat exchanger

ΦH/ (x-Δx/2) ΦH/ (x+Δx/2)

Φv/y+ Δy

Φv/y

ΔX

y

x

Fig. 2   Global energy balance
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Wall “4”

Fluid “3”

Wall “2”

Fluid “1”

The initial condition at any point on the heat exchanger 
is such that at t = 0.

The boundary conditions for each fluid and wall are 
given by:

Walls “2”, “4” and “6”

Fluid “3”

Fluids “5” and “1”

Parallel flow case

In the case of parallel flow heat exchanger, the energy bal-
ance can be written in the same manner as above; the only 
equation that has a new form is that of the hot fluid (3):

Fluid “3”

with boundary condition

(7)

− �Sc4
∂T

∂X

∣

∣

∣

∣

X−�X/2

+ �Sc4
∂T

∂X

∣

∣

∣

∣

X+�X/2

+ h3S3�T3 − h5S4�T4 = (mCP)4
∂T

∂t

(8)

−ṁH|X−�X/2 + ṁH|X+�X/2 − h3S3�T3

− h3S2�T2 = (mCP)3
∂T

∂t

(9)

− �Sc2
∂T

∂X

∣

∣

∣

∣

X−�X/2

+ �Sc2
∂T

∂X

∣

∣

∣

∣

X+�X/2

+ h3S2�T2 − h1S1�T1 = (mCP)2
∂T

∂t

(10)ṁH|X−�X/2 − ṁH|X+�X/2 + h1S1�T1 = (mCP)1
∂T

∂t

(11)T(X, 0) = T0

(12)
∂T

∂X
(L, t) =

∂T

∂X
(0, t) = 0

(13)T3(L, t) = Timposed

(14)T5(0, t) = T1(0, t) = Timposed

(15)

ṁH|X−�X/2 − ṁH|X+�X/2 − h3S3�T3

− h3S2�T2 = (mCP)3
∂T

∂t

(16)T3(0, t) = Timposed

3 � Numerical resolution

An implicit finite differences scheme was used for the discre-
tization of the above equations, as an example, one gives the 
discretization of the equations of the wall “6” and fluid “3”:

Wall “6”

The Eq. (5) of the wall “6” is transformed by substituting 
the partial derivatives by the finite differences:

We have:

Dividing the Eq.  (17) by V6 and multiplying by �t
(ρcp)6

, 
we find:

With this arrangement some dimensionless groups 
appear:

The final writing of the equation becomes:

Fluid 3

Knowing that

Enthalpies were replaced by the temperature by using a 
decentered scheme of the finite differences method (upwind 
scheme), Spalding [21].

(17)

�6SC6
(TX−�X − TX)

�X2
− �6SC6

(TX − TX+�X)

�X2

+ h5S5�T5 = (mcp)6
Tnew − Told

�t

(18)V6 = SC6�X = π

(

R′2
6 − R2

6

)

�X

(19)S5 = 2π(R6)�X

(20)

�t

(ρcp)6

�6

�X2
(TX−�X − 2TX + TX+�X)

+ h5
�t

(ρcp)6

(

2R6

R
′2

6
− R2

6

)

(T5 − TX) = Tnew − Told

(21)α6 =
�t

(ρcp)6

�6

�X2

(22)β6 = h5
�t

(ρcp)6

(

2R6

R
′2
6 − R2

6

)

(23)
α6(TX−�X − 2TX + TX+�X)+ β6(T5 − TX) = T

new − T
old

(24)H = cp�t

(25)ṁ = GSP
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The Eq. (8) of fluid “3” becomes:

with

Dividing the Eq. (26) by V3 and multiplying by �t
(ρcp)3

, we 
find:

by putting:

The final equation takes the following form:

The other equations are discretized in the same manner, 
the dimensionless groups are assumed constant at any given 
time, and they represent the variation of the thermophysical 
properties of fluids and solids along the heat exchanger. By 
decreasing the elements of volume, the made supposition 
by considering that the thermophysical properties vary with 
the temperature gets closer of the reality.

The systems of equations are established, the new tem-
perature Tnew where T(k+1) is explicitly defined in terms of 
old temperatures Told where Tk. It is easy to program and 
use the explicit formula, by requiring very strict stability 
criteria.

