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relationship (Eqs. 9, 10) (m2/s)
b  Coefficient in Eq. (24b) which 

should be defined trough the ini-
tial condition δ (t = 0) = 0

Cp  Specific heat capacity (J/kg)
EL (n,β, t)  Squared-error function in accord-

ance with the Langford criterion 
(Eq. 34)

ELT (n,β, t)  Squared-error function in accord-
ance with the Langford criterion 
(Eq. 35)

EMq (p,β, t)  Squared-error function in accord-
ance with the Langford crite-
rion and fixed flux BC problem 
(Eq. 76)

eLT (n,β, t)  Squared-error sub-function in 
accordance with the Langford cri-
terion (Eq. 35)

eLq (p,β)  Squared-error sub-function in 
accordance with the Langford 
criterion and the fixed flux BC 
problem

k  Thermal conductivity (W/mK)
k (T)  Temperature-dependent thermal 

conductivity (W/mK)
k0  Thermal conductivity of the linear 

problem (β = 0) (W/mK)
m  Dimensionless parameter of 

the nonlinearity (power-law 
diffusivity)

n  Dimensionless exponent of the 
parabolic profile

p  Dimensionless exponent of the 
parabolic profile of the assumed 
profile used to solve Eq. (48) (m)

Abstract Closed form approximate solutions to nonlin-
ear transient heat conduction with linearly temperature-
dependent thermal diffusivity have been developed by the 
integral-balance integral method under transient conditions. 
The solutions uses improved direct approaches of the inte-
gral method and avoid the commonly used linearization by 
the Kirchhoff transformation. The main steps in the new 
solutions are improvements in the integration technique 
of the double-integration technique and the optimization 
of the exponent of the approximate parabolic profile with 
unspecified exponent. Solutions to Dirichlet and Neu-
mann boundary condition problems have been developed 
as examples by the classical Heat-balance integral method 
(HBIM) and the Double-integration method (DIM). Addi-
tional examples with HBIM and DIM solutions to cases 
when the Kirchhoff transform is initially applied have been 
developed.

List of symbols
As = a0β

1/ 2  Effective coefficient in Eqs. (53a, 
b) (m2/s K1/ 2)

a  Thermal diffusivity (m2/s)
a0  Thermal diffusivity of the linear 

problem (β = 0) (m2/s)
ap  Thermal diffusivity coefficient in 

the case of power-law non-linear 
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q0  Heat flux surface density (W/m2)
s  Dimensionless exponent of the 

parabolic profile of the assumed 
profile used to solve Eq. (63) (m)

T  Temperature (K)
Ta  Approximate temperature (K)
Ts  Surface temperature (at x = 0) 

(K)
T0  Initial temperature of the medium 

(K)
Tref  Reference temperature (K)
t  Time (s)
X = x

/

δ  Normalized length variable 
(dimensionless)

x  Space coordinate (m)
u  Dimensionless temperature (fixed 

temperature boundary condition 
problem)

ua  Approximate dimensionless 
temperature

ue (numeric)  Numeric solution
ue (numeric) – FD  Numeric solution (finite differ-

ences) (or unum − FD)
ue (numeric) – RK − 4  Numeric solution (Runge–Kutta) 

(or Unum − RK)
U = 1+ βT   Dimensionless variable (fixed flux 

BC problem) (Eq. 48)
Y (ξ , t)  Dimensionless approximate 

profile (fixed flux BC problem) 
expressed through the Zener’s 
coordinate

Wa  Surface temperature of the 
approximate profile as a solution 
of the linearized equation after the 
Kirchhoff transform

Ws  Approximate profile as a solution 
of the linearized equation after the 
Kirchhoff transform

w  Kirchhoff transforms defined and 
used in Eq. (2)

Greek symbols
α  Shifted thermal diffusivity 

(α = a− a0) (see Eq. 62) (m2/s)
γ  Thermal coefficient in Eq. (61a) 

(W/mK2)
δ  Thermal penetration depth (m)
δ
q
s(HBIM)  Thermal penetration depth in case 

of fixed flux BC and HBIM solu-
tion (solution of Eq. 63) (m)

δ
q
s(DIM)  Thermal penetration depth in 

case of fixed flux BC and DIM 

solution (solution of Eq. 63) (m)
δT(HBIM)  Thermal penetration depth in 

case of fixed temperature BC and 
HBIM solution (m)

δT(DIM)  Thermal penetration depth in case 
of fixed temperature BC and DIM 
solution (m)

δU  Penetration depth of the assumed 
profile used to solve Eq. (48) (m)

δW  Penetration depth of the approxi-
mate profile as a solution of the 
linearized equation after the 
Kirchhoff transform

�q (ξ , t)  Error function of the heat conduc-
tion equation expressed through 
the Zener’s coordinate (Eq. 74) 
and the fixed flux BC problem

ϕ (ua(x, t))  Error function defined by Eq. (30)
ϕT (ua(x, t))  Error function defined by Eq. (32) 

for the case of fixed temperature 
BC problem

η = x
/√

at  Boltzmann similarity variable 
(dimensionless)

ρ  Density (kg/m3)
�a  Normalized surface temperature 

(Eq. 68)
θ  Excess temperature 

θ =
(

T − Tref
)

 in Eq. (63)
θa  Assumed profile used to solve 

Eq. (63) (fixed flux boundary con-
dition problem) (m)

θs  Surface temperature of the 
assumed profile used to solve 
Eq. (63) (fixed flux boundary con-
dition problem) (m)

ξ = x
/

δ  Dimensionless Zener’s coordinate

Abbreviations
BC  Boundary condition
DIM  Double-integration method
HBIM  Heat-balance integral method

1 Introduction

Most diffusion models concerning transport of heat (or 
mass) occur nonlinearly. Except some limited number of 
problems, there are no exact analytical solutions and, in 
general, numerical approaches have to be applied. How-
ever, in some cases approximate analytical solutions are 
possible. The present work reports new solutions of a non-
linear transient heat conduction by Heat-balance integral 
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method (HBIM) [1] and the Double-integration method 
(DIM) [2, 3].

1.1  Problem formulation

The communication considers a transient heat condition 
problem in a semi-infinite medium with temperature-
dependent thermal diffusivity modelled by the equation.

Equation (1b) and the relationship (1c) are related 
mainly to the temperature-dependent thermal conductivity 
k = k0 (1+ βT) assuming the product ρCp temperature-
independent [4–7].

The difficulties inherent in obtaining solutions for this 
class of equations have motivated a variety of solution 
methods, both exact and approximate ones. There exist sev-
eral approaches to solve Eq. (1a), among them: orthogonal 
collocation method [6], Green function method [9], per-
turbation method [8, 10, 11], variational iteration method 
[8], homotopy-perturbation method [8], direct variational 
method [12], the least squares method [13], Networks mod-
els [14], iterative solutions with the solution of the linear 
problem as initial approximation [15], Finite difference 
solutions [5], Lattice Boltzmann method [16], numerical 
solutions [17], etc.

The Kirchhoff transformation [18] is the common 
approach to transform Eq. (1c) into a linear diffusion equa-
tion by applying (2a), namely

Then, the solution of (2c) has been performed by, series 
expansion [4], separation of variables [19, 20], homotopy-
perturbation method [22], etc. The final solution in term 
of T may be developed either analytically [4] by the series 
reversion method [21] or by numerical methods [22].

The HBIM is among the approximate analytical meth-
ods allowing to develop closed-form solutions of the 
problem (1c), but its simple form known as Heat-balance 
integral method [1] has been used accidentally [1, 23] 
for solutions of the problem (1b) with thermal diffusiv-
ity expressed by (1c). The main approach in these solu-
tions is the initial non-linear transform v =

∫ T

0 ρCp dT  to 
linearize Eq. (1b) and then applying HBIM with assumed 

(1a)ρCp

∂T

∂t
=

∂

∂x

(

k(T)
∂T

∂x

)

(1b)
∂T

∂t
=

∂

∂x

(

a(T)
∂T

∂x

)

(1c)a(T) = a0 (1+ βT)

(2a, b, c)

w =
T
∫

0

a0 (1+ βT) dT = a0T +
βT2

2
⇒

∂w

∂t
= a0

∂2w

∂x2

cubic polynomial profiles. It is worth noting, that in these 
solutions [1, 23] the non-linear transform is mainly applied 
to the surface temperature (at x = 0). These solutions are 
not popular due to the inherent property of HBIM to prede-
termine the accuracy of approximation when a fixed order 
of the assumed profiles is used [1, 3] as well as due to the 
difficulties emerging in the reversion of the solution in the 
terms of T, when the order of the polynomial approxima-
tion is high [4].

The recent applications of the simple HBIM [24] and 
the double-integral balance method (DIM) [25] to Eq. (1b), 
when the thermal diffusivity is a of a power-law functional 
dependence of the temperature a = a0T

m, demonstrate a 
new solution strategy were the non-linear Kirchhoff trans-
formation can be avoided. The present article reports new 
solutions to Eq. (1b) with the additive functional relation-
ship (1c) about the temperature-dependent diffusivity, using 
the technique of HBIM and DIM and the solution strategies 
developed in [25].

1.2  Aim and paper organization

The general task of the present study is the development 
of approximate integral-balance solutions of the model (1a, 
b) in avoiding the Kirchhoff linearization transformation of 
the thermal diffusivity (1c). The solutions developed refer 
to the cases with Dirichlet and Neumann boundary condi-
tions. The approximate solutions are developed by HBIM 
and DIM applying an assumed parabolic profile with 
unspecified exponent [26–29]. In all cases numerical solu-
tions (performed by the finite difference method and the 4th 
order Runge–Kutta method, and by the help of Maple (see 
“Appendix 1” for details) are used as benchmark examples 
allowing evaluating the accuracy of the developed integral-
balance solutions.

The paper is organized as follows: (1) Sect. 2 presents 
the basic of the integral balance techniques, i.e. HBIM 
and DIM and the principles of application of the methods 
to non-linear heat conduction problems with temperature-
dependent diffusivity. (2) Section 3 develops the solution 
strategies and general relationships of HBIM and DIM 
involving a parabolic profile with unspecified exponent 
and a linearly temperature-dependent thermal diffusiv-
ity. (3) Section 4 presents integral balance solutions for 
the problem (1b) with a fixed temperature as a boundary 
condition. (4) Section 5 demonstrates solutions of problem 
with fixed temperature and fixed flux boundary conditions. 
Section 5.1 especially stresses the attention on problems 
emerging when HBIM and the DIM are directly applied. 
Section 5.2 shows two alternative approaches to solve the 
problem by changing of variables and a preliminary res-
caling of the conductivity-temperature relationship (1c), 
respectively, allowing to converted (1b) into a degenerate 
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diffusion equation with a power-law diffusivity. Section 5.5 
demonstrates numerical solutions and benchmarking exam-
ples of the developed approximate solutions. Section 6 
refers to the classical Kirchhoff transform and presents 
comparative solutions and demonstrates that applying it to 
(1c) the techniques of HBIM and DIM can be straightfor-
wardly applied.

