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However, for such a system, the working fluid is an organic 
fluid such as refrigerants and hydrocarbons characterized 
by a lower boiling temperature. Figure 1 shows ORC with 
internal heat exchanger. It consists of an evaporator driven 
by the geothermal source (or waste heat source), a turbine, 
an internal heat exchanger, a condenser, and a pump.

In recent years, studies in the literature on ORC systems 
have been increased. Tchanche et al. [1] presented a review 
of ORC applications. These applications include solar ther-
mal electricity, solar thermal driven reverse osmosis desali-
nation, Duplex-Rankine cooling, solar pond power systems, 
ocean thermal energy conversion, biomass combined heat 
and power plants, binary geothermal systems and low-grade 
waste heat recycling from thermal devices and processes.

Algieri and Morrone [2] investigated the energetic per-
formance of subcritical and transcritical ORCs. The influ-
ence of the operating conditions on system performances 
has been evaluated. Cyclohexane, decane and toluene have 
been used as working fluids. The biomass energy was used 
for the ORC. Chen et al. [3] presented a design method for 
the thermodynamic analysis for ORCs. The results show 
that a higher turbine inlet temperature requires a lower 
turbine inlet pressure, leading to a lower system thermal 
efficiency. The maximum thermal efficiency appears at the 
saturated or slightly-superheated vapor state at the turbine 
inlet. The pinch temperature differences in evaporators 
strongly influence the system thermal efficiency. Delgado-
Torres and Garcia-Rodriguez [4] carried out analysis and 
optimization of the low-temperature solar ORC. Twelve 
substances are considered as working fluids of the ORC 
and four different models of stationary solar collectors. 
Results obtained for the solar regenerative ORC show that, 
in general, dry fluids considered yield lower values of the 
unit aperture area than wet fluids with the exception of 
ammonia. Ammonia yields similar values than isobutene 

Abstract  In this study, artificial neural network (ANN) 
has been used for efficiency analysis of the organic Rank-
ine cycle with internal heat exchanger (IHEORC) using 
refrigerants R410a, R407c which do not damage to ozone 
layer. It is well known that the evaporator temperature, con-
denser temperature, subcooling temperature and superheat-
ing temperature affect the thermal efficiency of IHEORC. 
In this study, thermal efficiency is estimated depending on 
the above temperatures. The results of ANN are compared 
with actual results. The coefficient of determination values 
obtained when the test set were used to the networks were 
0.99946 and 0.999943 for the R410a and R407c respectively 
which is very satisfactory.

1  Introduction

The interest for low grade heat recovery has been grow-
ing for the last 10 years, due to the increasing concern over 
energy shortage and global warming. An important number 
of new solutions have been proposed to generate electric-
ity from low temperature heat sources. Among the pro-
posed solutions, the organic Rankine cycle (ORC) system 
is the most widely used [1, 2]. An ORC system is similar 
to a conventional steam cycle energy conversion system. 
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and it has very good transport properties. However, it has 
higher values of saturation pressure and toxicity levels than 
the rest of the fluids considered in this work.

Kuo et  al. [5] analyzed the system performance of a 
50 kW ORC system subjected to influence of various work-
ing fluids. The thermal efficiency of an ORC system is 
strongly related to thermophysical properties. Analysis of 
the typical ORC heat exchangers indicates that the domi-
nant thermal resistance in the shell-and-tube condenser is 
on the shell side. Kang [6] designed an ORC that gener-
ates electric power and uses R245fa as the working fluid. 
The performance of the developed cycle was investigated 
experimentally. The efficiencies of the cycle and the tur-
bine, electric power of the developed ORC with respect to 
the operation conditions were investigated.

Aljundi [7] analyzed the effect of using alternative dry 
fluids on the efficiencies of the ORC. The effect of the criti-
cal temperature on the thermal and exergetic efficiencies 
was determined. It was found that efficiencies correlate 
with the critical temperature of the working fluid. Wang 
et al. [8] presented fluid selection and parametric optimiza-
tion of ORC using low temperature waste heat. The effect 
of waste heat temperature and pinch point on the perfor-
mance and economic characteristics of ORC system was 
compared under the optimal conditions.