(26)

Sp3(Gcp)3(TX+�X − TX)− h3S3(TX − T4)

− h3S2(TX − T2) = (mcp)3
Tnew − Told

�t

(27)V3 = Sp3�X = π

(

R2
4 − R

′2
2

)

�X

(28)S3 = 2πR4�X

(29)S2 = 2πR′
2�X

(30)

G3�t

ρ�X
(TX+�X − TX)−

h3�t

(ρcp)3

(

2R′
2

R2

4
− R

′2

2

)

(TX − T4)

−
h3�t

(ρcp)3

(

2R4

R2

4
− R

′2

2

)

(TX − T2) = Tnew − Told

(31)α3 =
G3�t

ρ�X

(32)β3 =
h3�t

(ρcp)3

(

2R′
2

R2
4 − R

′2
2

)

(33)γ3 =
h3�t

(ρcp)3

(

2R4

R2
4 − R

′2
2

)

(34)
α3(TX+�X − TX)− β3(TX − T4)

− γ3(TX − T2) = T
new − T

old

The implicit technique is stable, but if the time step 
�t is too large, the truncation errors occur, these errors 
also cause oscillations in the results. The best solution can 
be adapted by the scheme of Crank–Nicholson, Nougier 
[22].

Equations (23) and (34) become:

Wall “6”

After arranging the terms, Eq.  (35) is written in the 
form:

with

The matrix writing of the previous equations is given by:

•	 For j = 1

•	 For j = 2, N-1

(35)

α6,j

2

(

Tk+1

6,j−1
+ Tk

6,j−1

)

−
α6,j

2

(

2Tk+1

6,j + 2Tk
6,j

)

+
α6,j

2

(

Tk+1

6,j+1
+ Tk

6,j+1

)

+ β6,jT
k
5,j −

β6,j

2

(

Tk+1

6,j + Tk
6,j

)

= Tk+1

6,j − Tk
6,j

(36)

α6,j

2
Tk+1
6,j−1 −

(

α6,j +
β6,j

2
+ 1

)

Tk+1
6,j +

α6,j

2
Tk+1
6,J+1 = B6(J)

(37)

B6(j) = −
α6,j

2
Tk
6,j−1 +

(

α6,j +
β6,j

2
− 1

)

Tk
6,j − β6,jT

k
5,j

A(1, 1) = −

(

α6,1

2
+

β6,1

2
+ 1

)

A(1, 2) =
α6,1

2

B6(1) = +

(

α6,1 +
β6,1

2
− 1

)

Tk
6,1 −

α6,1

2
Tk
6,2 − β6,1T

k
5,1

A(j, j − 1) =
α6,j

2

A(j, j) = −

(

α6,j +
β6,j

2
+ 1

)

A(j, j + 1) =
α6,j

2
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•	 For j = N

The final matrix form is:

B6(j) = −
α6,j

2
Tk
6,j−1

+

(

α6,j +
β6,j

2
− 1

)

Tk
6,j

−
α6,j

2
Tk
6,j+1

− β6,jT
k
5,j

A(N ,N − 1) =
α6,N

2

A(N ,N) = −

(

α6,N

2
+

β6,N

2
+ 1

)

B6(N) =
α6,N

2
T
k

6,N−1
+

(

α6,N

2
+

β6,N

2
− 1

)

T
k

6,N
− β6,NT

k

5,N

































A(1, 1) A(1, 2) 0 0 0 0 0 0 0 0

A(2, 1) A(2, 2) A(2, 3) 0 · · · · · 0

0 · · · 0 · · · · 0

0 0 · · · 0 · · · 0

0 · 0 A(j, j − 1) A(j, j) A(j, j + 1) 0 · · 0

0 · · 0 · · · 0 · 0

0 · · · 0 · · · 0 0

0 · · · · 0 · · · 0

0 · · · · · 0 · · A(N − 1,N)

0 0 0 0 0 0 0 0 A(N ,N − 1) A(N ,N)

































×

































T6(1)

T6(2)

.

.

T6(j)

.

.

.

T6(N − 1)

T6(N)

































=

































B6(1)

B6(2)

.

.

B6(j)

.

.

.

B6(N − 1)

B6(N)

































Fluid 3

After arranging, the above equation takes the following 
final form:

(38)

α3,j

2

(

Tk+1

3,j+1
+ Tk

3,j+1

)

−
α3,j

2

(

Tk+1

3,j + Tk
3,j

)

−
β3,j

2

(

Tk+1

3,j + Tk
3,j

)

+ β3,jT
k
2,j −

γ3,j

2

(

Tk+1

3,j + Tk
3,j

)

+ γ3,jT
k
4,j = Tk+1

3,J − Tk
3,j

(39)
α3,j

2
Tk+1

3,j+1
−

(

α3,j

2
+

β3,j

2
+

γ3,j

2
+ 1

)

Tk+1

3,j = BL3(j)

with

The matrix writing of the previous equation is:

•	 For j = 1, N − 1

(40)

B3(j) = −
α3,j

2
Tk
3,j+1

+

(

α3,j

2
+

β3,j

2
+

γ3,j

2
− 1

)

Tk
3,j

− β3,jT
k
2,j − γ3,jT

k
4,j

A(j, j) = −

(

α3,j

2
+

β3,j

2
+

γ3,j

2
+ 1

)

A(j, j + 1) =
α3,j

2
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Once the equations, boundary conditions and initial con-
ditions are discretized, the systems of equations are put 
under the form of the dominant diagonal matrices.