2  Background of the integral‑balance solution

The integral-balance method is based on the concept that 
the diffusant (heat or mass) penetrates the undisturbed 
medium at a final depth δ. Therefore, the common bound-
ary conditions at infinity

can be replaced by

The conditions (4a, b) define a sharp-front movement 
δ(t) of the boundary between disturbed and undisturbed 
medium when an appropriate boundary condition at x = 0 
is applied. The position δ (t) is unknown and should be 
determined trough the solution. When the thermal diffu-
sivity is temperature-independent (i.e. a = a0 = const.), 
the integration of Eq. (1b) over a finite penetration depth δ 
yields (5a)

Applying the Leibniz rule to left-side of (5a) we get 
(5b). Alternatively, for the sake of the clarity of the further 
explanations of the method, Eq. (5a) can be expressed in an 
equivalent form (5c)

Physically, Eq. (5b), as well as (5c) imply that the total 
thermal energy accumulated into the finite layer (from 
x = 0 to x = δ) is balanced by the heat flux at the inter-
face x = 0. The left sides of (5a) and (5b) are the zero-order 
moments of the temperature distribution over the penetra-
tion depth δ.

Equation (5b) is the principle relationship of the sim-
plest version of the integral-balance method known as 
Heat-balance Integral Method (HBIM) [1]. After this first 

(3)T (∞) = 0 and
∂T

∂x
(∞) = 0

(4a, b)T (δ) = 0 and
∂T

∂x
(δ) = 0

(5a, b)

δ
∫

0

∂T (x, t)

∂t
dx =

δ
∫

0

a0
∂2T

∂x2
dx or

d

dt

δ
∫

0

T (x, t)dx

= −a0
∂T

∂x
(0, t)

(5c)

x
∫

0

∂T (x, t)

∂t
dx +

δ
∫

x

∂T (x, t)

∂t
dx = −a0

∂T

∂x
(0, t)

step, replacing T by an assumed profile Ta (expressed as 
a function of the relative space co-ordinate x

/

δ) the inte-
gration in (5b) results in an ordinary differential equation 
about δ(t) [1, 3, 24]. The principle problem emerging in 
application of (5a, b) is that the right-side depends on the 
gradient expressed through the type of the assumed profile.

An improvement, avoiding the principle problem of 
HBIM is the double integration approach (DIM) [2] 
recently renewed by T.G.Myers as Refined integral Method 
(RIM) [27, 29].

The first step of DIM is integration of (1b) from 0 to x, 
namely

Equation (6a) has the same physical meaning as Eq. (5b) 
but now the volume where the thermal energy is accu-
mulated in bounded by 0 and x, and it is balanced by the 
differences of the heat fluxes at the interfaces x = 0 and 
x. Equivalently, (6a) is the zero-order moment of the tem-
perature distribution over the penetration depth from 0 to 
x. Then, Eq. (6a) integrated again from 0 to δ results in the 
principle equation of DIM, following Myers [27, 29]

Equation (6b) is the first moment of the temperature 
distribution over the penetration depth and the right side is 
independent of the assumed temperature distribution (pro-
file) since it is defined by the boundary condition.

An alternative expression of the DIM principle relation-
ship can be easily derived, too. Representing the integral in 
the left-side of (5a) as 

∫ δ

0 f (·)dx =
∫ x

0 f (·)dx +
∫ δ

x
f (·)dx 

we get Eq. (5c). Subtracting (6a) from (5c) one obtain

Equation (7) has the same physical meaning as Eq. (5a), 
but now the heat accumulated between x and δ is at issue. 
The left side of (7) is the zero-order moment of the temper-
ature distribution over the section of the penetration depth 
bounded by the points x and the front (x = δ). The integra-
tion of (7) from 0 to δ results in

The expression (8) is more general than (6b) since it 
allows to work with either integer-order time-derivatives 
(as in the present case) or with time-fractional derivatives 

(6a)

x
∫

0

∂T (x, t)

∂t
dx = a0

∂T (x, t)

∂x
− a0

∂T (0, t)

∂x
, a0 = const.

(6b)
d

dt

δ
∫

0

xT (x, t)dx = a0T (0, t)

(7)

δ
∫

x

∂T (x, t)

∂t
dx = a0

∂T (x, t)

∂x

(8)

δ
�

0





δ
�

x

∂T

∂t
dx



 dx = a0T(0, t)
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[30, 31] where the Leibniz rule is inapplicable (see Refs. 
[25, 26] for more details).

If the thermal diffusivity is non-linear and expressed as a 
power-law a = apT

m (m > 0), corresponding to degenerate 
diffusion problems) then Eqs. (6b) and (8) take the forms 
[25]

The integral relations presented by (9) and (10) will be 
used further in this work in the development of the prob-
lems at issue. The application of both HBIM and DIM 
to the case with a(T) = a0 (1+ βT) is demonstrated in 
the next section (see Sects. 3.3, 3.4). It is worthy that this 
approach does no use averaging procedure of the Kirchhoff 
transform such as that expressed by Eqs. (2a, b, c). For the 
sake of clarity and avoiding any doubts additional exam-
ples with mean thermal diffusivity am are developed with 
both the HBIM and DIM integration techniques.

3  Solution strategies

The solution strategy used in this research is based on the 
results (5a), (9) and (10) applied to the linear form of the 
thermal diffusivity (1c) and an assumed parabolic profile 
with unspecified exponents.

3.1  Assumed profile

The solutions use an assumed parabolic profile with 
unspecified exponent [25–29]

The profile (11) satisfies the Goodman’s boundary con-
ditions (4a, b), namely

3.2  Scaling and governing equations

The scaled thermal diffusivity is commonly expressed as 
a = f

[(

T
/

Tref
)m] where Tref  is a reference temperature 

which differs from the initial medium temperature T0 . 

(9)
d

dt

δ
∫

0

xT(x, t) =
ap

m+ 1
[T(0, t)]m+1

(10)

δ
�

0





δ
�

x

∂T

∂t
dx



 dx =
ap

m + 1
[T(0, t)]m+1

(11)Ta = Ts

(

1−
x

δ

)n

(12a, b)T(0, t) = Ts or k

(

∂T

∂x

)

x=0

= q0

(13a, b)T(δ, t) = T0 = 0 or k

(

∂T

∂x

)

x=δ

= 0

The functional relationship can be expressed as a simple 
power-law a = a0T

m [14, 24, 25] or as a linear relation-
ship a = a0

[

1+ β
(

T
/

Tref
)m]

, where m and β are dimen-
sionless constants. In this context, when Tref �= T0 �= 0 

the power-law can be rescaled as aeff um = a0kT
(

T
/

T0
)m 

where u =
(

T
/

T0
)

, kT =
(

T0
/

Tref
)m = const. and 

aeff = a0kT. Therefore the linear relationship for m = 1 
can be presented as a = a0

[

1+ βkT
(

T
/

Tref
)]

. When 

Tref = T0 �= 0, we get kT = 1.

In order to be correct in the solutions performed next 
and for the sake of clarity of the expressions, we have to 
mention that the common literature data about the heat 
conductivity of the materials are presented in dimensional 
form k = k0[1+ βT ]. It is easy, to transform this linear 
relationship into a = a0

[

1+ βkT
(

T
/

Tref
)]

 by a simple 
rescaling procedure which affects only the pre-factor βkT. 
An alternative scaling procedure by a translation transform 
allowing converting the linear relationship into a power-law 
is applied in Sect. 5.

In the case of the Dirichlet problems using the dimen-
sionless variable u = (T − T0)

/

(Ts − T0) or u = T
/

Ts the 
dimensionless assumed is

The governing equation in a dimensionless form using 
u = T

/

Ts is

The dimensionless form (15) requires the linear relation-
ship k = k0[1+ βT ] to be initially rescaled as

The procedure described by (16) addresses the prelimi-
nary treatment of the data related to a particular material 
and requires the numerical data to be presented in the form 
k = k0

[

1+ β
(

T
/

Ts
)]

= k0[1+ βksu], ks =
(

Ts
/

Tref
)

. For  
the sake of simplicity we use ks = 1 and this leads to 
Eq. (15).

3.3  Simple integration: heat‑balance integral method 
(HBIM)

The classical HBIM considers integration over the penetra-
tion depth δ(t) as it is described by Eq. (5a, b), namely

(14)

ua =
(

1− x
/

δ
)n
, ua = Ta

/

Ts,

ua(0, 1) = 1, u(δ, t) = 0, k

(

∂u

∂x

)

x=δ

= 0

(15)
∂u

∂t
=

∂

∂x

[

a0(1+ βu)
∂u

∂x

]

(16a, b)

k = k0

[

1+ β

(

T − T0

Ts − T0

)]

or as

k = k0

[

1+ β
(

T
/

Ts

)]

= k0[1+ βu]
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However, we may present the temperature gradient in 
(17a) as (18a)

Then, the relation (17b) can be represented as (18b)

With the assumed profile (11) the right side of (18b) is

This modification of HBIM, conceived here, allows 
solving non-linear heat conduction equations. It will be 
tested in the examples developed next, even though the 
inherent problem with the determination of the gradient at 
the boundary still remains.

Now, the reasonable question is: What happens if the 
mean thermal diffusivity (19a) is used in the governing 
equation?

For the Dirichlet problem, for instance, we have 

u(0, t) = 1 (see the Example 1 further in this work) and 

therefore am = a0
(

1+ β
/

2
)

. Then, with am the single 
integration procedure of HBIM provides

The results (18b) and (19b) are not equivalent. As a 
supporting example, with the assumed profile (11) and 
u(0, t) = 1, the right side of (19b) is

The results (18c) and (19c) are not equivalent.

(17a)

δ
∫

0

∂u

∂t
dx =

δ
∫

0

∂

∂x

(

a0(1+ βu)
∂u

∂x

)

dx

(17b)
d

dt

δ
∫

0

udx = −a0

(

∂u

∂x

)

x=0

− β

(

u
∂u

∂x

)

x=0

(18a)a0(1+ βu)
∂u

∂x
⇒ a0

(

∂u

∂x
+

β

2

∂u2

∂x

)

(18b)
d

dt

δ
∫

0

udx = −a0

(

∂u

∂x
+

β

2

∂u2

∂x

)

x=0

(18c)−a0

(

∂u

∂x
+

β

2

∂u2

∂x

)

x=0

= a0

(

n

δ
−

β

2

n(n− 1)

δ2

)

(19a)am =
1

u(0, t)

u(0,t)
∫

0

a0(1+ βu)du = a0 + β
u(0, t)

2
,

(19b)
d

dt

δ
∫

0

u(x, t)dx = −a0

(

1+
β

2

)(

∂u

∂x

)

x=0

(19c)−a0

(

1+
β

2

)(

∂u

∂x

)

x=0

= a0

(

1+
β

2

)

(n

δ

)

As a final point, the integration procedure of HBIM and 
the alternative one with the mean thermal diffusivity am do 
not lead to equivalent results.