Sun and Li [9] presented a detailed analysis of an ORC 
heat recovery power plant using R134a as working fluid. 
Mathematical models for expander, evaporator, and air 
cooled condenser and pump are developed to evaluate the 
plant performance. Roy et al. [10] analyzed an ORC using 
working fluid such as R-12, R-123 and R-134a. The results 
were compared with respect to their abilities to convert low-
grade heat source energy to power. The results show that 
R-123 has the maximum work output and efficiencies among 
all the selected fluids. Shengjun et  al. [11] presented an 
investigation on the parameter optimization and performance 
comparison of the fluids in subcritical ORC and transcriti-
cal power cycle in low-temperature binary geothermal power 
system. The optimization procedure was conducted with a 
simulation program written in Matlab using five indicators: 
thermal efficiency, exergy efficiency, recovery efficiency, 
heat exchanger area per unit power output and the levelized 
energy cost. With the given heat source and heat sink condi-
tions, performances of the working fluids were evaluated and 
compared under their optimized internal operation parame-
ters. The optimum cycle design and the corresponding oper-
ation parameters were provided simultaneously.

Yamada et  al. [12] investigated thermal efficiency of 
low-to medium-temperature ORCs using HFO-1234yf. The 
efficiency of HFO-1234yf was compared with that of other 
working fluids. Fernandez et  al. [13] carried out thermo-
dynamic analysis of high-temperature regenerative ORCs 
using siloxanes as working fluids. The analysis includes 

saturated and superheated, subcritical and supercritical 
cycles with linear and cyclic siloxanes. Simple linear silox-
anes in saturated regenerative schemes show good efficien-
cies and ensure thermal stability of the working fluid. Li 
et al. [14] carried out thermodynamic analysis of ORC with 
ejector. The experiments and theoretical analyses were car-
ried out in the same operation conditions. A Double ORC 
was also introduced in order to analyze and compare the 
ORC with ejector with the ORC. The thermal performance 
of Double ORC was superior to ORC with ejector.

In addition, artificial intelligence methods have also been 
applied to ORC in recent years. Rashidi et al. [15] carried 
out parametric analysis and optimization of regenerative 
Clausius and ORCs with two feedwater heaters. Artifi-
cial bee colony and artificial neural network methods for 
the parametric optimization were used. R717 and water as 
working fluid were used. Finally it is found that the maxi-
mum values of the specific network, the thermal efficiency 
and the exergy efficiency for R717 are greater than those for 
water. Wang et al. [16] carried out parametric optimization 
design for supercritical CO2 power cycle using genetic algo-
rithm and artificial neural network. It is shown that the key 
thermodynamic parameters, such as turbine inlet pressure, 
turbine inlet temperature and environment temperature have 
significant effects on the performance of the supercritical 
CO2 power cycle and exergy destruction in each component. 
It is also shown that the optimum thermodynamic param-
eters of supercritical CO2 power cycle can be predicted with 
good accuracy using artificial neural network under variable 
waste heat conditions. Wang et al. [17] presented thermody-
namic analysis and optimization of an ORC using low grade 
heat source. Parametric optimization is conducted to maxi-
mize the ratio of net power output to total heat transfer area 
considering economic factor by Genetic Algorithm. By par-
ametric optimization, the ORC system with isobutane has 
the best system performance than that with R123 or R245fa. 
Arslan and Yetik [18] optimized supercritical ORC-Binary 
using artificial neural network. In the study, the trained algo-
rithms also showed that the predicted values could be used 
to design an ORC-Binary power plant with less data and a 
high level of accuracy.

As can be seen from the literature review presented 
above, studies on use of artificial intelligence methods 
to energy systems and different ORC systems are avail-
able. However, studies on efficiency analysis of ORC with 
internal heat exchanger by using ANN are not available 
in the literature. In addition, studies on efficiency analy-
sis of the ORC with internal heat exchanger using refrig-
erants R410a and R407c are very limited. In this study, in 
order to determine thermal efficiency of ORC with internal 
heat exchanger using refrigerants R410a and R407c arti-
ficial neural network (ANN) model was used. The results 
obtained from ANN model were compared with actual 
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results. The thermal efficiency of ORC with internal heat 
exchanger with these models was estimated successfully. 
In addition, new formulations obtained from ANN are pre-
sented for the calculation of the thermal efficiency values. 
The use of this new formulation, which can be employed 
with any programming language or spreadsheet program 
for estimation of the thermal efficiency of IHEORC, as 
described in this paper, may make the use of dedicated 
ANN or Solkane software unnecessary. The results of this 
study will help to obtain a very accurate and fast forecast of 
the thermal efficiency of ORC with internal heat exchanger.