3.1 � Implementation

From the input data, the computer program (Triple-Trans) 
distributes nodal positions in the entire heat exchanger. An 
initial temperature is then assigned to all nodes for the time 
t = 0. The subroutines are called to compute thermophysi-
cal properties of fluids and the calculation of local heat 
transfer coefficients from the Nusselt correlations for flow 
in a tube and in annulus, Sieder and Tate [23].

(41)Nu = 0.027Re0.8Pr0.33
(

µ

µw

)0.14

After that, the dimensionless groups used in the heat equa-
tions are calculated and the subroutine containing the itera-
tive Gauss–Seidel is called to solve the heat equation for 
each node and provides a new temperature distribution for 
a step of time �t the resolution of the temperature distri-
bution takes place simultaneously. New temperatures are 
compared to previous ones, if the difference is greater than 
0.01 (convergence criterion) the program will calculate 
the distributions for another time step, otherwise the cal-
culations of temperature distributions are stopped and the 
steady state is reached.

4 � Results and discussions

After establishing the mathematical model and the method 
of solution, the computations were executed on several 
grids and time steps. As illustrated in Fig. 3, a close accord 
is observed between several tested computational meshes. 
The mesh corresponding to 200 nodes (199 cells) was 
therefore adopted for all numerical simulations, in order to 
optimize the calculating time and with ample precision.

4.1 � Validation

To give more confidence to the results of our numerical sim-
ulation, our code was validated with the numerical results 
of Batmaz and Sandeep [10]. Thermophysical properties of 
hot and cold fluids and heat exchanger dimensions are given 
in Table 1 and [10]. The thermophysical properties given by 
Batmaz and Sandeep are independent of the temperature

As shown in Fig. 3, it is clear that our results concerning 
the axial distribution of the three fluid temperatures (“1”, 
“3” and “5”) of counterflow triple concentric-tube heat 
exchanger in steady state are in good agreement with the 
experimental results of Batmaz and Sandeep [10].

Nu =
hDh

�
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Fig. 3   Validation of the present code with the experimental results 
[10]

Table 1   Dimensions and the 
thermophysical properties of 
fluids of the triple concentric-
tube heat exchanger [10]

Dimensions and properties Central tube Intermediate tube External tube

Ri (m) 0.0238 0.0301 0.0365

Re (m) 0.0254 0.0318 0.0381

L (m) 22.6 22.6 22.6

Fluid Propylene glycol Water Propylene glycol

Cp (kJ/kg K) 3.956 4.175 3.978

ρ (kg/m3) 1025 989 1025

Volumetric flow rate (gal/min) 40.5 13.4 4.0

Ti (°C) 5.9 100.0 5.9

To (°C) 10.7 6.1 19.9
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For fluids “1” and “5”, a perfect match is observed 
between the experimental and numerical results, the rela-
tive error calculated by the formula 

∣

∣

∣

Texp−Tnum
Texp

∣

∣

∣
 does not 

exceed 4 %, and the curves are nearly coincident.
For the hot fluid “3”, the maximum relative error 

between the numerical and experimental results is about 
9 %. A very good consistency of results is observed.

4.2 � Discussions

Our numerical model is validated in steady state due to the 
lack of the numerical or experimental results concerning 
this type of heat exchanger in unsteady regime, so in what 
follows, we present the behavior of this heat exchanger in 
unsteady regime.

Fig. 4   Profiles of three fluid 
temperatures in unsteady regime 
(counterflow arrangement)
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outlet temperatures with the 
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4.2.1 � Counterflow arrangement

Fields temperatures inside the counterflow triple concen-
tric-tube heat exchanger in unsteady regime are given in 
Fig.  4. We note that the time required for passage of the 
unsteady regime to steady state is 22.24 s, in the first sec-
ond, the heat transfer is performed only for the half of the 

heat exchange surface from the inlet of hot fluid 3. The rate 
of the heat exchange surface which, participates in heat 
transfer reaches, 100 % after 2 s. This time represents the 
time lag proved experimentally by El-Wakil et al. [24] and 
Guellal et al. [25].