3.4  Double‑integration method

The first step of the double integration approach is the inte-
gration of the governing equation from 0 to x. With the 
form (19b) this integration yields

The second step of DIM is integration of (20b) from 0 to 
δ, namely

The last term in (20b) is a constant with respect to x 
and consequently the last term in (21) is a constant (with 
respect to x) multiplied by δ. Further, taking into account 
that that right-hand side of (20b) and the last term of (21) 
are equal, as well integrating by parts the double integral of 
(21) we have

Equation (22a) is the principle equation of DIM with 
a linear temperature-dependent thermal diffusivity. Its 
left-hand side is expressed in the form known from RIM 
[3, 27–29]. Alternatively, if the technique described by 
Eqs. (7) and (8) (as well as with Eqs. 9, 10) is applied it can 
be presented as

Again, if the mean thermal diffusivity am is applied, then 
the results of the double-integration are

(20a, b)

x
∫

0

∂u

∂t
dx =

x
∫

0

∂

∂x

[

a0

(

u+
β

2

∂u2

∂x

)]

dx ⇒ a0

(

u+
β

2

∂u2

∂x

)

− a0

[

u(0, t)+
β

2

∂u2(0, t)

∂x

]

(21)

δ
�

0





x
�

0

∂u

∂t
dx



 dx = a0

δ
�

0

u(x, t)dx +
a0β

2

δ
�

0

�

∂u(x, t)

∂x

�

dx

− a0

�

u(0, t)+
β

2

∂u(0, t)

∂x

�

δ

(22a)
d

dt

δ
∫

0

xu dx = a0u(0, t)+
a0β

2
[u(0, t)]2

(22b)
d

dt

δ
∫

0

δ
∫

x

u dx = a0u(0, t)+
a0β

2
[u(0, t)]2

(23a)
d

dt

δ
∫

0

xu dx = a0

(

1+
β

2

)

[u(0, t)]2
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The results obtained by the direct integration (22a, b) and 
the ones developed with the mean thermal diffusivity (23a, b) 
are equivalent only if u(0, t) = 1. Therefore, the approach with 
the mean thermal diffusivity am works correctly with DIM in 
the case of the fixed temperature boundary condition only.

The solutions developed next (Examples 1 and 2) do not 
use the mean thermal diffusivity am because the averag-
ing procedure is a non-natural step which does not follow 
directly from the integration techniques of HBIM and DIM.

4  Solution Example 1: fixed temperature as a 
boundary condition at x = 0

In this section we develop approximate solutions by HBIM 
and DIM solutions without a preliminary treatment of the lin-
ear relationship (1c) of the temperature-dependent diffusivity, 
in contrast to the case of a fixed flux problem (see Sect. 5).

4.1  HBIM solution

The application of the assumed profile (14) and integration 
defined by (19) yields

The result of (24a) with the initial condition δ(t = 0) = 0  
is

For β = 0, Eq. (24b) reduces to the linear problem with 
δT0(HBIM) =

√
a0t

√
2n(n+ 1) [3, 26]. However, we have 

to bear in mind that the governing Eq. (1b) with β = 0 is 
purely parabolic, while for β �= 0, even for very small val-
ues, the Eq. (1b) demonstrates behaviours of a degenerate 
diffusion due the term a0βT

(

∂T
/

∂x
)

.

4.2  DIM solution

Applying Eq. (22a) with u(0, t) = um+1(0, t) = 1 we get

(23b)
d

dt

δ
∫

0

δ
∫

x

u dx = a0

(

1+
β

2

)

[u(0, t)]2

(24a)
d

dt

δ
∫

0

(

1−
x

δ

)n

dx =
a0

δ
n(1+ β)

(24b, c)

δ2 = (a0t)2n(n+ 1)(1+ β) ⇒ δT(HBIM)

=
√
a0t

√

2n(n+ 1)
√

(1+ β)

(25a, b)

d

dt

δ
∫

0

x

(

1−
x

δ

)

dx = a0 +
a0β

2

⇒
1

(n+ 1)(n+ 2)

dδ2

dt
= a0

(

1+
β

2

)

Then, the penetration depth is

For β = 0, Eq. (26) reduces to the linear problem with 
δT0(DIM) =

√
a0t

√
(n+ 1)(n+ 2) [3, 26] but taking into 

account the comments done in the previous section.

4.3  Approximate profile and similarity variable

Therefore, the approximate profiles can be expressed as:
HBIM

DIM

The parabolic profile directly defines the simi-
larity variable η = x

/√
a0t. The numerical fac- 

tors FT
HBIM (n,β) and FT

DIM(n,β) define the pen-

etration depths because for η = FT
DIM(n,β) we have 

ua = 0 , for example. It is also possible to define effec-
tive similarity variables ηβ(HBIM) = x

/√
a0t(1+ β)  

or ηβ(DIM) = x
/√

a0t
(

1+ β
/

2
)

 thus allowing the 

numerical factors FT
HBIM and FT

DIM to be independent of β 
and equal to the ones of the linear problem [26]. However, 
with such an approach we loss the physical significance of 
integral balance solution and the fact that the penetration 
depth is affected by β. Moreover, as it was commented in 
Sect. 3.3, the mean thermal diffusivity am = a0

(

1+ β
/

2
)

 
works correctly only if the DIM solution is applied. In 
this case we may use for comparative purposes the exact 
solution 1− erf

(

ηβ(DIM)

/

2
)

 but with caution because the 
averaging procedure applied to develop am suppresses the 
degenerative behaviour of the model (1b, c) due to the term 
a0βT

(

∂T
/

∂x
)

.
In order the compare the integral-balance solutions 

with numeral ones and it is more convenient to express the 

(26)δT(DIM) =
√
a0t

√

(n+ 1)(n+ 2)

√

(

1+ β
/

2
)

(27a, b, c)

ua(HBIM) =
(

1−
x

δ

)n

=
(

1−
x

√
a0t

√
2n(n+ 1)

√
(1+ β)

)n

=
(

1−
η

F
T

HBIM
(n,β)

)n

(28a, b, c)

ua(DIM) =
�

1−
x

δ

�n

=



1−
x

√
a0t

√
(n+ 1)(n+ 2)

�

�

1+ β
�

2
�





n

=

�

1−
η

F
T
DIM

(n,β)

�n

(29a, b)
F
T

HBIM(n,β) =
√

2n(n+ 1)
√

(1+ β),

F
T

DIM(n,β) =
√

(n+ 1)(n+ 2)

√

(

1+ β
/

2
)
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profiles through the dimensionless variable X = x
/

δ as 
ua = (1− X)n. With this independent variable, the solu-
tions are normalized in the square [0, 1] (see “Appendix 
1”).

4.4  Optimal exponents of the approximate profile

In the general moment method [32, 33] a desired accuracy 
in approximation can be attained be increasing the num-
ber of terms in the series ua =

∑N
j=1 aj

(

1− x
/

δ
)nj (see 

Ref. [25] for comments), i.e. by increase in the order of the 
moments involved in the solution. Since both HBIM and 
DIM are restricted to the zeroth moment they use only the 
first term of the series. Therefore, the accuracy of approxi-
mation depends on the values of the exponent n because 
the coefficient a1 = us depends on the boundary condition 
x = 0. The classical applications [1, 26] are with n = 2 
and n = 3. However, when the exponent n is stipulated the 
approximation error is predetermined. Now, we focus the 
attention on the optimization of the exponent n in order to 
obtain solutions with minimal approximation errors bear-
ing in mind that the approximate profile satisfies the inte-
gral-balance relations (19b) and (22b) but not the original 
heat conduction Eq. (1b).

4.4.1  Error measure and restrictions on the exponent n

The residual function ϕ (ua(x, t)) is defined from the 
requirement the approximate solution to satisfy the govern-
ing Eq. (1b)

If ua matches the exact solution then ϕ (ua(x, t)) = 0 , 
otherwise it should attain a minimum for a certain value 
of the exponent n (the only unspecified parameter of the 
approximate profile).

(30)ϕ (ua(x, t)) =
∂ua

∂t
−

∂

∂x

(

a0
(

1+ βua
)∂ua

∂x

)

With ua =
(

1− x
/

δ
)n, we have

For example, at x = 0 the residual function is decaying 
in time (since δ2 ≡ t) but has to be minimized with respect 
to n

Thus, searching for positive values of n, the heat equa-
tion is satisfied for n = (1+ β)

/

(1+ 2β), that is the expo-
nent should be <1. However, in order to satisfy the Good-
man boundary conditions ua(δ, t) = ∂ua(δ, t)

/

∂x = 0, it is 
required that

Therefore, two conditions should be obeyed simultane-
ously: n – 2 > 0, and 2n – 2 > 0. This leads to the common 
condition n > 2.