2 � Calculation of thermal efficiency

Fundamental equations are introduced that are based on the 
energy balance of the ORC with internal heat exchanger 
according to the first law of thermodynamics. The analysis 
ignores the pressure loss from heat exchangers and piping. 
And each component is considered as a steady-state steady-
flow system. Further details of the mathematical model are 
given as follows:

Pump: The work required in the pump is given by:

Evaporator: The heat transfer rate into the working fluid 
through the evaporator is defined as:

Turbine: The work produced in the turbine is given by:

Condenser: The heat transfer rate in the condenser is 
given by:

(1)WP = ṁ(h2 − h1)

(2)QE = ṁ(h4 − h3)

(3)WT = ṁ(h4 − h5)

The thermal efficiency of the ORC with internal heat 
exchanger is related to input power, output power and heat 
transfer rate. The thermal efficiency of the cycle is defined as:

Here, h is the enthalpy, ṁ is the mass flow rate of the 
working fluid, the subscript numbers, 1–6, represent the 
state of the working fluid corresponding to the state num-
bers shown in Fig. 1.

3 � Model development

In this study, the thermal efficiency of ORC with internal 
heat exchanger depending on the evaporator temperature 
(TE), condenser temperature (TC), superheating tempera-
ture (TSH) and subcooling temperature (TSC) for R410a and 
R407c is predicted using ANN approach. In Table  1, the 
input- output parameters used in the analysis are shown.

The performance of ANN model for training and test-
ing data sets were evaluated according to statistical criteria 
such as, the Root-Mean-Squared Error (RMSE), the coef-
ficient of determination (R2) and the coefficient of variation 
(cov). These statistical criteria’s will be used to compare 
the predicted and actual values. During learning the error is 
estimated by RMSE defined as [19]:

In addition, the coefficient of determination (R2) and 
coefficient of variation (cov) in percent are defined as fol-
lows [19]:

(4)QC = ṁ(h6 − h1)

(5)η =
WT −WP

QE

=
(h4 − h5)− (h2 − h1)

(h4 − h3)

(6)RMSE =

√

∑n
m=1 (yp,m − tm,m)2

n

(7)R2
= 1−

∑n
m=1 (tm,m − yp,m)

2

∑n
m=1 (tm,m − t̄m,m)

2

(8)cov =
RMSE
∣

∣t̄m,m
∣

∣
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Fig. 1   Organic Rankine cycle with internal heat exchanger

Table 1   Input and output parameters

Working fluid Input parameters Output parameters

R410a Evaporator temperature (TE) Thermal efficiency (η)

Condenser temperature (TC)

R407c Superheating temperature 
(TSH)

Subcooling temperature (TSC)
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where n is the number of data patterns, yp,m indicates the 
predicted, tm,m is the measured value of one data point m, 
and t̄m,m is the mean value of all measure data points.

In order to achieve the optimal result, different algo-
rithms and different numbers of hidden neurons were used. 
The computer program was performed under MATLAB 
environment using the neural network toolbox. The back 
propagation learning algorithm has been used in a feed 
forward, single hidden layer neural network. The variants 
of the algorithm used in the study are the Levenberg–Mar-
quardt (LM) and Scaled Conjugate Gradient (SCG) algo-
rithms. The actual input data of the various parameters 
need to be normalized in the range (0–1). For this purpose 
the actual values of each parameter are divided with the 
coefficients shown in Table 2.