As shown in Fig. 5, one gives the variation of the out-
let temperatures of the three fluids flowing in counterflow 
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Fig. 6   Profiles of the temperatures of three walls with the time (counterflow)

Fig. 7   Variation of heat 
exchange coefficients by 
convection of the three fluids 
with time
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arrangement, it is clear that the hot fluid “3” has a time lag 
of about 2 s. After this time interval, the outlet temperature 
increases until the establishment of the steady state. The 
cold fluids “1” and “5” have no time lag.

Figure 6 shows the variation with time of the tempera-
tures of the three walls of the heat exchanger. At time t = 0, 
the three walls were at a temperature of 25 °C. In the case 
of the counterflow arrangement, the cold walls “2” and “6” 
warms faster by going towards the heat exchanger exit and 
this is due to the entry of the hot fluid. The temperature 
of the cold wall “2” is very close to that of the hot wall 
because the coefficient of heat transfer of the cold fluid 
flowing in the tube “1” is higher than that of the fluid “5”, 
see Fig. 7. The steady state for the walls is reached during 
the same time as that of fluids.

We note in unsteady state, that the three heat exchange 
coefficients by convection of three fluids increase over 
time; this proves that the thermophysical properties of flu-
ids depend on temperature and time. As shown in Fig.  7, 
the heat exchange is more efficient in steady state.

The evolution of the three-fluid temperatures and the 
three walls in the steady state are given in Fig. 8, the tem-
perature of each intermediate wall is between the fluid 
temperatures in contact. The temperature of the wall “6” is 
equal to the fluid “5” because it is assumed adiabatic. The 
fluid “5” heat up faster because of its large heat exchange 
surface.

4.2.2 � Parallel flow

Figure 9 shows the evolution of temperatures of the three 
fluids in the triple concentric tube heat exchanger at 
unsteady state in parallel flow arrangement. Note that the 
heat transfer for the three fluids is faster than in the case 
of a counterflow heat exchanger. This is due to the entry of 
fluids by the same side (the fluids are in direct thermal con-
tact at the entrance of the device). In the first second, the 
hot fluid side “3” is involved in heat exchange for 1.5 m of 
the heat exchanger length and 1.25 m of the heat exchanger 
length corresponding to the cold fluids “1” and “5” partici-
pates in the exchange of heat, the steady state is established 
after 16.30 s.

Unlike the counterflow arrangement, the three fluids have 
a time lag, it is the same for both cold fluids and it is the 
same for the hot fluid for the two arrangements as it illus-
trated in Figs. 9 and 10 which, show the temporal evolution 
of the three fluids outlet temperatures. The cooling of the 
hot fluid and the heating of the cold fluids are less important 
than in the case of a counterflow arrangement. The tempera-
tures of the walls “2” and “4” have the same profile as that 
of the hot fluid temperature “3”. The temperature of the wall 
“4” is higher than the temperature of the other walls because 
the heat exchanges are more intense (the exchange surface 
is larger). The wall “6” is adiabatic and follows the profile 
of the cold fluid “5”, see Figs. 11, 12 and 13.

Fig. 8   Variation of tempera-
tures of the three fluids and 
three walls in steady state 
(counterflow)
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The performance or the heat exchanger efficiency in 
unsteady state is lower than the steady state case because 
the temperature rise of the cold fluids and the temperature 

reduction of the hot fluid are higher in the steady state 
(Figs.  4 and 9). In the initial condition the hot fluid tem-
perature is supposed equal to the cold fluid temperature.
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Fig. 10   Variation of the outlet 
temperatures of three fluids with 
the time (parallel flow arrange-
ment)
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5 � Conclusion

A numerical analysis is performed by using the method 
of finite differences to describe the unsteady state thermal 
behavior of a triple concentric-tube heat exchanger. The 
numerical results are validated in the steady state.

The results are presented as variation of temperatures 
of the three fluids and three walls with time along the heat 
exchanger.

The response of heat exchanger in parallel flow configu-
ration is faster because the time lag is smaller; its perfor-
mances are always lower than those of a counterflow heat 
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Fig. 12   Heat exchange coef-
ficients profiles of the three 
fluids vs. time (parallel flow 
arrangement)
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exchanger. The three fluids have a time lag for parallel flow, 
this time lag is more important for both cold fluids, what is 
not the case for the counterflow, because the only fluid that 
have a time lag is the hot fluid.

The heat transfer coefficients vary with time in addi-
tion to the temperature and the heat exchanges are lower in 
unsteady state than the steady state case.
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