4.4.2  Optimal exponents: minimization with the Langford 
criterion

Therefore, the function ϕ(ua(x, t)) should approach a 
minimum as ua → u, over the entire penetration depth δ , 
that is 

∫ δ

0 ϕ(ua(x, t))dx → min. More precisely, we may 
require, 

∫ δ

0 [ϕ(ua(x, t)) ]
2dx → min, that is, the Langford 

criterion [34]

With the profile (14) and the expressions (31a, b), after 
developing ϕ2

T (x, t), and the integration from 0 to δ we have

(31a)
∂ua

∂t
=

nx

δ2

dδ

dt

(

1−
x

δ

)n−1

(31b)

∂

dx

(

a0

(

1+ βua
)∂ua

∂x

)

= a0

[

n(n− 1)

δ2

(

1−
x

δ

)n−2
+ β

n(2n− 1)

δ2

(

1−
x

δ

)2n−2
]

(32)ϕT (0, t) = −
a0

δ2
[n(n− 1)+ βn(2n− 1)]

(33)

lim
x→δ

ϕT (δ, t) = −
[

n(n− 1)

δ2
lim
x→δ

(

1−
x

δ

)n−2

+β
n(2n− 1)

δ2
lim
x→δ

(

1−
x

δ

)2n−2
]

(34)EL(n,m, t) =
δ

∫

0

[

∂ua

∂t
−

∂

∂x

(

a0u
m
a

∂ua

∂x

)]2

dx → min

Table 1  Optimal exponents of 
the approximate profile: HBIM 
solutions with fixed temperature 
boundary condition

Positive β

β = 0 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5

n 2.2335 2.2605 2.2777 2.2839 2.2737 2.2253

eMT(HBIM) 0.0169 0.0186 0.0213 0.0246 0.0283 0.0328

Table 2  Optimal exponents of the approximate profile: HBIM solu-
tions with fixed temperature boundary condition

Negative β

β = −0.1 β = −0.2 β = −0.3 β = −0.4 β = −0.5

n 2.2732 2.3244 2.3667 2.3933 2.3979

eMT(HBIM) 0.0186 0.0213 0.0246 0.0283 0.0328
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Hence, at a glance, ELT (n,m, t) vanishes in time with 
a speed proportional to δ4 ≡ t2. Therefore, the function 
eLT (n,β, δ) is time-independent and should be minimized 
with respect to n, for given values of β. In the proper evalu-
ation of the minima of eLT (n,β, δ) the fact that product 
δ
(

dδ
/

dt
)

 is time-independent is used [25]. The minimi-
zation procedure is well described in [24, 25] and we will 
avoid cumbersome expressions here. The optimal expo-
nents for both the HBIM and DIM solutions, for various β 
are summarized in Tables 1, 2, 3 and 4. The initial restric-
tion of all minimization procedures is n > 2.   

4.5  Benchmarking of the approximate solutions 
with optimal exponents

This section demonstrates numerical examples of the 
developed approximate HBIM and DIM solutions and 
benchmarking examples related to their accuracy. At the 
beginning, numerical simulations were performed for val-
ues of β larger than those corresponding to some real mate-
rials (see Table 5). This was especially done to demonstrate 

(35)ELT (n,β, t) =
δ

∫

0

ϕ2
T (x, t)dx =

1

δ4
eLT (n,β, δ)

Table 3  Optimal exponents of 
the approximate profile: DIM 
solutions with fixed temperature 
boundary condition

Positive β

β = 0 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5

n 2.2187 2.1647 2.1136 2.0664 2.0236 1.985

eMT(DIM) 0.0167 0.0198 0.0235 0.0276 0.0322 0.0369

Table 4  Optimal exponents of the approximate profile: DIM solu-
tions with fixed temperature boundary condition

Negative β

β = −0.1 β = −0.2 β = −0.3 β = −0.4 β = −0.5

n 2.1647 2.1136 2.0664 2.0236 1.985

eMT(DIM) 2.2732 2.3244 2.3667 2.3933 2.3979

Table 5  Real values of the terminal coefficient β for various materi-
als

Material β (K−1) References

Iron −0.00104 [31]

Cast Iron −0.00105 [31]

Steel (0.83 %C) −0.00105 [31]

Steel (0.1 %C, 5.15 %Cr) −0.00109 [31]

Wood (Larch) 0.012 [32]

Wood (Masson pine) 0.025 [32]

Wood (China fir) 0.007 [32]

Tin −0.00057 [33]

Zinc −0.00045 [33]

Indium −0.00045 [33]

Aluminum −0.00026 [33]

Fig. 1  Approximate temperature profiles with a fixed temperature as boundary condition and DIM solutions: insets zoomed section close to the 
fronts of the penetration layer. a Cases of positive β. b Cases of negative β
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the features of the approximate solution and getting plots 
with disguisable curves. Moreover, the range [−0.5, 0.5] 
has been also used for numerical simulation by Sucec and 
Hedge [5] and Mehta [15], thus this approach is not an 
exception in solutions applicable to the problem.

First, in order to demonstrate the effect of the factor β 
on the heat penetration into the medium, approximate solu-
tions are presented in Fig. 1a, b. As an expected result, 
when β > 0 the increased heat conductivity is manifested 
by increased penetration depth δ (see the inst in Fig. 1a). In 
contrast, when β < 0 the penetration depth decreases with 
increase in the absolute value of β. Numerical experiments 
and related plots of pointwise (absolute) errors are shown 
in Figs. 2 and 3, respectively. As a general outcome of these 
numerical experiments it may be stated that when β < 0, 
that is the case of most native materials as pure metals [35] 
the accuracy of the integral-balance solutions is better than 

when β > 0 (the case of alloys, composites, wood, etc. see 
Table 5).

In addition, as an expected result, the accuracy of DIM 
(see Figs. 4, 5) is better that that exhibited by HBIM (see 
Fig. 3). The pointwise errors (see Fig. 6) and the plots in 
Fig. 3, (as well as in Figs. 4, 5) confirm the comments that 
the accuracy of the integral-balance solutions (both HBIM 
and DIM) is better when β < 0. The range of variations of 
the pointwise errors is typical for the integral-balance solu-
tions [1], i.e. <0.03. In general, the increase in the absolute 
value of β leads to increased errors of approximations. It 
is important to note that the separation of β in positive and 
negative values is mechanistic. Generally, the conductivity-
temperature relationship can be written as a = a0 (1± βT) 
where the positive sign means that the thermal diffusivity 
increases with the temperature, while the negative sign cor-
responds to the opposite tendency.  

Fig. 2  Temperature profiles of approximate temperature HBIM solu-
tions with a fixed temperature as boundary condition and numerical 
solutions (finite differences). a Cases of β = 0.1 and β = −0.1. b 

Cases of β = 0.2 and β = −0.2. c Cases of β = 0.3 and β = −0.3. d 
Cases of β = 0.4 and β = −0.4
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Fig. 3  Comparison of approximate profiles (HBIM solutions) with numerical solutions (finite differences) (see also the plots in Fig. 2a–d). a 
Cases of β = 0.1, β = −0.1, β = 0.3 and β = −0.3. b Cases of β = 0.2, β = −0.1, β = 0.3 and β = −0.4

Fig. 4  Temperature profiles of approximate temperature DIM solutions with a fixed temperature as boundary condition and numerical solutions 
(finite differences and Runge–kutta-4th order) for positive β. a Case of β = 0.1. b Case of β = 0.3. c Case of β = 0.5
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Second, numeral experiments with approximate solu-
tions using real values of β, both positive and negative, 
were performed (with data summarized in Table 1). The 
plots of the temperature profiles (see Fig. 7). and the point-
wise errors (see Fig. 8) confirm the statements about the 
accuracy of approximation based on the pure numerical 
experiments (Figs. 3, 6).

5  Solution Example 2: fixed flux as a boundary 
condition at x = 0

This section presents three different strategies to develop 
integral-balance solutions when the boundary condition is 
defined as

•	 Direct application of HBIM and DIM

(36)−k(T)

(

∂T

∂x

)

x=0

= q0

•	 Change of variables
•	 Preliminary rescaling of the conductivity-temperature 

relationship.

5.1  Direct application of HBIM and DIM

When the additive heat conductivity relationship (1c) 
k = k0(1+ βT) is not scaled as k = k0

(

1+ βT
/

Tref
)

 (see 
the comments in Sect. 3.2), we have from the boundary 
condition that

5.1.1  HBIM solution

The application of the HBIM Eq. (5b) with the assumed 
profile expressed by (11) yields

(37a, b)

−
[

k0(1+ βT)
∂T

∂x

]

x=0

= q0 or

− k0

[

∂T

∂x
+

β

2

∂T2

∂x

]

x=0

= q0

Fig. 5  Temperature profiles of approximate temperature DIM solutions with a fixed temperature as boundary condition and numerical solutions 
(finite differences and Runge–kutta-4th order) for negative β. a Case of β = −0.1. b Case of β = −0.3. c Case of β = −0.5
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From (31b, 37b) we have that 
−
[

(1+ βT) ∂T
∂x

]

x=0
= q0

/

k0 and therefore the right side of 

(38) can be replaced by a0q0
/

k0. This operation yields

In (39a) we take unto account that the surface tempera-
ture Ts(t) is time-dependent.

(38)
d

dt

δ
∫

0

Ts

(

1−
x

δ

)n

dx = −a0

[

(1+ βT)
∂T

∂x

]

x=0

(39a, b)

d

dt

δ
∫

0

Ts

(

1−
x

δ

)n

dx = a0
q0

k0
⇒

1

n+ 1

d

dt
(Tsδ) = a0

q0

k0

The integration of (39b) with the initial condition 
(Tsδ)t=0 = 0 results in

Now, the next task is to determine δ(t). The boundary 
condition (37a, b) expressed through the assumed profile 
(see the form of Eq. 37b) is

Now, inserting Ts from (40b) into (41b) we get

(40a, b)Tsδ = (a0t)
q0

k0
(n+ 1) ⇒ Ts = (a0t)

q0

k0

1

δ
(n+ 1)

(41a, b)

−k0

[

Ts

(

−
n

δ

)

+ βT2
s

(

−
n

δ

)]

= q0 ⇒ Ts + βT2
s =

q0

k0

δ

n

(42)
δ3 − δ(a0t)n(n+ 1)− β

q0

k0
(a0t)

2n(n+ 1)2 = 0

Fig. 6  Comparison of approximate profiles (DIM solutions) with numerical solutions (finite differences and Runge–Kutta-4th order) (see also 
the plots in Figs. 4, 5). a Cases of β = 0.1 and β = −0.1. b Cases of β = 0.3 and β = −0.3. c Cases of β = 0.5 and β = −0.5
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For β = 0, Eq. (42) reduces to δ
q

0(HBIM) = δ
0
=√

(a0t)n(n+ 1) which is the classical HBIM solution 
[3, 26], but this means that the governing model (1b, c) 
is reduced to diffusion equation with a = a0 = const. 
Eq. (42) allows to establish an approximate expression 
about δ (for details see “Appendix 2”) namely

With the result (43) the surface temperature Ts (40b) can 
be expressed as

5.1.2  DIM solution

With the principle equation of DIM we have

(43)δ(t) ≈ (a0t)
2
3

[

n
1
3 (n+ 1)

2
3

]

(

β

4

q0

k0

)
1
3

(44)Ts ≈ (a0t)
1
3

(

q0

k0

)
2
3
(

n+ 1

n

)
1
3
(

4

β

)
1
3

Further with the assumed profile expressed by (11) we 
get from (45a) that

The boundary condition (see 41b) provides the relation-
ship Ts + βT2

s = q0
k0

δ
n
 and therefore, the differential equa-

tion about the product Tsδ2 is

In terms of Ts the boundary condition (41b) is a quad-
ratic equation with a positive root

(45a)

d

dt

δ
∫

0

δ
∫

x

Ta(x, δ, t)dx = a0Ta(0, t)+
a0β

2
[Ta(0, t)]

2

(45b)
1

(n+ 1)(n+ 2)

d

dt

(

Tsδ
2
)

= a0

(

Ts +
β

2
T2
s

)

(46)
d

dt

(

Tsδ
2
)

= a0
q0

k0
(n+ 1)(n+ 2)

δ

n
− a0

β

2
T2
s

Fig. 7  Approximate temperature profiles (DIM solutions) for real 
materials and a fixed temperature as boundary condition and numeri-
cal solutions (finite differences and Runge–Kutta-4th order). See 

Table 5 for details. a Case of aluminum with β < 0. b Case of wood 
with β > 0. c Case of iron with β < 0
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Next, the Eq. (46) can be transformed as one with a sin-
gle dependent variable δ by using (47a, b). Obviously, this 
does not allow to obtain straightforwardly an explicit solu-
tion about δ(t). At this point we stop the development of 
the DIM solution and will comment some basic problems 
about the direct application of HBIM and DIM.