A log-sigmoid activation function was used for the hid-
den and output layer. The activation function used is given 
by:

where z is the weighted sum of the input.
The next step in the development of the ANN model was 

the determination of the optimum number of neurons in 
the hidden layer. This was identified using a trial and error 
procedure by varying the number of hidden neurons from 3 
to 12. The data set for the thermal efficiency of ORC with 
internal heat exchanger available included 153 data pat-
terns. From these, 101 data patterns were used for training 
the network, and 26 data patterns were randomly selected 
and used as the test data set. 26 data patterns were used 
for validation. The data set for testing and validation were 
taken from Solkane Software. Solkane is a software pack-
age for calculating the thermophysical and thermodynamic 
properties of fluids. In addition, Solkane software performs 
calculations of cycles as some refrigeration and ORC cycle 
[20].

(9)F(z) =
1

1+ e−z

Table 2   Normalization coefficients for input and output parameters

The actual values are divided with the above coefficients to obtain the 
normalized values

Refrigerant Input parameter Coefficient

R410a Evaporator temperature (TE) 68

Condenser temperature (TC) 42

Superheating temperature (TSH) 22

Subcooling temperature (TSC) 27

R407c Evaporator temperature (TE) 84

Condenser temperature (TC) 27

Superheating temperature (TSH) 22

Subcooling temperature (TSC) 22

Table 3   Statistical values of thermal efficiency for R410a working fluid

Bold values indicate statistical values of the most optimal topology 
for thermal efficiency prediction

Algorithm RMSE Cov R2

LM-3 0.0219298 0.263970128 0.99732

LM-4 0.0176864 0.212892195 0.998257

LM-5 0.0174786 0.210389994 0.998298

LM-6 0.0186466 0.224449389 0.998062

LM-7 0.0201153 0.242129179 0.997745

LM-8 0.0174519 0.210069269 0.998303

LM-9 0.0179397 0.215940625 0.998207

LM-10 0.0172904 0.208124845 0.998334

LM-11 0.0174124 0.209594033 0.99831

LM-12 0.0184362 0.221917762 0.998106

SCG-3 0.0182846 0.220091846 0.998137

SCG-4 0.0338367 0.407293391 0.99362

SCG-5 0.0110604 0.133134674 0.999318

SCG-6 0.0131051 0.157746645 0.999043

SCG-7 0.0098417 0.118464407 0.99946

SCG-8 0.0149269 0.179675049 0.998758

SCG-9 0.0131764 0.158604486 0.999032

SCG-10 0.0152644 0.183738246 0.998702

SCG-11 0.012245 0.147393582 0.999164

SCG-12 0.0123128 0.148210122 0.999155

Table 4   Statistical values of thermal efficiency for R407c working fluid

Bold values indicate statistical values of the most optimal topology 
for thermal efficiency prediction

Algorithm RMSE Cov R2

LM-3 0.015148 0.146961 0.999169

LM-4 0.014069 0.136493 0.999283

LM-5 0.014989 0.145417 0.999187

LM-6 0.014846 0.144029 0.999202

LM-7 0.014402 0.139719 0.999249

LM-8 0.014039 0.136196 0.999287

LM-9 0.014659 0.142215 0.999222

LM-10 0.015003 0.145554 0.999185

LM-11 0.014652 0.142147 0.999223

LM-12 0.014371 0.139423 0.999252

SCG-3 0.00582 0.00582 0.999877

SCG-4 0.004007 0.038878 0.999942

SCG-5 0.003984 0.038655 0.999943

SCG-6 0.008359 0.081097 0.999747

SCG-7 0.006422 0.062302 0.999851

SCG-8 0.004073 0.039511 0.99994

SCG-9 0.005129 0.049757 0.999905

SCG-10 0.009892 0.095967 0.999646

SCG-11 0.005197 0.05042 0.999902

SCG-12 0.005489 0.053253 0.999891
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Statistical values such as RMSE, R2 and cov are given in 
Table 3 for the R410a working fluid and in Table 4 for the 
R407c working fluid.

From the data presented in Table 3 for the R410a work-
ing fluid, the SCG algorithm with seven neurons in the hid-
den layer (SCG-7) appeared to be the most optimal topol-
ogy. The R2-value for the thermal efficiency values of the 
system working with R410a is 0.99946 which can be con-
sidered as very satisfactory. Figure 2 shows the architecture 
of the ANN used in the thermal efficiency prediction for 

the R410a working fluid. The decrease of the mean square 
error (MSE) during the training process of this topology is 
shown in Fig. 3. The regression curve of the output variable 
(thermal efficiency) for the test data set is shown in Fig. 4. 
The correlation coefficient obtained in this case is 0.9326, 
which is very satisfactory.

From the data presented in Table 4 for the R407c work-
ing fluid, the SCG algorithm with five neurons in the hid-
den layer (SCG-5) appeared to be the most optimal topol-
ogy. The R2-value for the thermal efficiency values of the 

TSH

TSC

TE

TC

Hidden Layer

Output 
Layer

Bias 1 Bias 2

Input 
Layer

Fig. 2   Architecture of the ANN used in the thermal efficiency pre-
diction for the R410a working fluid

Fig. 3   Variation of mean square error with training epochs for the 
thermal efficiency (for the R410a)

Fig. 4   Comparison of actual and ANN predicted values of the ther-
mal efficiency for the test data set (for the R410a)

TSH

TSC

TE

TC

Bias 1 Bias 2

Input 
Layer Hidden Layer

Output 
Layer

Fig. 5   Architecture of the ANN used in the thermal efficiency pre-
diction for the R407c working fluid
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system working with R407c is 0.999943 which can be con-
sidered as very satisfactory. Figure 5 shows the architecture 
of the ANN used in the thermal efficiency prediction for 
the R407c working fluid. The decrease of the mean square 
error (MSE) during the training process of this topology is 
shown in Fig. 6. The regression curve of the output variable 
(thermal efficiency) for the test data set is shown in Fig. 7. 
The correlation coefficient obtained in this case is 0.9746, 
which is very satisfactory.

4 � Results and discussion

The mathematical formulations derived from the ANN 
model are presented here. In order to determine the ther-
mal efficiency of ORC with internal heat exchanger, 

the following equations are used derived from the ANN 
methodology:

In the above equations for Ei the first two values are 
the multiplication of the input parameters (In) with their 
weights at location n and the last constant value (bn) repre-
sent the bias term. The subscript i represent the number of 
hidden neuron. The four input parameters are:

I1 = Evaporator temperature (TE)
I2 = Condenser temperature (TC)
I3 = Superheating temperature (TSH)
I4 = Subcooling temperature (TSC)

For the thermal efficiency estimation of R410a work-
ing fluid, the best approach, which has minimum errors, 
is obtained from a network with 7 hidden neurons. Thus 7 
pairs of equations, i.e., E1  to E7 and F1 to F7 are required, 
which represent the summation and activation functions of 
each neuron of the hidden layer respectively. The coeffi-
cients of Eq. (10) are given in Table 5.

For the thermal efficiency estimation of R407c work-
ing fluid, the best approach, which has minimum errors, 
is obtained from a network with 5 hidden neurons. Thus 5 
pairs of equations, i.e., E1 to E5 and F1 to F5 are required, 
which represent the summation and activation functions of 
each neuron of the hidden layer respectively. The coeffi-
cients of Eq. (10) are given in Table 6.

Finally, the thermal efficiency values depending on the 
evaporator temperature (TE), condenser temperature (TC), 
superheating temperature (TSH) and subcooling tempera-
ture (TSC) for R410a can be computed from:

Similarly, the thermal efficiency values depending on the 
same input parameters for R407c can be computed from:

(10)Ei =

4
∑

n=1

Inwni + bn

(11)Fi =
1

1+ e−Ei

(12)

E8 = F
∗
1
(132.2658)+ F

∗
2
(−156.9813)+ F

∗
3
(0.2007)

+ F
∗
4
(19.5787)+ F

∗
5
(123.5142)+ F

∗
6
(53.5699)

+ F
∗
7
(−19.2948)− 31.2036

(13)η =

(

1

1+ e−E8

)

(14)
E6 = F

∗
1
(−47.5858)+ F

∗
2
(36.1811)+ F

∗
3
(0.57398)

+ F
∗
4
(14.6332)+ F

∗
5
(−16.5511)+ 9.6051

(15)
η =

(

1

1+ e−E6

)

Fig. 6   Variation of mean square error with training epochs for the 
thermal efficiency (for the R407c)

Fig. 7   Comparison of actual and ANN predicted values of the ther-
mal efficiency for the test data set (for the R407c)
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Tables 7 and 8 give a comparison of the actual thermal 
efficiency values with the results of ANN model for the 
ORC with internal heat exchanger for R410a and R407c 
respectively.