5.1.3  HBIM or DIM when the flux is defined at the 
boundary?

With the results (46) and (47) we may formulate the 
question: Is it reasonable to apply the double integra-
tion approach to the case when the flux is defined at the 

(47a, b)

Ts =
1

2β

(
√

1+ 4β
q0

k0

δ

n
− 1

)

⇒ T2
s =

1

2β2

(

1+ 2β
q0

k0

δ

n
−

√

1+ 4β
q0

k0

δ

n

)

boundary and the thermal diffusivity is in the form (1c)? 
The answer can be found in the origin of DIM. Actually, 
the double integration approach was conceived [2] for 
solutions of hydrodynamic problems concerning a bound-
ary layer velocity profile where the velocity at the rigid 
wall (x = 0) is defined [36]. This corresponds to the fixed 
temperature problem solved in this study. Since the sim-
ple approach (i.e. HBIM) needs the gradient ∂T

/

∂x to be 
defined at x = 0 through the assumed profile, then the dou-
ble integration fix the problem and makes the right-had side 
of the integral-balance relation independent of the assumed 
profile.

Therefore, when the flux is prescribed at the boundary, 
the use of DIM requires the surface temperature Ts in the 
right-had side of the integral-balance relation to be defined. 
This can be done through the boundary condition, but in 
this case Ts depends on the type of the assumed profile (see 
41a, b). Therefore, we get a new problem for determina-
tion of the surface temperature from a strongly non-linear 
relationship and there are no benefits when DIM is applied 

Fig. 8  Comparison of approximate profiles (DIM solutions) for real materials with numerical solutions (finite differences and Runge–Kutta-4th 
order) (see also the plots in Fig. 7). a Case of aluminum with β < 0. b Case of wood with β > 0. c Case of iron with β < 0



192 Heat Mass Transfer (2017) 53:177–204

1 3

directly to solve the problem with a thermal diffusivity 
expressed as the additive function (1c). In contrast, the sim-
ple approach (i.e. HBIM) allows the flux to be incorporated 
easily in the right-had side of the integral-balance relation, 
as it was demonstrated in Sect. 5.1.1.

In the context of the above comments, the reasonable 
question directly arising is: Does the additive function (1c) 
is the suitable form to correlate experimental data when the 
nonlinear thermal diffusivity should be incorporated in the 
energy equation (1b)? The answer is negative. The possible 
strategies to fix the emerged problem and obtain approxi-
mate solutions are developed next.

5.2  Solutions by a change of the variable

Let us denote U = 1+ βT . Therefore with 
∂U

/

∂t = β
(

∂T
/

∂t
)

 and ∂U
/

∂x = β
(

∂T
/

∂x
)

 we may 
transform the governing equation and the boundary condi-
tion as

The new equation (48) is a degenerate diffusion equa-
tion [2, 37–39] with a solution propagating with a sharp 
front. It is a special case of the diffusion equation with a 
power-law diffusivity a = a0U

m (for m = 1) solved by 
HBIM and DIM in (see Ref. [25] and references therein).

If we apply the transform U = 1+ βT  to the assumed 
profile (11), i.e. Ūa = 1+ βTa = 1+ βTs

(

1− x
/

δ(n)
)n 

we get

and

However Ūa(δ) = 1 and therefore the Goodman condi-
tions are not completely satisfied.

Hence, we have to re-design the assumed profile as

Then, for x = 0, Ua(0, t) = Us = 1+ βTs. Thus, the 
transform used to obtain (48) is satisfied. Moreover, the 
Goodman conditions are completely obeyed by Ua, namely:

The boundary condition (49) defines Us as

(48)
∂U

∂t
=

∂

∂x

(

a0U
∂U

∂x

)

(49)−
[

U
1

β

∂U

∂x

]

x=0

=
q0

k0

(50a)∂Ūa(δU)
/

∂x = β∂Ta(δ)
/

∂x = 0

(50b)Ūa(0, t) = Ūs = 1+ βTa(0, t) = 1+ βTs

(51a)Ua = (1+ βTs)

(

1−
x

δU

)p

= Us

(

1−
x

δU

)p

(51b)∂Ua(δU)
/

∂x = Ua(δU) = 0 and Ua(δU) = 0

(52a, b, c)

Us =
(

β
q0

k0

δU

p

)
1
2

= Q
1
2
0 β

1
2

(

δU

p

)
1
2

, Q0 =
(

q0

k0

)
1
2

The condition requires Us = 1+ βTs > 0 that implies 
β > 0 in (52b).

The Eq. (48) can be rescaled in terms of the variable 

S = U
/

(Q0)
1/ 2 as

Next, with Sa = Ua

/

(Q0)
1/ 2 the assumed profile can be 

simply expressed as:

The HBIM applied to (53a) with the profile (54) yields

Equation (55a) is a special case of the HBIM solution of 
(53a) [25], namely:

The optimal exponent in this case is pqopt(HBIM) ≈ 0.799 . 
Recall, in this case pqopt(HBIM) < 1 as it was demonstrated 
in [25].

Further, the DIM solution of (53a) with the profile (54) 
developed in [25] is

Equation (56a) is a special case of the DIM solution of 
(53a) [25], namely

The optimal exponent in this case is pqopt(HBIM) ≈ 0.870 
[25].

Equations (55b) and (56b) clearly indicate that the new 
penetration depth is δU = β1/ 3Fp, where Fp matches the 
expressions developed for the linear case when β = 1. 
Thus, there is a factor β1/ 3 while the new similarity vari-

able is ηq = x
/

(a0t)
2/ 3. For ηq = Fp the assumed profile 

(53a, b)
∂S

∂t
=

∂

∂x

(

AsS
∂S

∂x

)

, As = a0β
1/ 2

(54)Sa =
(

β
δU

p

)
1
2
(

1−
x

δU

)p

(55a, b)
δ
q
U(HBIM) = (Ast)

2
3 p

1
3 (p+ 1)

2
3 = (a0t)

2
3 (β)

1
3Fp(HBIM)

(55c)Fp(HBIM) = p
1
3 (p+ 1)

2
3

(55d)
δHBIM(power−law) = (Ast)

m+1
m+2 p

1
m+2 (p+ 1)

m+1
m+2 for m = 1

(56a, b)
δ
q
U(DIM) = (Ast)

2
3

[

p(p+ 1)(p+ 2)

(

3

10

)]
2
3

= (a0t)
2
3 (β)

1
3Fp(DIM)

(56c)Fp(DIM) =
[

p(p+ 1)(p+ 2)

(

3

10

)]
2
3

(57)

δ
q
DIM(power−law)

= (Ast)
m+1
m+2

[

pm(p+ 1)(p+ 2)

(

m+ 2

(m+ 1)(2m+ 3)

)]
m+1
m+2

for m = 1
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in terms of Ua is zero and T = Tref , because at this point 
we have x = δU. Besides, the ratio ηq

/

Fp = x
/

δ = Xq is a 
dimensionless variable 

(

0 ≤ Xq ≤ 1
)

 as it was mentioned in 
the case of the fixed temperature problem.

Now, in terms of Ua we have

The reverse transform T = (U − 1)
/

β leads to

From (58b) through the reverse transform (or with (59) 
for x = 0) the surface temperature is

From (60a) at t = 0 we have δU(t = 0) = 0 and 

Ts = −1
/

β. Is this result correct? The answer is yes, 
because at t = 0 we have k(t = 0) = k0 and the surface 
temperature is equal to the reference temperature Ts = Tref  . 

Consequently, from the (1c) we have k0 = k0
(

1+ βTref
)

 
which leads to Tref = −1

/

β and this completes the answer. 
Therefore, Eq. (60a) can be presented in a more physically 
adequate form

Taking into account the expressions for δU (Eqs. 55b, 
56b) we may derive from (60b) a scaling relationship with 
respect to the excess surface temperature T − Tref , namely

The result (60c) is physically adequate and it is easy to 
see that β affects the slopes of the curves Ts − Tref = f (t). 
The factor 

√

Fp is independent of β and depends of the type 
of integration method applied (HBIM or DIM). In addition, 
with increase in β, the heated body conducts the heat from 
the surface into the bulk more rapidly than a medium with 
lower β, because Ts is inversely proportional to β1/ 6. As a 
consequence, a medium with low β will be more “hot” at 
the surface than one with higher β, when equal heat flux is 
applied at x = 0. This is illustrated by the numerical experi-
ments in Sect. 5.5.

(58a, b)

Ua = (βQ0)
1
2 Sa = (βQ0)

1
2

(

δU

p

)
1
2
(

1−
x

δU

)p

,

Us = (βQ0)
1
2

(

δU

p

)
1
2

(59)

Ta =
Ua − 1

β
=

1

β

[

(βQ0)
1
2

(

δU

p

)
1
2
(

1−
x

δU

)p

− 1

]

(60a)Ts =
1

β

[

(βQ0)
1
2

(

δU

p

)
1
2

− 1

]

(60b)Ts = Tref +
(

Q0

β

)
1
2
(

δU

p

)
1
2

(60c, d)Ts − Tref = Aqpβ
− 1

6 (a0t)
1
3 , Aqp = Q

2
3

0

(

Fp

/

p
)
1
2

5.3  Solution by a preliminary rescaling of the 
conductivity‑temperature relationship

5.3.1  Preliminary rescaling of the heat conductivity 
relationship and change of variables

The general nonlinearity of the model at issue is due to the 
additive formulation of the temperature effect on the ther-
mal conductivity (diffusivity)

The dimension of γ is [Wm−1 K−2], while β has a 
dimension [K−1]. The relationship (61a) presents a com-
mon data correlation of experimental results, where γ is the 
slope (either positive or negative [5, 32, 40, 41]). Since, the 
value of k0 corresponds to a certain reference temperature 
Tref , the coordinate frame k − T  can be shifted in order that 
its origin will be at the point k0. This can be done by a sim-
ple translation transform, namely

The relationships (62) are the same as (61) because the 
translation transform preserves the slope γ = k0β. In (62b) 
α is a shifted thermal diffusivity.

5.3.2  Change of variables

With a new variable θ =
(

T − Tref
)

, i.e. the excess tempera-
ture, the relationship (62b) can be presented as α(θ) = aoβθ 
which is a special case of the power-law temperature-
dependent diffusivity α(θ) = a0βθ

m for m = 1. It is worth 
to note that the transformation of the relationship a(T) (or 
k (T)) is independent of the derivation of the basic model 
presented by Eqs. (1a, b). The only effect of this transform 
is that the energy equation shifts in the temperature scale, i.e. 
θ = T − Tref , which is the excess temperature. With the new 
variable θ the heat conduction Eq. (1b) can be presented as

In the form (63b) there is no loss of generality since the 
reference temperate Tref  is a constant, as well as it could 
be equal to the initial temperature of the medium T0. It is 
worth to note that we do not change the length scale. The 
model (63) is a degenerate diffusion equation [25, 36–39] 
as the previously derived Eq. (48) since the diffusivity goes 

(61a)k = k0 + γT ⇒ k0(1+ εT), ε = γ
/

k0

(61b)

a = a0 +
γ

ρCp

T ⇒ a0(1+ βT), β = ε =
γ

a0ρCp

=
γ

k0

(62a, b)

kshift = (k − k0) = γ
(

T − Tref

)

or α = (a− a0) = aoβ
(

T − Tref

)

, α = a− a0

(63a, b)
∂θ

∂t
=

∂

∂x

[

α(θ)
∂θ

∂x

]

⇒
∂θ

∂t
=

∂

∂x

[

a0βθ
∂θ

∂x

]
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to zero when θ = 0. The solution propagates with a finite 
speed as a well defined front between the disturbed and 
the virgin medium, in contrast to the form (15a) which is a 
truly parabolic equation. In fact, the model (63) (6.3) is the 
Boussinesq equation [25, 37, 39].

5.3.3  Solutions

The integral-balance solutions of (63) developed in [25] 
and the HBIM and DIM relationships are given by (6) and 
(10a, b), respectively. For m = 1 we have

Within the shifted frame 
[

kshift = (k − k0), θ
]

 the flux 
boundary condition can be expressed as

The assumed profile satisfying the boundary con-
ditions of the penetration layer can be expressed as 
θa = θs

(

1− x
/

δ
s

)s. Then, the surface temperature 
θs = θ(0, t) can be determined from (66) as

Consequently, we obtained the result (52) 
which is reasonable because the variable 
U = 1+ βT  with β = −1

/

Tref  [recall Eq. (60a) 
and the related comments] can be expressed  
as: U = 1− T

/

Tref = −
(

T − Tref
)/

Tref = β
(

T − Tref
)

 . 
Therefore, the solution in terms in U is, in fact, a solution  
in term of the scaled excess temperature βθ (see 62b), 
eventhough the starting points for the two solutions were 
different. In addition, Eq. (48) does not change if the vari-
able is U − βT , that is easy to check

Further, denoting �a = θa/
√
(q0/k0)/β (similar to the 

variable Sa) we may present the assumed profile as

(64)HBIM
d

dt

δ
∫

0

θ(x, t) = −a0βθ
∂θ(0, t)

∂x

(65)

DIM
d

dt

δ
�

0

xθ(x, t)

=
a0β

2
[θ(0, t)]2 or

δ
�

0





δ
�

x

∂θ

∂t
dx



 dx

=
a0β

2
[θ(0, t)]2

(66)−kshift

[

(

T − Tref
) ∂

(

T − Tref
)

∂x

]

= q0 ⇒ −
[

βθ
∂θ

∂x

]

x=0

=
q0

k0

(67)−
(

β

2

∂θ2a

∂x

)

x=0

=
q0

k0
⇒ θs =

(

1

β

q0

k0

δ

s

)
1
2

Further, from (66) and (68b) we have the DIM relation-
ship (see Eq. 9)

The solution of (69) developed in [25] is

Hence, the classical square root behaviour of δ(t) is lost 
due to the nonlinearity at the boundary x = 0. The solution 
(70) confirms the results (43) and (56b), precisely that the 
front propagates with a speed proportional to t2/ 3. Further, 
with the integral-balance relation (6), it is easy to check that 
the HBIM solution of the penetration depth is in the form of 
(43) taking into account that the shifted thermal diffusivity is 
α(θ) = a0βθ. For the “shifted” model (63b), the HBIM and 
DIM solutions have optimal exponents nqopt(HBIM)) ≈ 0.799 

and nqopt(DIM)) ≈ 0.870, correspondingly [25].

In the end, obtaining identical solutions with the vari-
ables U and θ, a reasonable question could be formulated: 
What approach is physically correct? To use U or θ? The 
physically adequate answer is: the solution in terms of U, 
because in this case thermal diffusivity in the transformed 
equation remains as a0. The shifted thermal diffusiv-
ity has no a physical meaning and this approach is only 
a mathematical technique. Moreover, it is easy to check 
that if in Eq. (63b) the coefficient β is not “incorporated” 
in the “shifted” thermal diffusivity α(θ) = a0βθ, then 
α(θ) = a0U because simply U = βθ.

Therefore, to recapitulate, after changing the variables 
we get degenerate diffusion equations with power-law dif-
fusivities whose integral-balance solutions are known and 
easily comparable with known exact numerical and approxi-
mate solutions. Then, by a reverse change of the variables 
the approximate solutions relevant to equations with the 
linearly temperature-dependent thermal diffusivities can 
be obtained. However, we have to remember that with the 
reversed approximate solutions the minimization of residual 
functions defined by the original Eq. (1b) identify new opti-
mal exponents. This problem is discussed and resolved next.

5.4  The exponents of the approximate profile

In this end, it seems we solved the problem since the opti-
mal exponent of the of the integral-balance solutions with 

(68a, b)�a =
(

δ

s

)
1
2
(

1−
x

δs

)s

, �s =
(

δ

s

)
1
2

(69)

δ
∫

0

x

(

δ

s

)
1
2
(

1−
x

δs

)s

dx = a0

(

1

s

)(

q0

k0
β

)
1
2

δ

(70)δ
q
s(DIM) = (a0t)

2
3 β

1
3 [s(s+ 1)(s+ 2)]

2
3

(

3

10

)
2
3
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respect to the transformed Eq. (48) in terms of U is known. 
However, this is not the exact value and an additional opti-
mization procedure is required. The reason for that is the 
fact that the obtained profile with δU given by (55) and (56) 
was optimized to satisfy Eq. (48) (to minimize the residual 
function). Further, the initial Eq. (1b) with the (1c) can be 
expressed as

That is, in the transformation procedure we lost the term 
a0
(

∂2T
/

∂x2
)

.
It was established that for the HBIM and DIM solu-

tions of the heat conduction equation with a power-law 
diffusivity a0Tm (i.e. Eqs. 48 or 63b), the exponent m 
affects only the numerical prefactor of the time-dependent 
term of the penetration depth [25]: in the present study 
this is demonstrated by Eqs. (55d) and (57). Moreo-
ver, the product δ1/ (m+1)

(

dδ
/

dt
)

= a0Fn(n,m) is time-
independent. In terms of the variables U and θ, and with 
m = 1 this means: δ1/ 2U

(

dδU
/

dt
)

= a0Fp = const. and 
δ
1/ 2
S

(

dδS
/

dt
)

= AsFs = const. However, with this mini-
mization procedure we lost the effect of β which is 
“absorbed” by the effective diffusivity As, for example. In 
the expressions about δU there is a factor β1/ 3 which cannot 
be ignored. Consequently, the determination of the approx-
imate solutions of Eq. (71) with a profile

means determination of optimal exponents p which should 
take into account the effect of β. Moreover, it should be 

(71)
∂T

∂t
= a0

∂2T

∂x2
+

∂

∂x

(

a0βT
∂T

∂x

)

(72)Ta = Ts

(

1−
x

δU(β, p)

)p

different from the optimal exponents corresponding to the 
approximate solutions of the transformed Eqs. (48) and 
(63b). With known constructions of the functions Fp(HBIM) 
and Fp(DIM) defined by (55c) and (56c), as well as with 
Ts defined by Eq. (60a) the task is: minimization of the 
squared error function 

∫ δ

0

[

ϕq(Ta(x, t))
]2
dx. The procedure 

is explained in [25] but involves cumbersome expressions 
which will be skipped here. However, we may establish the 
constraint on the exponent p at x = 0 with a procedure sim-
ilar to the case of the Example 1.

With the Zener’s coordinate [25, 42] 
ξ = x

/

δ, 0 < ξ < 1, the normalized approxima-

tion profile φa = Ta
/

β1/ 2 =
(

δ
/

p
)1/ 2(1− x

/

δU
)p 

can be represented as φa = δ
1/ 2
U Y(ξ , t) where 

Y(ξ , t) =
(

1
/

p
)1/ 2(1− ξ)n. From the diffusion Eq. (1b) 

(and 71, too) we may define the residual function �q(ξ , t) 
in the ξ-space, namely

From the condition Φq(0, t) ≥ 0 it follows that

The limits of p are lim p
β→0

= (1+ β)
/

(1+ 2β) = 1 

and for large β: lim pβ→∞ = (1+ β)
/

(1+ 2β) ≈ 1
/

2. 
With β = 0.5, for instance we have p ≤ 0.75 while with 
β = 0.1, we get p ≤ 0.911.

(73)

�q(ξ , t) =
[

1

2
δ
1/ 2
U

dδU

dt
Y − δ

1/ 2
U

dδU

dt
ξ
∂Y

∂ξ

]

1

δU

− a0
1

δU

∂2Y

∂ξ2
− a0β

[

1

δU
Y− 1

2

(

∂Y

∂ξ

)2
]

(74a, b, c)

[

p(1+ 2β)− (1+ β)
]

≤ 0 ⇒ p ≤
1+ β

1+ 2β
=

1

1+ ε
, ε =

β

1+ β

Fig. 9  Behaviour of the 
squared error function e(p,β) 
which has to be minimized with 
respect to p. DIM solutions and 
fixed flux as a boundary condi-
tion for different β > 0
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Fig. 10  Fixed flux as a boundary condition. Normalized tempera-
ture profiles TaN = Ts

/[

(

Q0

/

β
)1/ 2(δU

/

p
)