Figures 8 and 9 give a comparison of the actual thermal 
efficiency values with the results of ANN model for the 
ORC with internal heat exchanger in the different evapora-
tor temperatures for the R410a and R407c respectively. As 
can be seen in Figs. 8 and 9, the actual thermal efficiency 

values for both working fluids agree with the results of 
ANN model.

5 � Conclusion

The thermal efficiency values of an ORC with internal heat 
exchanger was estimated depending on the evaporator tem-
perature, condenser temperature, superheating temperature 

Table 5   Weight coefficients 
and bias values of the ANN 
used for the thermal efficiency 
estimation of R410a

Neuron position (wni) I1 (TE) I2 (TC) I3 (TSH) I4 (TSC) bn

1 −48.8949 −16.1567 −87.5298 52.8859 82.2649

2 3.9666 −6.7727 −10.6998 23.7587 3.9009

3 176.8773 −26.0785 −533.9288 85.7691 17.4549

4 5.8289 31.0526 −33.5122 13.0564 −8.132

5 −4.8019 15.3242 259.5231 −153.8313 −72.7063

6 4.6672 −3.788 −0.55058 0.99202 2.9034

7 5.9778 36.5705 −37.0765 14.9577 −9.5938

Table 6   Weight coefficients 
and bias values of the ANN 
used for the thermal efficiency 
estimation of R407c

Neuron position (wni) I1 (TE) I2 (TC) I3 (TSH) I4 (TSC) bn

1 −0.32715 1.9768 1.2053 −7.8577 8.9065

2 −0.68204 1.3867 0.74629 −7.9844 9.4548

3 6.98 −7.6312 7.0907 12.3607 −15.9515

4 −9.0445 3.5869 −1.1868 2.0313 1.6546

5 −8.6169 3.3849 −1.0875 1.8111 1.6066

Table 7   Comparison of actual and ANN estimated thermal efficiency values of organic Rankine cycle with internal heat exchanger for R410a

a  Percentage difference (%) = (error/actual thermal efficiency) × 100

TE (°C) TC (°C) TSH (°C) TSC (°C) Actual thermal  
efficiency

ANN predicted  
thermal efficiency

Error Percentage  
difference (%)a

40 15 5 5 0.07 0.066798468 0.003202 4.573617

49 15 5 5 0.09 0.091754541 −0.00175 −1.94949

52 15 5 5 0.1 0.097772315 0.002228 2.227685

40 20 8 6 0.06 0.0628524 −0.00285 −4754

61 20 8 6 0.1 0.100485691 −0.00049 −0.48569

45 25 10 10 0.06 0.06054036 −0.00054 −0.9006

55 25 10 10 0.08 0.080825063 −0.00083 −1.03133

60 25 10 10 0.09 0.086704767 0.003295 3.66137

62 15 10 25 0.1 0.104012145 −0.00401 −4.01214

42 8 7 22 0.08 0.084688885 −0.00469 −5.86111

43 8 7 22 0.09 0.08525164 0.004748 5.275956

44 8 7 22 0.09 0.085963271 0.004037 4.485255

55 8 7 22 0.11 0.10430265 0.005697 5.179409

56 8 7 22 0.11 0.105910079 0.00409 3.71811

57 8 7 22 0.11 0.107305934 0.002694 2.449151
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and subcooling temperature values by using ANN. The 
ANN is successfully applied to determine the thermal effi-
ciency values of the system working with R410a and R407c. 
The R2-value for the thermal efficiency values of a system 
working with R410a is 0.99946 and the R2-value for the 

thermal efficiency values of a system working with R407c 
is 0.999943 which can be considered as very satisfactory. In 
order to calculate the thermal efficiency values, mathemati-
cal formulations were derived from the ANN model. The use 
of this new formulation, which can be employed with any 
programming language or spreadsheet program for estima-
tion of the thermal efficiency of IHEORC, as described in 
this paper, may make the use of dedicated ANN or Solkane 
software unnecessary. This method will help engineers to 
obtain a very accurate and fast forecast of the thermal effi-
ciency of ORC with internal heat exchanger.
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