]

 of DIM solutions and 
numerical solutions (finite differences) for t = 1 and optimal expo-
nent popt = 0.595. a Cases of β = 0.1, β = 0.2 and β = 0.3. b Cases 

of β = 0.4 and β = 0.5. c Case of β = 0. Comparison of the exact 
and DIM solutions. Inset: pointwise error. The DIM solutions ends at 
4.13η

Fig. 11  Fixed flux as a boundary condition. Pointwise errors of 
approximation. Comparison of the normalized approximate profiles 
(DIM solutions TaN with numerical solutions Tnum (finite differences) 

for t = 1. a Cases of β > 0 and popt = 0.595. b Cases of β > 0 and two 
exponents of the profile popt = 0.595 and p = 0.870



197Heat Mass Transfer (2017) 53:177–204 

1 3

In general, the squared error function 
EMq =

∫ 1
0

[

Φq(ξ , t)
]2
dξ can be expressed (with the DIM 

solution) as

confirm the behaviour of the integral balance solutions 
established for large β (i.e. −0.5 ≤ β ≤ 0.5) with errors less 
that 0.06 (in the extreme zone close to the front δ), which 

Fig. 12  Fixed flux boundary condition problem. Time evolution of 
the normalized surface temperature 

(

T − Tref
)/

Aqp = β− 1
6 t

2
3 (see 

Eq. 60). popt = 0.595

(75)
EMq(DIM) =

1

δ4

1
�

0







p(p+ 1)(p+ 2)
�

(1− ξ)p + ξ(1− ξ)p−1
�

3
10

−βp(2p− 1)(1− ξ)2p−2 − p(p− 1)(1− ξ)p−2







2

dξ

This results in EMq(DIM) = eLq(p,β)
/

δ4U. The rational 
function eLq(p,β) has to be minimized with respect to p for 
given values of β. The denominator of function eLq(p,β) 
defines multiple vertical asymptotes in the upper quad-
rant and one slant asymptote for p < 0. The behaviour of 
eLq(p,β) with numerical values of β used in this study is 
shown in Fig. 9. We have two well-defined zones of posi-
tive p, namely: 0.5 < p < 0.65 and p > 0.75. Only in the 
range 0.5 < p < 0.65 both limits imposed on the exponents 
for 0.1 ≤ β ≤ 0.5 by the constraint (74b) are obeyed. How-
ever, it is hard to see well defined minima of eLq(p,β) when 
0.5 < p < 0.65. By varying p (solvitur ambulando approach) 
within this zone and evaluating eLq(p,β) we may define 
the optimal exponent popt. The only criterion for accept a 
given p is the value of the pointwise error when comparing 
the approximate profiles with the numerical solutions (see 
Sect. 5.5). This approach yielded an average popt ≈ 0.595 
for all solutions, irrespective of β. Numerical experiments 
with p = 0.870 defined by the solution of the transformed 
Eq. (48) and popt ≈ 0.595 are presented in the next section.

5.5  Benchmarking against numerical solutions

Accepting an average popt ≈ 0.595 for all solutions, irre-
spective of β, we get satisfactory accuracy of the approxi-
mate solutions (see Fig. 10a, b) since all pointwise errors 
(see Fig. 11a) are less than 0.05 (in the extreme section of 
the curves near the front x → δ (i.e. Xq = x

/

δ → 1 ), when 
compared with the numerical solution. In contrast with 
p = 0.870, the errors may attain unacceptable values up to 
0.18 (see Fig. 11b). The special case with β = 0 is shown in 
Fig. 10c (see the comments in the next section).

The plots in Fig. 10a, b clearly demonstrate how the fac-
tor (thermal coefficient) β affects the solutions and deter-
mines the penetration depths. Precisely, with increase in 
β (β > 0) the penetration depth increases, i.e. easier propa-
gation of the thermal wave in the medium due to increased 
thermal diffusivity, and vice versa. As a direct consequence 
of the effect of β on the temperature rise, with help of 
Eq. (63) it easier to demonstrate it by the time evolution of 
the normalized surface temperature Ts (see Fig. 12).

As a final point, the approximate solutions were tested 
with real values of β > 0 for tree wood samples (see Table 5) 
and the profiles in Fig. 13a demonstrated adequate behav-
iour of the DIM solutions. The pointwise errors (Fig. 13b) 

are inherent for this solution method. The rise of the sur-
face temperature of the three wood samples is simulated in 
Fig. 13c.

5.6  Case with β = 0 against the problem with β �= 0

Beyond comments in the preceding section, it is wor-
thy to compare these cases with the approximate solution 
solutions for the extreme case with β = 0, both exact and 
approximate (by DIM, for example). Really, this point of 
the article was provoked by the comments of the review-
ers and tries to encompass some problems that might lead 
to wrong step in the solution of the problem at issue. For 
β = 0 the DIM solution [3] and the exact one are

The plots in Fig. 10c are concave profiles clearly demon-
strating the difference in the behaviour with respect to the 
case when β �= 0. The different behaviour is attributed to the 
fact that for β �= 0 and β = 0 we have two different types of 

(76a)

UDIM(β=0) =
δDIM(β=0)

n0

(

1−
x

δDIM(β=0)

)N0

,

δDIM(β=0) =
√

2(n0 + 1)(n0 + 2)

3
, n0 = 3.822

(76b)Uex(β=0) = 2

√

t

π
exp

(

−
x2

4a0t

)

− xerfc

(

x

2
√
a0t

)
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diffusion equations. Precisely, for β = 0 the diffusion equation 
is completely parabolic and the solutions are concave profiles 
as it is shown in Fig. 10c. Contrary, for β �= 0 the equation 
remains parabolic but with dominating degenerate proper-
ties due the term a0βT

(

∂T
/

∂x
)

 and consequently its profiles 
become convex and steeper as the value of β increases (see 
Fig. 10a, b). It is worthy that the optimal exponents for the inte-
gral-balance solutions (both HBIM and DIM) of the degenerate 
diffusion equation resulting in convex profiles are less that 1 as 
it was demonstrated in [25]. Contrary, HBIM and DIM applied 
to the pure diffusion equation with β = 0 have optimal expo-
nents nHBIM(β=0) = 3.584 and nDIM(β=0) = 3.822, corre-
spondingly [3]. In general, the HBIM and DIM solutions with 
exponents n > 1, precisely with n > 2 [3] have concave profiles.

For the sake of clarity and correctness of the developed 
results, as wells to complete this discussion we refer to an 
idea that might lead to imaginary results. In particular, we 
may formulate the question: Is it possible to use the exact 
solution (for β = 0) when the values of β are very small? 
Recall, the non-linearity of the diffusion coefficients in the 
case of the fixed flux problem appears simultaneously in 
both the governing equation and the boundary condition.

The assumption a0(1+ βT) ≈ a0 = const. would result 
in a linearized boundary condition, but the principle prob-
lem emerging from this idea is that we have to define the 
circumstances under which this approximation is valid. 
Moreover, we need additional conditions allowing the term 
a0β∂

(

T∂T
/

∂x
)/

∂x in the governing equation has to be 
neglected. Alternatively, if the governing equation is line-
arized by ad hoc assumption that the term βT  is negligible, 
but the non-linearity remains in the boundary condition, we 
get a problem with a time-dependent surface temperature 
as it is defined by Eq. (43) (HBIM solution) and Eq. (45). 
This problem cannot be modelled by the exact solution 
(76b). In general, a small values of β is not a serious reason 
to reduce both the governing equation and the boundary 
condition and apply the exact solution (76b).

6  Integral‑balance solutions through the 
Kirchhoff transform

Even though, the emphasis of the present study is appli-
cation of the integral balance method avoiding the initial 

Fig. 13  Fixed flux boundary condition problem. Solutions with real 
data pertinent to wood samples with β > 0 (see Table 5). a (DIM) and 
numerical solutions (finite differences) for wood samples. b Point-
wise errors between DIM solutions and numerical ones (finite dif-

ferences). c Time evolution of the normalized surface temperature 
(

T − Tref
)/

Aqp = β− 1
6 t

2
3 of the wood samples (see Eq. (60) for the 

values of β). popt = 0.595
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linearization through the Kirchhoff transform, we will dem-
onstrate briefly how HBIM and DIM work is this case. As 
mentioned in the beginning the common approach to solve 
such non-linear problem is to apply the Kirchhoff trans-
form (2a, b). Then, the equation becomes with respect to 
the new variable w becomes homogeneous. Equation (2c) 
is a truly parabolic equation with infinite speed of the flux. 
Therefore, the finite penetration depth is a reasonable con-
cept; even though the exact solution through the error func-
tion is well-known. With the new variable w the Goodman 
boundary conditions (4a, b) are satisfied because

(77)
w(δ) = aaT(δ)+

β

2
T
2(δ) = 0 and

∂w

∂x
(δ)

= aa
∂T(δ)

∂x
+ βT(δ)

∂T(δ)

∂x
= 0

Therefore, we may apply the well known solutions of 
the Eq. (2c) by HBIM and DIM [3, 26–29], as it demon-
strated next.

6.1  Fixed temperature boundary condition

With prescribed T(0, t) = Ts the Kirchhoff trans-
form provides w(0, t) = Ws = a0Ts + βT2

s

/

2 . 
Further, the assumed profile can be 
Wa = Ws

(

1− x
/

δw
)p

or φw = Wa

/

Ws =
(

1− x
/

δw
)p . 

Then, applying the HBIM and DIM solutions to Eq. (2c) 
we get expressions about the penetration depth [3]

(78a)δTw(HBIM) =
√
a0t

√

2p(p+ 1)

Fig. 14  Comparative plots of solutions developed through preliminary Kirchhoff transforms: of DIM approximate profiles (Eq. 79) and solution 
developed through the exact solutions of (2c). pTopt(DIM) ≈ 2.219. a Cases of positive β. b Cases of negative β

Fig. 15  Relative pointwise errors in case of solutions with preliminary Kirchhoff transforms: DIM approximate profiles compared to solution 
developed through the exact solutions of (2c). a Cases of negative β. b Cases of positive β
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The definition of the optimal p is a problem 
already solved [3], that is: pTopt(HBIM) ≈ 2.233 and 
pTopt(DIM) ≈ 2.219. Now, the question is: How to go back 
to a solution in term of the original dependent variable T? 
The answer is straightforward. This can be done directly 
from the Kirchhoff transform by using Wa, that is

The solution of (79b) should provide a positive root Ta 
which after rearrangement can be expressed as

Because Wa ≥ 0, the solution (80a) gives real Ta when

These are the conditions for β matching the results of 
Cobble [4].

From Eq. (80b) it follows that for x = δ we get 
Ta(δ) = 0 and ∂Ta(δ)

/

∂x = 0. Since the Kirchhoff trans-
form can be expressed as T2

a = −2 a0
β
Ta +Wa

2
β
 for x = 0 

with Wa(0, t) = Ws = β
2
T2
s + a0Ts and Eq. (80) we get 

Ta(x = 0) = Ts, This completes the test that the solution 
(77b) satisfies the boundary condition at x = 0. The solution 

(78b)δTw(DIM) =
√
a0t

√

(p+ 1)(p+ 2)

(79a, b)Wa = a0Ta +
β

2
T2
a ⇒

β

2
T2
a + a0Ta −Wa = 0

(80a, b)

Ta =
a0

β

(√

1+ 2
β

a
2
0

Wa − 1

)

⇒ Ta

=
a0

β

(√

1+ 2
β

a
2
0

Ws

(

1−
x

δw

)p

− 1

)

(80c, d)β ≥ 0 and
a0

2Wa

≤ β ≤ 0

(80a) has the same form as the result of Cobble [4] where 
the exact solution  We = erfc

(

η
/

2
)

 is used instead Wa.
The comparative numerical experiments (see Figs. 14a, 

b, 15) indicate that better results with DIM solution used in 
(79b) can be obtained for β < 0 (Fig. 16a) rather then when 
β > 0 (see Fig. 16b), except the case of β = −0.5. In gen-
eral, the pointwise error decreases as the absolute value of 
β decreases, as it was observed with the fixed temperature 
problem.  

The benchmarking against the Runge–Kutta solution 
(see Fig. 16a) clearly shows the effect of β on the penetra-
tion depth (the inset of Fig. 15a) and acceptable approxi-
mation errors (Fig. 15b). Further, the benchmarking against 
the numerical solutions (Runge–Kutta and finite difference) 
reveals that the approximation error decreases as the abso-
lute value of β decrease (see Fig. 17a–c). Moreover, with 
equal absolute values of β, the lower pointwise errors are 
exhibited by the case with negative β (see Fig. 17a, b for 
example).

In this end, this section of the article clearly demon-
strates that the approximate solutions (HBIM and DIM) of 
the equations developed by the Kirchhoff transform can be 
successfully used for the determination of the solutions in 
terms of original variables without additional optimization 
of the exponent of the profile. To our point of view, this was 
a good attempt to apply HBIM and DIM after Kirchhoff 
transform because with the fixed temperature problem the 
nonlinearity exists only in the governing equation, but not 
at the boundary.

6.2  Fixed flux boundary condition

With the Kirchhoff transform the fixed flux boundary con-
dition is

Fig. 16  Benchmarking of DIM approximate profiles developed through preliminary Kirchhoff transforms against numerical solution (Runge–
Kutta). Cases of β = 0.2 and β = 0.5. Inset zoomed section demonstrating the effect of β on the penetration depth
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Since the profile is assumed as 
φw = Wa

/

Ws =
(

1− x
/

δ
)p, the (80b) can be presented as

as in the linear case and the transformed profile is

The profile (82) satisfies the Goodman boundary condi-
tions. The HBIM and DIM solutions about the penetration 
depths are [3]

(81a, b)−k0

[

∂T

∂x
+

β

2

∂T2

∂x

]

x=0

⇒ −k0
∂

∂x
W(0, t) = q0

(81c)−k0

(

−
p

δ

)

Ws = q0 ⇒ Ws =
q0

k0

δ

p

(82)Wa =
q0

k0

δ

p

(

1−
x

δ

)p

With optimal exponents: p
q
op(HBIM) ≈ 3.584 and 

p
q
op(DIM) ≈ 3.822 established by Myers [3]. Then, the 

approximate profiles in term of T can be obtained from 
Wa = a0Ta + β

2
T2
a  in a way similar to that used for the 

problem with the fixed temperature boundary condition but 
will stop here the solution which is beyond the scope of 
the present article. Probably this will be developed in our 
future studies.

(83a)δ
q
w(HBIM) =

√
a0t

√

p(p+ 1)

(83b)δ
q
w(DIM) =

√
a0t

√

2(p+ 1)(p+ 2)

3

Fig. 17  Pointwise errors when the DIM solutions developed through preliminary Kirchhoff transforms are compared with numerical solutions 
(finite differences). a Case of β = 1 and β = −1. b Case of β = 3 and β = −3. c Case of β = 5 and β = −5
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7  Conclusions

The solutions developed demonstrate how the integral bal-
ance approach in its two modifications (HBIM and DIM) 
can be applied to nonlinear transient heat conduction with 
a nonlinear thermal diffusivity represented as the additive 
functional relationship a = a0(1± βT).

The main steps and contribution of the developed solu-
tions may be outlined as:

1. The main step avoiding the initial linearization of the 
model equation is the use of the derivative of order 
(m + 1)in the right-side of the HBIM and DIM integra-
tions procedures.

2. The application of the simple heat-balance integral 
technique (HBIM) to non-linear heat conduction equa-
tion is effective when the Dirichlet problem is at issue, 
while the direct application of HBIM and DIM to the 
fixed flux problem is unsuccessful.

3. The optimal exponents in the case of fixed temperature 
problem can be straightforwardly determined by mini-
mization of the squared-error of approximation of the 
governing equation (criterion of Langford for the inte-
gral-balance solutions) and the method of Mitchell and 
Myers [27, 29].

4. The fixed flux problem can be solved with HBIM and 
DIM by either a change of variable as U = 1+ βT  or 
a preliminary treatment (rescaling) of the conductiv-
ity relationship a = a0(1+ βT) which transforms the 
initial model into an equation with a power-law ther-
mal diffusivity a0Tm, especially for m = 1. The trans-
formed equations have known closed form approxi-
mate solutions which can be used in evaluation of the 
optimal exponents when they are used in the minimiza-
tion of the residual function of the original equation.

5. Two comparative examples developed with application 
of the Kirchhoff transform clearly demonstrated the 
applicability of both HBIM and DIM with acceptable 
errors of approximation.

6. Irrespective of the techniques used the approximate solu-
tion with β < 0 are more successful rather then the ones 
when β > 0 and this judgment is based on the pointwise 
errors when comparing to the numerical results.

Acknowledgments Mrs. Antoine Fabre appreciates the possibil-
ity offered by ENS Cachan to perform his M1 student internship in 
UCTM, Sofia, Bulgaria under the supervision of Prof. J. Hristov.

Appendix 1: Fixed temperature problem: the 
numerical solutions used

•	 Finite difference solution

•	 In order to validate the approximate integral-balance 
solutions, two numerical solutions were developed for 
the benchmarking procedures. The first numerical solu-
tion is found thanks to the method of finite difference, 
where an explicit scheme, due to its numerical stability 
and good convergence, was used. In additions, with a 
time step �t = 1/100 and a space step �x = 1/50 we 
got a good accuracy. In this contexts, in the approxima-
tion of Eq. (15) (with initial and boundary conditions 
u(x, 0) = 0 and u(0, t) = 1 q u(δ, t) = 0) the error due to 
the numerical approximation is relatively high when for 
x is close to 0 but decreased rapidly when x increases. 
This high error close to 0 is due to the impossibility to 
calculate the derivative of u at 0.

•	 Runge–Kutta solution

•	 With the Boltzmann transform η = x
/√

a0t and 
X = x/δ = η/f (n) we may express Eq. (15) in the forms

The normalizing function f (n) is introduced for con-
sistency with the concept of the finite penetration depth δ 
which is missing in the classical solution of the linear equa-
tion expressed by the Gaussian error function. In fact, with 
f (n) �= 1 the initial problem is transformed to a bound-
ary value problem with u(X = 0) = 1 and u(X = 1) = 0 
allowing to compare the integral-balance solutions with 
the numerical ones in the domain 0 ≤ X ≤ 1. The solutions 
were developed by Maple 13 where Runge–Kutta solutions 
of 4th order are possible with absolute error less than 10−6 . 
The normalizing function f (n) for each β is expressed 
through the optimal n developed by minimization of the 
residual function (see Tables 2, 3) and it is equal either to 
FT
HBIM(n,β) or FT

DIM(n,β) (see Eqs. 27, 28), depending on 
the integration method applied.

Appendix 2: Fixed flux problem: the derivations 
of the approximations (43) and (44) HBIM 
solution

The equation about the penetration depth is developed by 
HBIM solution is (42), namely

(84)

X
f (n)2

2

∂u(X)

∂X
+

β

1+ βu(X)

(

∂u(X)

∂X

)2

+
∂2u(X)

∂X2
= 0, f (n) �= 1

(85)

1

2

∂u(η)

∂η
+

β

1+ βu(η)

(

∂u(η)

∂η

)2

+
∂2u(η)

∂η2
= 0,

f (n) = 1 and η = X
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For β = 0, it reduces to δq0(HBIM) = δ0 =
√
(a0t)n(n+ 1) 

which is the classical HBIM solution [3, 26]. 
Denoting δ20 = (a0t)n(n+ 1) = α1 > 0 and 

β
q0
k0
(a0t)

2n(n+ 1)2 = α2 > 0 we get a depressed cubic 
equation about δ(t), namely

The coefficients of (84) are related as α2 = α2
1β

(

q0
/

k0n
)

 .

Now, let us suggest that the penetration depth for β �= 0 
is related to the δ20 = (a0t)n(n+ 1) by a correctional func-

tional f3(n, t) that is δ2 = δ20 f
2
3 . Now, we may rearrange 

(86) as

For β = 0 it follows directly that f3 = 1 is a solu-
tion of Eq. (87a, b). The solution of the cubic equation 
f 33 = Af3 + B depends upon the sign of the determinant 
D = A3

27
+ B2

4
. For D > 0 the equation has one real root and 

two imaginary roots. Since we need a unique real solution 
of the penetration depth, then D > 0 is the case. With A = 1 
and B = δ0β

q0
k0

1
n
 we get

Therefore, the Cardano formula is f3 = M + N, where

(42)
δ3 − δ(a0t)n(n+ 1)− β

q0

k0
(a0t)

2n(n+ 1)2 = 0

(86)δ3 − α1δ − α2 = 0

(87a, b)

δ30 f
3
3 − δ30 f3 − δ40β

q0

k0

1

n
= 0 ⇒ f 33 − f3 − δ0β

q0

k0

1

n
= 0

(88)

D =
A3

27
+

B2

4
= δ20

(

β
q0

k0

1

n

)2
[

1−
1

27

1

δ20

(

2

β

k0

q0
n

)2
]

In (90a) the denominators of the second terms under the 
radicals grow in time rapidly because δ20 ≡ a0t. From this 
point of view, we may suggest that they could be neglected 
as smaller than 1 and this step allows to approximate f3 as

Then the penetration depth δ(t) can be expressed as

With the square-root expression of δ0(t) inserted in (91b) 
we get (92) (that is the approximation (Eq. 43 in the main 
text)
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